Back to Multiple platform build/check report for BioC 3.6
ABCDEFGHIJKLM[N]OPQRSTUVWXYZ

CHECK report for netresponse on tokay1

This page was generated on 2018-04-12 13:20:24 -0400 (Thu, 12 Apr 2018).

Package 940/1472HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
netresponse 1.38.0
Leo Lahti
Snapshot Date: 2018-04-11 16:45:18 -0400 (Wed, 11 Apr 2018)
URL: https://git.bioconductor.org/packages/netresponse
Branch: RELEASE_3_6
Last Commit: f18209c
Last Changed Date: 2017-10-30 12:39:30 -0400 (Mon, 30 Oct 2017)
malbec1 Linux (Ubuntu 16.04.1 LTS) / x86_64  NotNeeded  OK  WARNINGS UNNEEDED, same version exists in internal repository
tokay1 Windows Server 2012 R2 Standard / x64  NotNeeded  OK [ WARNINGS ] OK UNNEEDED, same version exists in internal repository
veracruz1 OS X 10.11.6 El Capitan / x86_64  NotNeeded  OK  WARNINGS  OK UNNEEDED, same version exists in internal repository

Summary

Package: netresponse
Version: 1.38.0
Command: rm -rf netresponse.buildbin-libdir netresponse.Rcheck && mkdir netresponse.buildbin-libdir netresponse.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=netresponse.buildbin-libdir netresponse_1.38.0.tar.gz >netresponse.Rcheck\00install.out 2>&1 && cp netresponse.Rcheck\00install.out netresponse-install.out && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=netresponse.buildbin-libdir --install="check:netresponse-install.out" --force-multiarch --no-vignettes --timings netresponse_1.38.0.tar.gz
StartedAt: 2018-04-12 01:49:06 -0400 (Thu, 12 Apr 2018)
EndedAt: 2018-04-12 01:55:41 -0400 (Thu, 12 Apr 2018)
EllapsedTime: 395.0 seconds
RetCode: 0
Status:  WARNINGS  
CheckDir: netresponse.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   rm -rf netresponse.buildbin-libdir netresponse.Rcheck && mkdir netresponse.buildbin-libdir netresponse.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=netresponse.buildbin-libdir netresponse_1.38.0.tar.gz >netresponse.Rcheck\00install.out 2>&1 && cp netresponse.Rcheck\00install.out netresponse-install.out  &&  C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=netresponse.buildbin-libdir --install="check:netresponse-install.out" --force-multiarch --no-vignettes --timings netresponse_1.38.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.6-bioc/meat/netresponse.Rcheck'
* using R version 3.4.4 (2018-03-15)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'netresponse/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'netresponse' version '1.38.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'netresponse' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
** checking loading without being on the library search path ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
** checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking line endings in Makefiles ... OK
* checking compilation flags in Makevars ... OK
* checking for GNU extensions in Makefiles ... OK
* checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK
* checking compiled code ... NOTE
Note: information on .o files for i386 is not available
Note: information on .o files for x64 is not available
File 'C:/Users/biocbuild/bbs-3.6-bioc/meat/netresponse.buildbin-libdir/netresponse/libs/i386/netresponse.dll':
  Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran)
  Found 'rand', possibly from 'rand' (C)
  Found 'srand', possibly from 'srand' (C)

Compiled code should not call entry points which might terminate R nor
write to stdout/stderr instead of to the console, nor use Fortran I/O
nor system RNGs. The detected symbols are linked into the code but
might come from libraries and not actually be called.

See 'Writing portable packages' in the 'Writing R Extensions' manual.
* checking files in 'vignettes' ... WARNING
Files in the 'vignettes' directory but no files in 'inst/doc':
  'NetResponse.Rmd', 'NetResponse.md', 'TODO/TODO.Rmd',
    'fig/NetResponse2-1.png', 'fig/NetResponse2b-1.png',
    'fig/NetResponse3-1.png', 'fig/NetResponse4-1.png',
    'fig/NetResponse5-1.png', 'fig/NetResponse7-1.png',
    'fig/vdp-1.png', 'main.R', 'netresponse.bib', 'netresponse.pdf'
Package has no Sweave vignette sources and no VignetteBuilder field.
* checking examples ...
** running examples for arch 'i386' ... OK
Examples with CPU or elapsed time > 5s
                       user system elapsed
ICMg.combined.sampler 37.36   0.02   37.38
** running examples for arch 'x64' ... OK
Examples with CPU or elapsed time > 5s
                       user system elapsed
ICMg.combined.sampler 38.36   0.07   38.47
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'ICMg.test.R'
  Running 'bicmixture.R'
  Running 'mixture.model.test.R'
  Running 'mixture.model.test.multimodal.R'
  Running 'mixture.model.test.singlemode.R'
  Running 'timing.R'
  Running 'toydata2.R'
  Running 'validate.netresponse.R'
  Running 'validate.pca.basis.R'
  Running 'vdpmixture.R'
 OK
** running tests for arch 'x64' ...
  Running 'ICMg.test.R'
  Running 'bicmixture.R'
  Running 'mixture.model.test.R'
  Running 'mixture.model.test.multimodal.R'
  Running 'mixture.model.test.singlemode.R'
  Running 'timing.R'
  Running 'toydata2.R'
  Running 'validate.netresponse.R'
  Running 'validate.pca.basis.R'
  Running 'vdpmixture.R'
 OK
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.6-bioc/meat/netresponse.Rcheck/00check.log'
for details.



Installation output

netresponse.Rcheck/00install.out


install for i386

* installing *source* package 'netresponse' ...
** libs
C:/Rtools/mingw_32/bin/gcc  -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG     -I"C:/local323/include"     -O3 -Wall  -std=gnu99 -mtune=generic -c netresponse.c -o netresponse.o
netresponse.c: In function 'mHPpost':
netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable]
   const char *prior_fields[]={"Mumu","S2mu",
               ^
netresponse.c: In function 'vdp_mk_hp_posterior':
netresponse.c:210:3: warning: 'U_hat_table' may be used uninitialized in this function [-Wmaybe-uninitialized]
   update_centroids(datalen, ncentroids, dim1, dim2,
   ^
netresponse.c:210:3: warning: 'data2_int' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c: In function 'mLogLambda':
netresponse.c:713:3: warning: 'U_p' may be used uninitialized in this function [-Wmaybe-uninitialized]
   vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, 
   ^
netresponse.c:713:3: warning: 'KsiBeta' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'KsiAlpha' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'BetaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'AlphaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mutilde' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mubar' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'S2mu' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mumu' may be used uninitialized in this function [-Wmaybe-uninitialized]
C:/Rtools/mingw_32/bin/g++ -shared -s -static-libgcc -o netresponse.dll tmp.def netresponse.o -LC:/local323/lib/i386 -LC:/local323/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/bin/i386 -lR
installing to C:/Users/biocbuild/bbs-3.6-bioc/meat/netresponse.buildbin-libdir/netresponse/libs/i386
** R
** data
** inst
** preparing package for lazy loading
** help
*** installing help indices
  converting help for package 'netresponse'
    finding HTML links ... done
    ICMg.combined.sampler                   html  
    ICMg.get.comp.memberships               html  
    ICMg.links.sampler                      html  
    NetResponseModel-class                  html  
    P.S                                     html  
    P.Sr                                    html  
    P.r.s                                   html  
    P.rS                                    html  
    P.rs.joint                              html  
    P.rs.joint.individual                   html  
    P.s.individual                          html  
    P.s.r                                   html  
    PlotMixture                             html  
    PlotMixtureBivariate                    html  
    PlotMixtureMultivariate                 html  
    PlotMixtureMultivariate.deprecated      html  
    PlotMixtureUnivariate                   html  
    add.ellipse                             html  
    bic.mixture                             html  
    bic.mixture.multivariate                html  
    bic.mixture.univariate                  html  
    bic.select.best.mode                    html  
    centerData                              html  
    check.matrix                            html  
    check.network                           html  
    continuous.responses                    html  
    detect.responses                        html  
    dna                                     html  
    enrichment.list.factor                  html  
    enrichment.list.factor.minimal          html  
    factor.responses                        html  
    factor.responses.minimal                html  
    filter.netw                             html  
    filter.network                          html  
    find.similar.features                   html  
    generate.toydata                        html  
    get.dat-NetResponseModel-method         html  
    get.mis                                 html  
    get.model.parameters                    html  
    get.subnets-NetResponseModel-method     html  
    getqofz-NetResponseModel-method         html  
    independent.models                      html  
    list.responses.continuous.multi         html  
    list.responses.continuous.single        html  
    list.responses.factor                   html  
    list.responses.factor.minimal           html  
    list.significant.responses              html  
    listify.groupings                       html  
    mixture.model                           html  
    model.stats                             html  
    netresponse-package                     html  
    order.responses                         html  
    osmo                                    html  
    pick.model.pairs                        html  
    pick.model.parameters                   html  
    plotPCA                                 html  
    plot_associations                       html  
    plot_data                               html  
    plot_expression                         html  
    plot_matrix                             html  
    plot_response                           html  
    plot_responses                          html  
    plot_scale                              html  
    plot_subnet                             html  
    read.sif                                html  
    remove.negative.edges                   html  
    response.enrichment                     html  
    response2sample                         html  
    sample2response                         html  
    set.breaks                              html  
    toydata                                 html  
    update.model.pair                       html  
    vdp.mixt                                html  
    vectorize.groupings                     html  
    write.netresponse.results               html  
** building package indices
** installing vignettes
** testing if installed package can be loaded
In R CMD INSTALL

install for x64

* installing *source* package 'netresponse' ...
** libs
C:/Rtools/mingw_64/bin/gcc  -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG     -I"C:/local323/include"     -O2 -Wall  -std=gnu99 -mtune=generic -c netresponse.c -o netresponse.o
netresponse.c: In function 'mHPpost':
netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable]
   const char *prior_fields[]={"Mumu","S2mu",
               ^
netresponse.c: In function 'mLogLambda':
netresponse.c:713:3: warning: 'U_p' may be used uninitialized in this function [-Wmaybe-uninitialized]
   vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, 
   ^
netresponse.c:713:3: warning: 'KsiBeta' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'KsiAlpha' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'BetaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'AlphaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mutilde' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mubar' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'S2mu' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mumu' may be used uninitialized in this function [-Wmaybe-uninitialized]
C:/Rtools/mingw_64/bin/g++ -shared -s -static-libgcc -o netresponse.dll tmp.def netresponse.o -LC:/local323/lib/x64 -LC:/local323/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/bin/x64 -lR
installing to C:/Users/biocbuild/bbs-3.6-bioc/meat/netresponse.buildbin-libdir/netresponse/libs/x64
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'netresponse' as netresponse_1.38.0.zip
* DONE (netresponse)
In R CMD INSTALL
In R CMD INSTALL

Tests output

netresponse.Rcheck/tests_i386/bicmixture.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla
> #   -> ainakin nopea check
> 
> #######################################################################
> 
> # Generate random data from five Gaussians. 
> # Detect modes with vdp-gm. 
> # Plot data points and detected clusters with variance ellipses
> 
> #######################################################################
> 
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R")
> #source("˜/Rpackages/netresponse/netresponse/R/internals.R")
> #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
> #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
> 
> #########  Generate DATA #############################################
> 
> # Generate Nc components from normal-inverseGamma prior
> 
> set.seed(12346)
> 
> dd <- 3   # Dimensionality of data
> Nc <- 5   # Number of components
> Ns <- 200 # Number of data points
> sd0 <- 3  # component spread
> rgam.shape = 2 # parameters for Gamma distribution 
> rgam.scale = 2 # parameters for Gamma distribution to define precisions
> 
> 
> # Generate means and variances (covariance diagonals) for the components 
> component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd)
> component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale), 
+ 	                 nrow = Nc, ncol = dd)
> component.sds <- sqrt(component.vars)
> 
> 
> # Size for each component -> sample randomly for each data point from uniform distr.
> # i.e. cluster assignments
> sample2comp <- sample.int(Nc, Ns, replace = TRUE)
> 
> D <- array(NA, dim = c(Ns, dd))
> for (i in 1:Ns)  {
+     # component identity of this sample
+     ci <- sample2comp[[i]]
+     cm <- component.means[ci,]
+     csd <- component.sds[ci,]
+     D[i,] <- rnorm(dd, mean = cm, sd = csd)
+ }
> 
> 
> ######################################################################
> 
> # Fit mixture model
> out <- mixture.model(D, mixture.method = "bic")
> 
> # FIXME rowmeans(qofz) is constant but not 1
> #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE)
> 
> ############################################################
> 
> # Compare input data and results
> 
> ord.out <- order(out$mu[,1])
> ord.in <- order(component.means[,1])
> 
> means.out <- out$mu[ord.out,]
> means.in <- component.means[ord.in,]
> 
> # Cluster stds and variances
> sds.out <- out$sd[ord.out,]
> sds.in  <- sqrt(component.vars[ord.in,])
> 
> # -----------------------------------------------------------
> 
> vars.out <- sds.out^2
> vars.in <- sds.in^2
> 
> # Check correspondence between input and output
> if (length(means.in) == length(means.out)) {
+    cm <- cor(as.vector(means.in), as.vector(means.out))
+    csd <- cor(as.vector(sds.in), as.vector(sds.out))
+ }
> 
> # Plot results (assuming 2D)
> 
> ran <- range(c(as.vector(means.in - 2*vars.in), 
+                as.vector(means.in + 2*vars.in), 
+ 	       as.vector(means.out + 2*vars.out), 
+ 	       as.vector(means.out - 2*vars.out)))
> 
> plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) 
> for (ci in 1:nrow(means.out))  { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
> for (ci in 1:nrow(means.in))  { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
> 
> ######################################################
> 
> #for (ci in 1:nrow(means.out))  {
> #    points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19)
> #    el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,])
> #    lines(el, col = "red") 						  
> #}
> 
> #for (ci in 1:nrow(means.in))  {
> #    points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19)
> #    el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,])
> #    lines(el, col = "blue") 						  
> #}
> 
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
   2.50    0.14    2.62 

netresponse.Rcheck/tests_x64/bicmixture.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla
> #   -> ainakin nopea check
> 
> #######################################################################
> 
> # Generate random data from five Gaussians. 
> # Detect modes with vdp-gm. 
> # Plot data points and detected clusters with variance ellipses
> 
> #######################################################################
> 
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R")
> #source("˜/Rpackages/netresponse/netresponse/R/internals.R")
> #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
> #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
> 
> #########  Generate DATA #############################################
> 
> # Generate Nc components from normal-inverseGamma prior
> 
> set.seed(12346)
> 
> dd <- 3   # Dimensionality of data
> Nc <- 5   # Number of components
> Ns <- 200 # Number of data points
> sd0 <- 3  # component spread
> rgam.shape = 2 # parameters for Gamma distribution 
> rgam.scale = 2 # parameters for Gamma distribution to define precisions
> 
> 
> # Generate means and variances (covariance diagonals) for the components 
> component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd)
> component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale), 
+ 	                 nrow = Nc, ncol = dd)
> component.sds <- sqrt(component.vars)
> 
> 
> # Size for each component -> sample randomly for each data point from uniform distr.
> # i.e. cluster assignments
> sample2comp <- sample.int(Nc, Ns, replace = TRUE)
> 
> D <- array(NA, dim = c(Ns, dd))
> for (i in 1:Ns)  {
+     # component identity of this sample
+     ci <- sample2comp[[i]]
+     cm <- component.means[ci,]
+     csd <- component.sds[ci,]
+     D[i,] <- rnorm(dd, mean = cm, sd = csd)
+ }
> 
> 
> ######################################################################
> 
> # Fit mixture model
> out <- mixture.model(D, mixture.method = "bic")
> 
> # FIXME rowmeans(qofz) is constant but not 1
> #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE)
> 
> ############################################################
> 
> # Compare input data and results
> 
> ord.out <- order(out$mu[,1])
> ord.in <- order(component.means[,1])
> 
> means.out <- out$mu[ord.out,]
> means.in <- component.means[ord.in,]
> 
> # Cluster stds and variances
> sds.out <- out$sd[ord.out,]
> sds.in  <- sqrt(component.vars[ord.in,])
> 
> # -----------------------------------------------------------
> 
> vars.out <- sds.out^2
> vars.in <- sds.in^2
> 
> # Check correspondence between input and output
> if (length(means.in) == length(means.out)) {
+    cm <- cor(as.vector(means.in), as.vector(means.out))
+    csd <- cor(as.vector(sds.in), as.vector(sds.out))
+ }
> 
> # Plot results (assuming 2D)
> 
> ran <- range(c(as.vector(means.in - 2*vars.in), 
+                as.vector(means.in + 2*vars.in), 
+ 	       as.vector(means.out + 2*vars.out), 
+ 	       as.vector(means.out - 2*vars.out)))
> 
> plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) 
> for (ci in 1:nrow(means.out))  { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
> for (ci in 1:nrow(means.in))  { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
> 
> ######################################################
> 
> #for (ci in 1:nrow(means.out))  {
> #    points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19)
> #    el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,])
> #    lines(el, col = "red") 						  
> #}
> 
> #for (ci in 1:nrow(means.in))  {
> #    points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19)
> #    el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,])
> #    lines(el, col = "blue") 						  
> #}
> 
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
   2.81    0.06    2.86 

netresponse.Rcheck/tests_i386/ICMg.test.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # Test script for the ICMg method
> 
> # Load the package
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> data(osmo) # Load data
> 
> # Set parameters
> C.boost = 1
> alpha = 10
> beta = 0.01
> B.num = 10
> B.size = 10
> S.num = 10  
> S.size = 10
> C = 24
> pm0 = 0
> V0 = 1               
> V = 0.1
> 
> # Run combined ICMg sampler
> res = ICMg.combined.sampler(osmo$ppi, osmo$exp, C, alpha, beta, pm0, V0, V, B.num, B.size, S.num, S.size, C.boost) 
Sampling ICMg2...

nodes:10250links:1711observations:133components:24alpha:10beta:0.01

Sampling200iterationcs

Burnin iterations:100

I: 0

n(z):441431447428422433394441412416423447466404421413418459403448413412440418

m(z):708375888567647574837074796269657972725161697153

I:10

convL:-0.487354478124194n(z):2993022744363004754681515302275273427648428425391837419272256249220402357

convN:-0.00691870302404143m(z):657141763986961725947378913051877675595172453651100

I:20

convL:-0.412036780783418n(z):2163622504372343705371821346212253453789383476331843386221209160172434355

convN:-0.00456299940829521m(z):606955674298100171534741881345187817063466945385383

I:30

convL:-0.373428717995942n(z):1993362333421964155021878348216219418944335469341977320253267133142453314

convN:-0.00343197847298687m(z):596856664795100171544941891354988816863457047345383

I:40

convL:-0.356540845973261n(z):23533720230417141050717793332162543771042345508346973380278252122141465273

convN:-0.000516912198213199m(z):596856674795100172544941881344988806864457047345383

I:50

convL:-0.359355923513465n(z):21932124526118437851817623522132534151093324572332972381277221146120429262

convN:-0.000378224972719905m(z):596856674795100172544941881344988806864457047345383

I:60

convL:-0.350086760932994n(z):20931623123018037746417543831982594011185365563345944353288255142132425251

convN:-0.00336917451893505m(z):596856664796100171544941881345088796864457048345383

I:70

convL:-0.347189646479549n(z):22832824521516039948917533581902323951219321585320935344283226175133426291

convN:-0.000811319222146076m(z):596856674796100171544941881344988796864457048345383

I:80

convL:-0.331268502357072n(z):22831425720618238643217063541912084221260351660332898331269251194115445258

convN:-0.00162302116187277m(z):596856684796100171544941881344987796864467048345382

I:90

convL:-0.338549832267903n(z):19932727721314938943617153461672414071309299655337951395238250136105434275

convN:-0.00400944249224796m(z):596856674796100170544941881344987796964477047345383

I:100

convL:-0.338301764477577n(z):19529724020219036048116833501652494041313309679339944329273231162113428314

convN:-0.00149089155103904m(z):596856674796100171544941881344988796964467046345383

Sample iterations:100

I:110

convL:-0.337280941705545n(z):2583052402131703784721657339174235409136125973034494535325719915277428295

convN:-0.0046435170062665m(z):596856674796100171544941881344988806963477045345383

I:120

convL:-0.345341572525645n(z):2372822472152123664751595330180227408142125167833699333425021413886446329

convN:-0.0032235760486957m(z):596856674796100170544941881344988796964477046345383

I:130

convL:-0.331569964423222n(z):24329824820319635146415933531872174061399248750356952325297197144104422297

convN:-0.00173503361253582m(z):596855654796100170544941881345189816963467046345383

I:140

convL:-0.324567163198469n(z):21930124419816136051015963181892233841464285707350940315299214129114425305

convN:-0.00323235768570436m(z):596855664796100171544941881345187816963467047345283

I:150

convL:-0.338335717841359n(z):2193042312211683454831565304187195395150030969235791730937122014493430291

convN:-0.00227993227233253m(z):596856654796100170544941881345187806963477047345383

I:160

convL:-0.333067407493059n(z):2393002271961693344791609326190188393151828168236188429836522016697423305

convN:-0.00258290086778101m(z):596856674796100170544941881344987806963477047345383

I:170

convL:-0.333142770653632n(z):2252912372022093474631540331192201399152828970337389729533522218487414286

convN:-0.00130920333946646m(z):596856674795100169544945881324987816963467047345383

I:180

convL:-0.327787661764565n(z):20231324618417735052315573431922313961528290686350827286364233167102422281

convN:-0.00318767060244094m(z):597056674796100171544946881314983796764487047345383

I:190

convL:-0.348701916923241n(z):2172932511931953844951618331156215405148928466332185728836322117886441306

convN:-0.00408317415333799m(z):596856674895100170544846881324983816865477047345383

I:200

convL:-0.318185957622917n(z):21829624517517434753216133331792294161539252641335880251383220174100428290

convN:-0.000364257231274468m(z):597056674795100170544946881324982806964477047345383

DONE

> 
> # Compute component membership probabilities for the data points
> res$comp.memb <- ICMg.get.comp.memberships(osmo$ppi, res)
> 
> # Compute (hard) clustering for nodes
> res$clustering <- apply(res$comp.memb, 2, which.max)
> 
> proc.time()
   user  system elapsed 
   9.60    0.14    9.75 

netresponse.Rcheck/tests_x64/ICMg.test.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # Test script for the ICMg method
> 
> # Load the package
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> data(osmo) # Load data
> 
> # Set parameters
> C.boost = 1
> alpha = 10
> beta = 0.01
> B.num = 10
> B.size = 10
> S.num = 10  
> S.size = 10
> C = 24
> pm0 = 0
> V0 = 1               
> V = 0.1
> 
> # Run combined ICMg sampler
> res = ICMg.combined.sampler(osmo$ppi, osmo$exp, C, alpha, beta, pm0, V0, V, B.num, B.size, S.num, S.size, C.boost) 
Sampling ICMg2...

nodes:10250links:1711observations:133components:24alpha:10beta:0.01

Sampling200iterationcs

Burnin iterations:100

I: 0

n(z):420406398439406454426413445414444459403437415428405410441428418438451452

m(z):716882897381666968816468745176686880557786478366

I:10

convL:-0.498816236826681n(z):1922565002984726332552883813385201415383342281216639330238352694545372310

convN:-0.00782508689692558m(z):3767759512911143483161961694927604212860289892554070

I:20

convL:-0.427569977915425n(z):1742615032824766922442983032526171452391304313247745369170271763513322288

convN:-0.00482033080952842m(z):3671749713211142443358881715426584112960289089565271

I:30

convL:-0.417862947054813n(z):1702575182584526512433672492376251344365334344265904498199260745496234235

convN:-Infm(z):3970749712711242473359881695425594112759289189565570

I:40

convL:-0.394756741684123n(z):1552794382214436692433532352406121362355288321281989583193246779465249251

convN:-0.00431395209499312m(z):4069739712611342453155891695625613912859288992605570

I:50

convL:-0.381292910385305n(z):15624646022545368924134125824855713483762522682821124567189263732497254224

convN:-0.0051283476770799m(z):3967749612611042473254891715624663912759299289605469

I:60

convL:-0.38660831759509n(z):16226344020444367720837527823657811914272022253241244575158241851478229241

convN:-0.00554491342591226m(z):3968729812611142463254891695624663913159299187605469

I:70

convL:-0.376903190126414n(z):16422542422338267222037029320664210674252402313231272584164251926485212249

convN:-0.00631703709100339m(z):3968739712711142473254891705625663912759299087615469

I:80

convL:-0.36462063400233n(z):14624141922039865920437833921657110934512402212921262596189262931484227211

convN:-0.00276206090469433m(z):3968719712611142473255891695524663912859309190605469

I:90

convL:-0.355066435489032n(z):17220440421637368219138234521261810624202242612991351644168255895470206196

convN:-0.00547871028135296m(z):3867749712611042473254891695625663812759309288615569

I:100

convL:-0.343315023100635n(z):16521437821439174217035734021862810564282352272761321659173287904447217203

convN:-0.00268919407056041m(z):3867729712611242473254891695624663912758299389615470

Sample iterations:100

I:110

convL:-0.348522995808042n(z):17018937324033875117936233323360510224022322752901359625132276967464222211

convN:-0.00344744166878074m(z):3867729712611242473255891695524663912858299389605470

I:120

convL:-0.337678450717407n(z):1511813992413467121693773402616629793942082782791400677111272938459221195

convN:-0.00371549824553026m(z):3761729912611142473655891705524663912859329189605469

I:130

convL:-0.321904426341795n(z):15019136121332272616936938225360710064062172912891410680123239913483227223

convN:-0.00337570521879877m(z):38607210012911140473755891685525683912859328789605469

I:140

convL:-0.333457413593653n(z):1571744011913007381643704052395779353892023012821489729121253927453214239

convN:-0.00582250323732001m(z):38607110112911140473754891675624683913159328787615469

I:150

convL:-0.331082755268254n(z):168195373197319735163370377223602954384195322303149472496238924451237206

convN:-0.00446453467987125m(z):39607210012811240473754891675625683812859328790605469

I:160

convL:-0.338124679591489n(z):180200349230342692186380384258593956377186347310151170383207932450200194

convN:-0.00192793573396461m(z):38607110112911140473754891675624683912859328791605469

I:170

convL:-0.353930861866247n(z):1672003432363907061833763722936129573402033252601482712109194948443215184

convN:-0.00476351729744002m(z):39606610012811040473755901675525683912958328794625469

I:180

convL:-0.337548882611518n(z):179194325242372747189365369294595887303198311292153875998204940445232172

convN:-0.00289301151857487m(z):39606510112711341473755891685224693913059308796615369

I:190

convL:-0.340825510805878n(z):1712033512053297481883633712776149363132053282821486752112211944451218192

convN:-0.00226106238956246m(z):38606510112911440473755891675224693813159308796615369

I:200

convL:-0.341448108422565n(z):1811843812013247681703543792786319323151923432621553720126200872468210206

convN:-0.00116194907178223m(z):38606510012911340473755891675225693913159308796615369

DONE

> 
> # Compute component membership probabilities for the data points
> res$comp.memb <- ICMg.get.comp.memberships(osmo$ppi, res)
> 
> # Compute (hard) clustering for nodes
> res$clustering <- apply(res$comp.memb, 2, which.max)
> 
> proc.time()
   user  system elapsed 
   9.95    0.14   10.07 

netresponse.Rcheck/tests_i386/mixture.model.test.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # Validate mixture models
> 
> # Generate random data from five Gaussians. 
> # Detect modes 
> # Plot data points and detected clusters 
> 
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
> 
> #########  Generate DATA #######################
> 
> res <- generate.toydata()
> D <- res$data
> component.means <- res$means
> component.sds   <- res$sds
> sample2comp     <- res$sample2comp
> 
> ######################################################################
> 
> par(mfrow = c(2,1))
> 
> for (mm in c("vdp", "bic")) {
+ 
+   # Fit nonparametric Gaussian mixture model
+   #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
+   out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE)
+ 
+   ############################################################
+ 
+   # Compare input data and results
+ 
+   ord.out <- order(out$mu[,1])
+   ord.in <- order(component.means[,1])
+ 
+   means.out <- out$mu[ord.out,]
+   means.in <- component.means[ord.in,]
+ 
+   # Cluster stds and variances
+   sds.out <- out$sd[ord.out,]
+   vars.out <- sds.out^2
+ 
+   sds.in  <- component.sds[ord.in,]
+   vars.in <- sds.in^2
+ 
+   # Check correspondence between input and output
+   if (length(means.in) == length(means.out)) {
+     cm <- cor(as.vector(means.in), as.vector(means.out))
+     csd <- cor(as.vector(sds.in), as.vector(sds.out))
+   }
+ 
+   # Plot results (assuming 2D)
+   ran <- range(c(as.vector(means.in - 2*vars.in), 
+                as.vector(means.in + 2*vars.in), 
+ 	       as.vector(means.out + 2*vars.out), 
+ 	       as.vector(means.out - 2*vars.out)))
+ 
+   real.modes <- sample2comp
+   obs.modes <- apply(out$qofz, 1, which.max)
+ 
+   # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) 
+   plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) 
+   for (ci in 1:nrow(means.out))  { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
+   for (ci in 1:nrow(means.in))  { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
+ 
+ }
> 
> 
> proc.time()
   user  system elapsed 
   2.76    0.15    2.90 

netresponse.Rcheck/tests_x64/mixture.model.test.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # Validate mixture models
> 
> # Generate random data from five Gaussians. 
> # Detect modes 
> # Plot data points and detected clusters 
> 
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
> 
> #########  Generate DATA #######################
> 
> res <- generate.toydata()
> D <- res$data
> component.means <- res$means
> component.sds   <- res$sds
> sample2comp     <- res$sample2comp
> 
> ######################################################################
> 
> par(mfrow = c(2,1))
> 
> for (mm in c("vdp", "bic")) {
+ 
+   # Fit nonparametric Gaussian mixture model
+   #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
+   out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE)
+ 
+   ############################################################
+ 
+   # Compare input data and results
+ 
+   ord.out <- order(out$mu[,1])
+   ord.in <- order(component.means[,1])
+ 
+   means.out <- out$mu[ord.out,]
+   means.in <- component.means[ord.in,]
+ 
+   # Cluster stds and variances
+   sds.out <- out$sd[ord.out,]
+   vars.out <- sds.out^2
+ 
+   sds.in  <- component.sds[ord.in,]
+   vars.in <- sds.in^2
+ 
+   # Check correspondence between input and output
+   if (length(means.in) == length(means.out)) {
+     cm <- cor(as.vector(means.in), as.vector(means.out))
+     csd <- cor(as.vector(sds.in), as.vector(sds.out))
+   }
+ 
+   # Plot results (assuming 2D)
+   ran <- range(c(as.vector(means.in - 2*vars.in), 
+                as.vector(means.in + 2*vars.in), 
+ 	       as.vector(means.out + 2*vars.out), 
+ 	       as.vector(means.out - 2*vars.out)))
+ 
+   real.modes <- sample2comp
+   obs.modes <- apply(out$qofz, 1, which.max)
+ 
+   # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) 
+   plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) 
+   for (ci in 1:nrow(means.out))  { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
+   for (ci in 1:nrow(means.in))  { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
+ 
+ }
> 
> 
> proc.time()
   user  system elapsed 
   2.89    0.09    2.96 

netresponse.Rcheck/tests_i386/mixture.model.test.multimodal.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> # Three MODES
> 
> # set.seed(34884)
> set.seed(3488400)
> 
> Ns <- 200
> Nd <- 2
> 
> D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), 
+       	    matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd),
+       	    cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3))
+ 	    )
> 
> #X11()
> par(mfrow = c(2,2))
> for (mm in c("vdp", "bic")) {
+   for (pp in c(FALSE, TRUE)) {
+ 
+     # Fit nonparametric Gaussian mixture model
+     out <- mixture.model(D3, mixture.method = mm, pca.basis = pp)
+     plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:",  pp)) 
+ 
+   }
+ }
> 
> # VDP is less sensitive than BIC in detecting Gaussian modes (more
> # separation between the clusters needed)
> 
> # pca.basis option is less important for sensitive detection but
> # it will help to avoid overfitting to unimodal features that
> # are not parallel to the axes (unimodal distribution often becomes
> # splitted in two or more clusters in these cases)
> 
> 
> proc.time()
   user  system elapsed 
   6.37    0.12    6.50 

netresponse.Rcheck/tests_x64/mixture.model.test.multimodal.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> # Three MODES
> 
> # set.seed(34884)
> set.seed(3488400)
> 
> Ns <- 200
> Nd <- 2
> 
> D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), 
+       	    matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd),
+       	    cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3))
+ 	    )
> 
> #X11()
> par(mfrow = c(2,2))
> for (mm in c("vdp", "bic")) {
+   for (pp in c(FALSE, TRUE)) {
+ 
+     # Fit nonparametric Gaussian mixture model
+     out <- mixture.model(D3, mixture.method = mm, pca.basis = pp)
+     plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:",  pp)) 
+ 
+   }
+ }
> 
> # VDP is less sensitive than BIC in detecting Gaussian modes (more
> # separation between the clusters needed)
> 
> # pca.basis option is less important for sensitive detection but
> # it will help to avoid overfitting to unimodal features that
> # are not parallel to the axes (unimodal distribution often becomes
> # splitted in two or more clusters in these cases)
> 
> 
> proc.time()
   user  system elapsed 
   4.73    0.17    4.90 

netresponse.Rcheck/tests_i386/mixture.model.test.singlemode.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> skip <- FALSE
> 
> if (!skip) {
+ 
+ library(netresponse)
+ 
+ # SINGLE MODE
+ 
+ # Produce test data that has full covariance
+ # It is expected that
+ # pca.basis = FALSE splits Gaussian with full covariance into two modes
+ # pca.basis = TRUE should detect just a single mode
+ 
+ Ns <- 200
+ Nd <- 2
+ k <- 1.5
+ 
+ D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1))
+ 
+ par(mfrow = c(2,2))
+ for (mm in c("vdp", "bic")) {
+   for (pp in c(FALSE, TRUE)) {
+ 
+     # Fit nonparametric Gaussian mixture model
+     out <- mixture.model(D2, mixture.method = mm, pca.basis = pp)
+     plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:",  pp)) 
+ 
+   }
+ }
+ 
+ }
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> proc.time()
   user  system elapsed 
   3.01    0.18    3.18 

netresponse.Rcheck/tests_x64/mixture.model.test.singlemode.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> skip <- FALSE
> 
> if (!skip) {
+ 
+ library(netresponse)
+ 
+ # SINGLE MODE
+ 
+ # Produce test data that has full covariance
+ # It is expected that
+ # pca.basis = FALSE splits Gaussian with full covariance into two modes
+ # pca.basis = TRUE should detect just a single mode
+ 
+ Ns <- 200
+ Nd <- 2
+ k <- 1.5
+ 
+ D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1))
+ 
+ par(mfrow = c(2,2))
+ for (mm in c("vdp", "bic")) {
+   for (pp in c(FALSE, TRUE)) {
+ 
+     # Fit nonparametric Gaussian mixture model
+     out <- mixture.model(D2, mixture.method = mm, pca.basis = pp)
+     plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:",  pp)) 
+ 
+   }
+ }
+ 
+ }
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> 
> proc.time()
   user  system elapsed 
   3.17    0.20    3.37 

netresponse.Rcheck/tests_i386/timing.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> # Play with different options and check their effect on  running times for bic and vdp 
> 
> skip <- TRUE
> 
> if (!skip) {
+ 
+   Ns <- 100
+   Nd <- 2
+ 
+   set.seed(3488400)
+ 
+   D <- cbind(
+ 
+      	rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), 
+        	      matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd),
+       	      cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3))
+  	    ), 
+ 
+      	rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), 
+        	      matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd),
+       	      cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3))
+  	    )
+ 	    )
+ 
+   rownames(D) <- paste("R", 1:nrow(D), sep = "-")
+   colnames(D) <- paste("C", 1:ncol(D), sep = "-")
+ 
+   ts <- c()
+   for (mm in c("bic", "vdp")) {
+ 
+ 
+     # NOTE: no PCA basis needed with mixture.method = "bic"
+     tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5, 
+ 	   		       mixture.method = mm, information.criterion = "BIC", 
+ 			       merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE))
+ 
+     print(paste(mm, ":", round(tt[["elapsed"]], 3)))
+     ts[[mm]] <- tt[["elapsed"]]
+   }
+ 
+    print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3)))
+ 
+ }
> 
> # -> VDP is much faster when sample sizes increase 
> # 1000 samples -> 25-fold speedup with VDP
> 
> 
> 
> proc.time()
   user  system elapsed 
   0.20    0.03    0.23 

netresponse.Rcheck/tests_x64/timing.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> # Play with different options and check their effect on  running times for bic and vdp 
> 
> skip <- TRUE
> 
> if (!skip) {
+ 
+   Ns <- 100
+   Nd <- 2
+ 
+   set.seed(3488400)
+ 
+   D <- cbind(
+ 
+      	rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), 
+        	      matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd),
+       	      cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3))
+  	    ), 
+ 
+      	rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), 
+        	      matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd),
+       	      cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3))
+  	    )
+ 	    )
+ 
+   rownames(D) <- paste("R", 1:nrow(D), sep = "-")
+   colnames(D) <- paste("C", 1:ncol(D), sep = "-")
+ 
+   ts <- c()
+   for (mm in c("bic", "vdp")) {
+ 
+ 
+     # NOTE: no PCA basis needed with mixture.method = "bic"
+     tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5, 
+ 	   		       mixture.method = mm, information.criterion = "BIC", 
+ 			       merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE))
+ 
+     print(paste(mm, ":", round(tt[["elapsed"]], 3)))
+     ts[[mm]] <- tt[["elapsed"]]
+   }
+ 
+    print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3)))
+ 
+ }
> 
> # -> VDP is much faster when sample sizes increase 
> # 1000 samples -> 25-fold speedup with VDP
> 
> 
> 
> proc.time()
   user  system elapsed 
   0.12    0.04    0.17 

netresponse.Rcheck/tests_i386/toydata2.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # Generate Nc components from normal-inverseGamma prior
> 
> set.seed(12346)
> 
> Ns <- 300
> Nd <- 2
> 
> # Isotropic cloud
> D1 <- matrix(rnorm(Ns*Nd), ncol = Nd) 
> 
> # Single diagonal mode
> D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1)) 
> 
> # Two isotropic modes
> D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd))
> D <- cbind(D1, D2, D3)
> 
> colnames(D) <- paste("Feature-",  1:ncol(D), sep = "")
> rownames(D) <- paste("Sample-", 1:nrow(D), sep = "")
> 
> 
> proc.time()
   user  system elapsed 
   0.15    0.00    0.14 

netresponse.Rcheck/tests_x64/toydata2.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # Generate Nc components from normal-inverseGamma prior
> 
> set.seed(12346)
> 
> Ns <- 300
> Nd <- 2
> 
> # Isotropic cloud
> D1 <- matrix(rnorm(Ns*Nd), ncol = Nd) 
> 
> # Single diagonal mode
> D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1)) 
> 
> # Two isotropic modes
> D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd))
> D <- cbind(D1, D2, D3)
> 
> colnames(D) <- paste("Feature-",  1:ncol(D), sep = "")
> rownames(D) <- paste("Sample-", 1:nrow(D), sep = "")
> 
> 
> proc.time()
   user  system elapsed 
   0.15    0.03    0.17 

netresponse.Rcheck/tests_i386/validate.netresponse.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> skip <- FALSE
> 
> if (!skip) {
+ 
+ # 2. netresponse test
+ # test later with varying parameters
+ 
+ # Load the package
+ library(netresponse)
+ #load("../data/toydata.rda")
+ fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)};
+ 
+ data(toydata)
+ 
+ D <- toydata$emat
+ netw <- toydata$netw
+ 
+ # The toy data is random data with 10 features (genes). 
+ # The features 
+ rf <- c(4, 5, 6)
+ #form a subnetwork with coherent responses
+ # with means 
+ r1 <- c(0, 3, 0)
+ r2 <- c(-5, 0, 2)
+ r3 <- c(5, -3, -3)
+ mu.real <- rbind(r1, r2, r3)
+ # real weights
+ w.real <- c(70, 70, 60)/200
+ # and unit variances
+ rv <- 1
+ 
+ # Fit the model
+ #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2)
+ #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4)
+ 
+ res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE)
+ 
+ print("OK")
+ 
+ # Subnets (each is a list of nodes)
+ subnets <- get.subnets(res)
+ 
+ # the correct subnet is retrieved in subnet number 2:
+ #> subnet[[2]]
+ #[1] "feat4" "feat5" "feat6"
+ 
+ # how about responses
+ # Retrieve model for the subnetwork with lowest cost function value
+ # means, standard devations and weights for the components
+ if (!is.null(subnets)) {
+ m <- get.model.parameters(res, subnet.id = "Subnet-2")
+ 
+ # order retrieved and real response means by the first feature 
+ # (to ensure responses are listed in the same order)
+ # and compare deviation from correct solution
+ ord.obs <- order(m$mu[,1])
+ ord.real <- order(mu.real[,1])
+ 
+ print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,]))))
+ 
+ # all real variances are 1, compare to observed ones
+ print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv)))
+ 
+ # weights deviate somewhat, this is likely due to relatively small sample size
+ #print("Maximum deviation from real weights: ")
+ #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real])
+ 
+ print("estimated and real mean matrices")
+ print(m$mu[ord.obs,])
+ print(mu.real[ord.real,])
+ 
+ }
+ 
+ }
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 8
2 / 8
3 / 8
4 / 8
5 / 8
6 / 8
7 / 8
8 / 8
Compute cost for each variable
Computing model for node 1 / 10
Computing model for node 2 / 10
Computing model for node 3 / 10
Computing model for node 4 / 10
Computing model for node 5 / 10
Computing model for node 6 / 10
Computing model for node 7 / 10
Computing model for node 8 / 10
Computing model for node 9 / 10
Computing model for node 10 / 10
independent models done
Computing delta values for edge  1 / 29 

Computing delta values for edge  2 / 29 

Computing delta values for edge  3 / 29 

Computing delta values for edge  4 / 29 

Computing delta values for edge  5 / 29 

Computing delta values for edge  6 / 29 

Computing delta values for edge  7 / 29 

Computing delta values for edge  8 / 29 

Computing delta values for edge  9 / 29 

Computing delta values for edge  10 / 29 

Computing delta values for edge  11 / 29 

Computing delta values for edge  12 / 29 

Computing delta values for edge  13 / 29 

Computing delta values for edge  14 / 29 

Computing delta values for edge  15 / 29 

Computing delta values for edge  16 / 29 

Computing delta values for edge  17 / 29 

Computing delta values for edge  18 / 29 

Computing delta values for edge  19 / 29 

Computing delta values for edge  20 / 29 

Computing delta values for edge  21 / 29 

Computing delta values for edge  22 / 29 

Computing delta values for edge  23 / 29 

Computing delta values for edge  24 / 29 

Computing delta values for edge  25 / 29 

Computing delta values for edge  26 / 29 

Computing delta values for edge  27 / 29 

Computing delta values for edge  28 / 29 

Computing delta values for edge  29 / 29 

Combining groups,  10  group(s) left...

Combining groups,  9  group(s) left...

Combining groups,  8  group(s) left...

Combining groups,  7  group(s) left...

Combining groups,  6  group(s) left...

Combining groups,  5  group(s) left...

Combining groups,  4  group(s) left...

[1] "OK"
[1] "Correlation between real and observed responses: 0.999117848017521"
[1] "Maximum deviation from real variances:  0.0391530538149302"
[1] "estimated and real mean matrices"
           [,1]       [,2]       [,3]
[1,] -4.9334982 -0.1575946  2.1613225
[2,] -0.1299285  3.0047767 -0.1841669
[3,]  5.0738471 -2.9334877 -3.2217492
   [,1] [,2] [,3]
r2   -5    0    2
r1    0    3    0
r3    5   -3   -3
> 
> proc.time()
   user  system elapsed 
  41.56    0.14   41.67 

netresponse.Rcheck/tests_x64/validate.netresponse.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> skip <- FALSE
> 
> if (!skip) {
+ 
+ # 2. netresponse test
+ # test later with varying parameters
+ 
+ # Load the package
+ library(netresponse)
+ #load("../data/toydata.rda")
+ fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)};
+ 
+ data(toydata)
+ 
+ D <- toydata$emat
+ netw <- toydata$netw
+ 
+ # The toy data is random data with 10 features (genes). 
+ # The features 
+ rf <- c(4, 5, 6)
+ #form a subnetwork with coherent responses
+ # with means 
+ r1 <- c(0, 3, 0)
+ r2 <- c(-5, 0, 2)
+ r3 <- c(5, -3, -3)
+ mu.real <- rbind(r1, r2, r3)
+ # real weights
+ w.real <- c(70, 70, 60)/200
+ # and unit variances
+ rv <- 1
+ 
+ # Fit the model
+ #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2)
+ #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4)
+ 
+ res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE)
+ 
+ print("OK")
+ 
+ # Subnets (each is a list of nodes)
+ subnets <- get.subnets(res)
+ 
+ # the correct subnet is retrieved in subnet number 2:
+ #> subnet[[2]]
+ #[1] "feat4" "feat5" "feat6"
+ 
+ # how about responses
+ # Retrieve model for the subnetwork with lowest cost function value
+ # means, standard devations and weights for the components
+ if (!is.null(subnets)) {
+ m <- get.model.parameters(res, subnet.id = "Subnet-2")
+ 
+ # order retrieved and real response means by the first feature 
+ # (to ensure responses are listed in the same order)
+ # and compare deviation from correct solution
+ ord.obs <- order(m$mu[,1])
+ ord.real <- order(mu.real[,1])
+ 
+ print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,]))))
+ 
+ # all real variances are 1, compare to observed ones
+ print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv)))
+ 
+ # weights deviate somewhat, this is likely due to relatively small sample size
+ #print("Maximum deviation from real weights: ")
+ #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real])
+ 
+ print("estimated and real mean matrices")
+ print(m$mu[ord.obs,])
+ print(mu.real[ord.real,])
+ 
+ }
+ 
+ }
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 8
2 / 8
3 / 8
4 / 8
5 / 8
6 / 8
7 / 8
8 / 8
Compute cost for each variable
Computing model for node 1 / 10
Computing model for node 2 / 10
Computing model for node 3 / 10
Computing model for node 4 / 10
Computing model for node 5 / 10
Computing model for node 6 / 10
Computing model for node 7 / 10
Computing model for node 8 / 10
Computing model for node 9 / 10
Computing model for node 10 / 10
independent models done
Computing delta values for edge  1 / 29 

Computing delta values for edge  2 / 29 

Computing delta values for edge  3 / 29 

Computing delta values for edge  4 / 29 

Computing delta values for edge  5 / 29 

Computing delta values for edge  6 / 29 

Computing delta values for edge  7 / 29 

Computing delta values for edge  8 / 29 

Computing delta values for edge  9 / 29 

Computing delta values for edge  10 / 29 

Computing delta values for edge  11 / 29 

Computing delta values for edge  12 / 29 

Computing delta values for edge  13 / 29 

Computing delta values for edge  14 / 29 

Computing delta values for edge  15 / 29 

Computing delta values for edge  16 / 29 

Computing delta values for edge  17 / 29 

Computing delta values for edge  18 / 29 

Computing delta values for edge  19 / 29 

Computing delta values for edge  20 / 29 

Computing delta values for edge  21 / 29 

Computing delta values for edge  22 / 29 

Computing delta values for edge  23 / 29 

Computing delta values for edge  24 / 29 

Computing delta values for edge  25 / 29 

Computing delta values for edge  26 / 29 

Computing delta values for edge  27 / 29 

Computing delta values for edge  28 / 29 

Computing delta values for edge  29 / 29 

Combining groups,  10  group(s) left...

Combining groups,  9  group(s) left...

Combining groups,  8  group(s) left...

Combining groups,  7  group(s) left...

Combining groups,  6  group(s) left...

Combining groups,  5  group(s) left...

Combining groups,  4  group(s) left...

[1] "OK"
[1] "Correlation between real and observed responses: 0.999117848017521"
[1] "Maximum deviation from real variances:  0.0391530538149302"
[1] "estimated and real mean matrices"
           [,1]       [,2]       [,3]
[1,] -4.9334982 -0.1575946  2.1613225
[2,] -0.1299285  3.0047767 -0.1841669
[3,]  5.0738471 -2.9334877 -3.2217492
   [,1] [,2] [,3]
r2   -5    0    2
r1    0    3    0
r3    5   -3   -3
> 
> proc.time()
   user  system elapsed 
  41.35    0.09   41.51 

netresponse.Rcheck/tests_i386/validate.pca.basis.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> skip <- FALSE
> 
> if (!skip) {
+ # Visualization
+ 
+ library(netresponse)
+ 
+ #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)}
+ 
+ source("toydata2.R")
+ 
+ # --------------------------------------------------------------------
+ 
+ set.seed(4243)
+ mixture.method <- "bic"
+ 
+ # --------------------------------------------------------------------
+ 
+ res <- detect.responses(D, verbose = TRUE, max.responses = 10, 
+ 	   		       mixture.method = mixture.method, information.criterion = "BIC", 
+ 			       merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE)
+ 
+ res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE)
+ 
+ # --------------------------------------------------------------------
+ 
+ k <- 1
+ 
+ # Incorrect VDP: two modes detected
+ # Correct BIC: single mode detected
+ subnet.id <- names(get.subnets(res))[[k]]
+ 
+ # Correct: single mode detected (VDP & BIC)
+ subnet.id.pca <- names(get.subnets(res.pca))[[k]]
+ 
+ # --------------------------------------------------------------------------------------------------
+ 
+ vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM"))
+ vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM")
+ vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM")
+ vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM")
+ 
+ # With original data: VDP overlearns; BIC works; with full covariance data 
+ # With PCA basis: modes detected ok with both VDP and BIC.
+ 
+ # ------------------------------------------------------------------------
+ 
+ # TODO
+ # pca.plot(res, subnet.id)
+ # plot_subnet(res, subnet.id) 
+ }
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 5
2 / 5
3 / 5
4 / 5
5 / 5
Compute cost for each variable
Computing model for node 1 / 6
Computing model for node 2 / 6
Computing model for node 3 / 6
Computing model for node 4 / 6
Computing model for node 5 / 6
Computing model for node 6 / 6
independent models done
Computing delta values for edge  1 / 15 

Computing delta values for edge  2 / 15 

Computing delta values for edge  3 / 15 

Computing delta values for edge  4 / 15 

Computing delta values for edge  5 / 15 

Computing delta values for edge  6 / 15 

Computing delta values for edge  7 / 15 

Computing delta values for edge  8 / 15 

Computing delta values for edge  9 / 15 

Computing delta values for edge  10 / 15 

Computing delta values for edge  11 / 15 

Computing delta values for edge  12 / 15 

Computing delta values for edge  13 / 15 

Computing delta values for edge  14 / 15 

Computing delta values for edge  15 / 15 

Combining groups,  6  group(s) left...

Combining groups,  5  group(s) left...

Combining groups,  4  group(s) left...

Combining groups,  3  group(s) left...

convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 5
2 / 5
3 / 5
4 / 5
5 / 5
Compute cost for each variable
Computing model for node 1 / 6
Computing model for node 2 / 6
Computing model for node 3 / 6
Computing model for node 4 / 6
Computing model for node 5 / 6
Computing model for node 6 / 6
independent models done
Computing delta values for edge  1 / 15 

Computing delta values for edge  2 / 15 

Computing delta values for edge  3 / 15 

Computing delta values for edge  4 / 15 

Computing delta values for edge  5 / 15 

Computing delta values for edge  6 / 15 

Computing delta values for edge  7 / 15 

Computing delta values for edge  8 / 15 

Computing delta values for edge  9 / 15 

Computing delta values for edge  10 / 15 

Computing delta values for edge  11 / 15 

Computing delta values for edge  12 / 15 

Computing delta values for edge  13 / 15 

Computing delta values for edge  14 / 15 

Computing delta values for edge  15 / 15 

Combining groups,  6  group(s) left...

Combining groups,  5  group(s) left...

Combining groups,  4  group(s) left...

Combining groups,  3  group(s) left...

Warning messages:
1: In check.network(network, datamatrix, verbose = verbose) :
  No network provided in function call: assuming fully connected nodes.
2: In check.network(network, datamatrix, verbose = verbose) :
  No network provided in function call: assuming fully connected nodes.
> 
> proc.time()
   user  system elapsed 
  28.51    0.12   28.62 

netresponse.Rcheck/tests_x64/validate.pca.basis.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> skip <- FALSE
> 
> if (!skip) {
+ # Visualization
+ 
+ library(netresponse)
+ 
+ #fs <- list.files("˜/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)}
+ 
+ source("toydata2.R")
+ 
+ # --------------------------------------------------------------------
+ 
+ set.seed(4243)
+ mixture.method <- "bic"
+ 
+ # --------------------------------------------------------------------
+ 
+ res <- detect.responses(D, verbose = TRUE, max.responses = 10, 
+ 	   		       mixture.method = mixture.method, information.criterion = "BIC", 
+ 			       merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE)
+ 
+ res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE)
+ 
+ # --------------------------------------------------------------------
+ 
+ k <- 1
+ 
+ # Incorrect VDP: two modes detected
+ # Correct BIC: single mode detected
+ subnet.id <- names(get.subnets(res))[[k]]
+ 
+ # Correct: single mode detected (VDP & BIC)
+ subnet.id.pca <- names(get.subnets(res.pca))[[k]]
+ 
+ # --------------------------------------------------------------------------------------------------
+ 
+ vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM"))
+ vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM")
+ vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM")
+ vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM")
+ 
+ # With original data: VDP overlearns; BIC works; with full covariance data 
+ # With PCA basis: modes detected ok with both VDP and BIC.
+ 
+ # ------------------------------------------------------------------------
+ 
+ # TODO
+ # pca.plot(res, subnet.id)
+ # plot_subnet(res, subnet.id) 
+ }
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 5
2 / 5
3 / 5
4 / 5
5 / 5
Compute cost for each variable
Computing model for node 1 / 6
Computing model for node 2 / 6
Computing model for node 3 / 6
Computing model for node 4 / 6
Computing model for node 5 / 6
Computing model for node 6 / 6
independent models done
Computing delta values for edge  1 / 15 

Computing delta values for edge  2 / 15 

Computing delta values for edge  3 / 15 

Computing delta values for edge  4 / 15 

Computing delta values for edge  5 / 15 

Computing delta values for edge  6 / 15 

Computing delta values for edge  7 / 15 

Computing delta values for edge  8 / 15 

Computing delta values for edge  9 / 15 

Computing delta values for edge  10 / 15 

Computing delta values for edge  11 / 15 

Computing delta values for edge  12 / 15 

Computing delta values for edge  13 / 15 

Computing delta values for edge  14 / 15 

Computing delta values for edge  15 / 15 

Combining groups,  6  group(s) left...

Combining groups,  5  group(s) left...

Combining groups,  4  group(s) left...

Combining groups,  3  group(s) left...

convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 5
2 / 5
3 / 5
4 / 5
5 / 5
Compute cost for each variable
Computing model for node 1 / 6
Computing model for node 2 / 6
Computing model for node 3 / 6
Computing model for node 4 / 6
Computing model for node 5 / 6
Computing model for node 6 / 6
independent models done
Computing delta values for edge  1 / 15 

Computing delta values for edge  2 / 15 

Computing delta values for edge  3 / 15 

Computing delta values for edge  4 / 15 

Computing delta values for edge  5 / 15 

Computing delta values for edge  6 / 15 

Computing delta values for edge  7 / 15 

Computing delta values for edge  8 / 15 

Computing delta values for edge  9 / 15 

Computing delta values for edge  10 / 15 

Computing delta values for edge  11 / 15 

Computing delta values for edge  12 / 15 

Computing delta values for edge  13 / 15 

Computing delta values for edge  14 / 15 

Computing delta values for edge  15 / 15 

Combining groups,  6  group(s) left...

Combining groups,  5  group(s) left...

Combining groups,  4  group(s) left...

Combining groups,  3  group(s) left...

Warning messages:
1: In check.network(network, datamatrix, verbose = verbose) :
  No network provided in function call: assuming fully connected nodes.
2: In check.network(network, datamatrix, verbose = verbose) :
  No network provided in function call: assuming fully connected nodes.
> 
> proc.time()
   user  system elapsed 
  32.54    0.18   32.98 

netresponse.Rcheck/tests_i386/vdpmixture.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla
> #   -> ainakin nopea check
> 
> #######################################################################
> 
> # Generate random data from five Gaussians. 
> # Detect modes with vdp-gm. 
> # Plot data points and detected clusters with variance ellipses
> 
> #######################################################################
> 
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R")
> #source("˜/Rpackages/netresponse/netresponse/R/internals.R")
> #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
> #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
> 
> 
> #########  Generate DATA #############################################
> 
> res <- generate.toydata()
> D <- res$data
> component.means <- res$means
> component.sds   <- res$sds
> sample2comp     <- res$sample2comp
> 
> ######################################################################
> 
> # Fit nonparametric Gaussian mixture model
> out <- vdp.mixt(D)
> # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK
> 
> ############################################################
> 
> # Compare input data and results
> 
> ord.out <- order(out$posterior$centroids[,1])
> ord.in <- order(component.means[,1])
> 
> means.out <- out$posterior$centroids[ord.out,]
> means.in <- component.means[ord.in,]
> 
> # Cluster stds and variances
> sds.out <- out$posterior$sds[ord.out,]
> sds.in  <- component.sds[ord.in,]
> vars.out <- sds.out^2
> vars.in <- sds.in^2
> 
> # Check correspondence between input and output
> if (length(means.in) == length(means.out)) {
+    cm <- cor(as.vector(means.in), as.vector(means.out))
+    csd <- cor(as.vector(sds.in), as.vector(sds.out))
+ }
> 
> # Plot results (assuming 2D)
> 
> ran <- range(c(as.vector(means.in - 2*vars.in), 
+                as.vector(means.in + 2*vars.in), 
+ 	       as.vector(means.out + 2*vars.out), 
+ 	       as.vector(means.out - 2*vars.out)))
> 
> plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) 
> for (ci in 1:nrow(means.out))  { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
> for (ci in 1:nrow(means.in))  { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
> 
> 
> 
> proc.time()
   user  system elapsed 
   2.57    0.03    2.62 

netresponse.Rcheck/tests_x64/vdpmixture.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla
> #   -> ainakin nopea check
> 
> #######################################################################
> 
> # Generate random data from five Gaussians. 
> # Detect modes with vdp-gm. 
> # Plot data points and detected clusters with variance ellipses
> 
> #######################################################################
> 
> library(netresponse)
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Loading required package: grid
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 5.4
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2

netresponse (C) 2008-2016 Leo Lahti et al.

https://github.com/antagomir/netresponse
> #source("˜/Rpackages/netresponse/netresponse/R/detect.responses.R")
> #source("˜/Rpackages/netresponse/netresponse/R/internals.R")
> #source("˜/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
> #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
> 
> 
> #########  Generate DATA #############################################
> 
> res <- generate.toydata()
> D <- res$data
> component.means <- res$means
> component.sds   <- res$sds
> sample2comp     <- res$sample2comp
> 
> ######################################################################
> 
> # Fit nonparametric Gaussian mixture model
> out <- vdp.mixt(D)
> # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK
> 
> ############################################################
> 
> # Compare input data and results
> 
> ord.out <- order(out$posterior$centroids[,1])
> ord.in <- order(component.means[,1])
> 
> means.out <- out$posterior$centroids[ord.out,]
> means.in <- component.means[ord.in,]
> 
> # Cluster stds and variances
> sds.out <- out$posterior$sds[ord.out,]
> sds.in  <- component.sds[ord.in,]
> vars.out <- sds.out^2
> vars.in <- sds.in^2
> 
> # Check correspondence between input and output
> if (length(means.in) == length(means.out)) {
+    cm <- cor(as.vector(means.in), as.vector(means.out))
+    csd <- cor(as.vector(sds.in), as.vector(sds.out))
+ }
> 
> # Plot results (assuming 2D)
> 
> ran <- range(c(as.vector(means.in - 2*vars.in), 
+                as.vector(means.in + 2*vars.in), 
+ 	       as.vector(means.out + 2*vars.out), 
+ 	       as.vector(means.out - 2*vars.out)))
> 
> plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) 
> for (ci in 1:nrow(means.out))  { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
> for (ci in 1:nrow(means.in))  { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
> 
> 
> 
> proc.time()
   user  system elapsed 
   2.65    0.12    2.76 

Example timings

netresponse.Rcheck/examples_i386/netresponse-Ex.timings

nameusersystemelapsed
ICMg.combined.sampler37.36 0.0237.38
ICMg.links.sampler1.410.001.40
NetResponseModel-class000
PlotMixture000
PlotMixtureBivariate000
PlotMixtureMultivariate000
PlotMixtureMultivariate.deprecated000
PlotMixtureUnivariate000
add.ellipse000
centerData000
check.matrix000
check.network000
detect.responses0.010.000.02
dna0.030.000.03
enrichment.list.factor000
enrichment.list.factor.minimal000
filter.netw000
filter.network000
find.similar.features0.460.000.45
generate.toydata000
get.dat-NetResponseModel-method000
get.mis000
get.model.parameters0.010.000.02
get.subnets-NetResponseModel-method000
getqofz-NetResponseModel-method000
independent.models000
list.significant.responses000
listify.groupings000
model.stats000
netresponse-package2.780.002.78
order.responses000
osmo0.050.000.05
pick.model.pairs000
pick.model.parameters000
plotPCA000
plot_associations000
plot_data000
plot_expression000
plot_matrix0.000.010.02
plot_response000
plot_responses000
plot_scale000
plot_subnet000
read.sif000
remove.negative.edges000
response.enrichment000
response2sample0.000.020.01
sample2response000
set.breaks000
toydata000
update.model.pair0.010.000.02
vdp.mixt0.030.000.03
vectorize.groupings000
write.netresponse.results000

netresponse.Rcheck/examples_x64/netresponse-Ex.timings

nameusersystemelapsed
ICMg.combined.sampler38.36 0.0738.47
ICMg.links.sampler1.260.001.26
NetResponseModel-class000
PlotMixture000
PlotMixtureBivariate000
PlotMixtureMultivariate000
PlotMixtureMultivariate.deprecated000
PlotMixtureUnivariate000
add.ellipse000
centerData000
check.matrix000
check.network000
detect.responses000
dna0.020.010.03
enrichment.list.factor000
enrichment.list.factor.minimal000
filter.netw000
filter.network000
find.similar.features0.700.000.71
generate.toydata000
get.dat-NetResponseModel-method000
get.mis000
get.model.parameters000
get.subnets-NetResponseModel-method000
getqofz-NetResponseModel-method000
independent.models000
list.significant.responses000
listify.groupings000
model.stats000
netresponse-package3.620.003.63
order.responses000
osmo0.050.000.04
pick.model.pairs000
pick.model.parameters000
plotPCA000
plot_associations000
plot_data000
plot_expression000
plot_matrix0.010.000.02
plot_response000
plot_responses000
plot_scale000
plot_subnet000
read.sif000
remove.negative.edges000
response.enrichment000
response2sample0.020.000.01
sample2response000
set.breaks0.010.000.02
toydata000
update.model.pair000
vdp.mixt0.050.000.04
vectorize.groupings000
write.netresponse.results000