Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-12-01 11:35 -0500 (Mon, 01 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4866
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4572
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2004/2328HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.21.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-11-30 13:40 -0500 (Sun, 30 Nov 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 4895b66
git_last_commit_date: 2025-10-29 11:29:49 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'batchelor' which is only available as a source package that needs compilation


CHECK results for singleCellTK on nebbiolo1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.21.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.0.tar.gz
StartedAt: 2025-12-01 04:15:30 -0500 (Mon, 01 Dec 2025)
EndedAt: 2025-12-01 04:32:55 -0500 (Mon, 01 Dec 2025)
EllapsedTime: 1045.1 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.21.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  5.6Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 45.139  0.828  45.968
plotDoubletFinderResults 40.339  0.376  40.715
runDoubletFinder         35.916  0.190  36.107
plotScDblFinderResults   30.700  0.851  31.263
runSeuratSCTransform     28.876  0.307  29.189
runScDblFinder           20.843  0.461  21.003
plotBatchCorrCompare     13.667  0.171  13.839
importExampleData        10.196  0.539  11.131
plotScdsHybridResults    10.505  0.098   9.791
plotBcdsResults           8.981  0.169   8.402
plotDecontXResults        8.758  0.019   8.776
runUMAP                   8.324  0.146   8.469
plotUMAP                  7.684  0.051   7.734
plotCxdsResults           7.577  0.118   7.696
runDecontX                7.611  0.042   7.653
plotEmptyDropsResults     6.677  0.017   6.693
plotEmptyDropsScatter     6.545  0.014   6.560
runEmptyDrops             6.254  0.012   6.267
detectCellOutlier         5.850  0.195   6.046
plotDEGViolin             5.167  0.059   5.221
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.21.0’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.160   0.040   0.184 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
335.800   5.932 344.863 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0010.0020.002
SEG0.0030.0000.003
calcEffectSizes0.1590.0130.173
combineSCE0.7240.0330.756
computeZScore0.2300.0150.245
convertSCEToSeurat4.6520.1214.773
convertSeuratToSCE0.3130.0100.323
dedupRowNames0.0540.0020.058
detectCellOutlier5.8500.1956.046
diffAbundanceFET0.0550.0020.057
discreteColorPalette0.0060.0000.007
distinctColors0.0030.0000.002
downSampleCells0.4910.0650.556
downSampleDepth0.4040.0050.409
expData-ANY-character-method0.1280.0020.130
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1680.0010.169
expData-set0.1560.0010.156
expData0.1370.0080.145
expDataNames-ANY-method0.1220.0140.136
expDataNames0.1240.0080.133
expDeleteDataTag0.0370.0010.037
expSetDataTag0.0220.0030.026
expTaggedData0.0230.0020.026
exportSCE0.0220.0010.023
exportSCEtoAnnData0.0890.0120.101
exportSCEtoFlatFile0.0900.0090.100
featureIndex0.0340.0050.039
generateSimulatedData0.0490.0080.057
getBiomarker0.0580.0050.065
getDEGTopTable0.7500.0990.848
getDiffAbundanceResults0.0480.0000.049
getEnrichRResult0.4880.0253.272
getFindMarkerTopTable1.4380.0111.454
getMSigDBTable0.0040.0010.004
getPathwayResultNames0.0220.0000.022
getSampleSummaryStatsTable0.1690.0010.170
getSoupX000
getTSCANResults1.0030.0121.015
getTopHVG0.7710.0060.777
importAnnData0.0020.0000.002
importBUStools0.2680.0020.271
importCellRanger0.6730.0070.682
importCellRangerV2Sample0.1360.0020.139
importCellRangerV3Sample0.2740.0040.278
importDropEst0.1860.0020.189
importExampleData10.196 0.53911.131
importGeneSetsFromCollection0.7030.0380.741
importGeneSetsFromGMT0.0600.0040.065
importGeneSetsFromList0.1190.0020.122
importGeneSetsFromMSigDB45.139 0.82845.968
importMitoGeneSet0.0480.0090.058
importOptimus0.0020.0000.001
importSEQC0.1350.0170.152
importSTARsolo0.1370.0310.168
iterateSimulations0.1780.0260.204
listSampleSummaryStatsTables0.2510.0340.284
mergeSCEColData0.3630.0200.384
mouseBrainSubsetSCE0.0360.0010.037
msigdb_table0.0000.0010.002
plotBarcodeRankDropsResults0.8440.0100.855
plotBarcodeRankScatter0.8270.0030.830
plotBatchCorrCompare13.667 0.17113.839
plotBatchVariance0.4980.0260.524
plotBcdsResults8.9810.1698.402
plotBubble0.7560.0010.757
plotClusterAbundance1.2860.0021.288
plotCxdsResults7.5770.1187.696
plotDEGHeatmap2.0410.0152.056
plotDEGRegression4.5500.0604.604
plotDEGViolin5.1670.0595.221
plotDEGVolcano0.9350.0060.941
plotDecontXResults8.7580.0198.776
plotDimRed0.290.000.29
plotDoubletFinderResults40.339 0.37640.715
plotEmptyDropsResults6.6770.0176.693
plotEmptyDropsScatter6.5450.0146.560
plotFindMarkerHeatmap3.7980.0123.811
plotMASTThresholdGenes1.2610.0121.273
plotPCA0.3800.0040.385
plotPathway0.7530.0030.756
plotRunPerCellQCResults3.1150.0023.118
plotSCEBarAssayData0.2900.0000.291
plotSCEBarColData0.2830.0000.282
plotSCEBatchFeatureMean0.3830.0010.384
plotSCEDensity0.3070.0010.309
plotSCEDensityAssayData0.2760.0010.276
plotSCEDensityColData0.3510.0010.352
plotSCEDimReduceColData0.7640.0030.768
plotSCEDimReduceFeatures0.4520.0020.455
plotSCEHeatmap0.4280.0000.429
plotSCEScatter0.3630.0020.366
plotSCEViolin0.3710.0000.371
plotSCEViolinAssayData0.4440.0000.444
plotSCEViolinColData0.3690.0010.370
plotScDblFinderResults30.700 0.85131.263
plotScanpyDotPlot0.0230.0000.023
plotScanpyEmbedding0.0220.0010.023
plotScanpyHVG0.0210.0010.022
plotScanpyHeatmap0.0220.0000.022
plotScanpyMarkerGenes0.0220.0000.022
plotScanpyMarkerGenesDotPlot0.0220.0000.022
plotScanpyMarkerGenesHeatmap0.0200.0010.022
plotScanpyMarkerGenesMatrixPlot0.0200.0020.022
plotScanpyMarkerGenesViolin0.0220.0000.022
plotScanpyMatrixPlot0.0200.0010.022
plotScanpyPCA0.0210.0010.022
plotScanpyPCAGeneRanking0.0210.0010.022
plotScanpyPCAVariance0.0220.0000.022
plotScanpyViolin0.0220.0000.022
plotScdsHybridResults10.505 0.098 9.791
plotScrubletResults0.0220.0010.023
plotSeuratElbow0.0210.0010.022
plotSeuratHVG0.0220.0000.021
plotSeuratJackStraw0.0190.0020.022
plotSeuratReduction0.0220.0000.022
plotSoupXResults000
plotTSCANClusterDEG4.9800.0164.997
plotTSCANClusterPseudo1.4350.0031.439
plotTSCANDimReduceFeatures1.4200.0051.425
plotTSCANPseudotimeGenes1.6440.0041.648
plotTSCANPseudotimeHeatmap1.3920.0031.395
plotTSCANResults1.2680.0081.276
plotTSNE0.3830.0030.387
plotTopHVG0.6370.0030.640
plotUMAP7.6840.0517.734
readSingleCellMatrix0.0060.0000.006
reportCellQC0.0760.0020.078
reportDropletQC0.0220.0000.022
reportQCTool0.0790.0000.079
retrieveSCEIndex0.0280.0010.029
runBBKNN000
runBarcodeRankDrops0.2150.0000.215
runBcds1.9290.0301.179
runCellQC0.0770.0050.081
runClusterSummaryMetrics0.3630.0060.370
runComBatSeq0.4270.0050.433
runCxds0.3090.0020.310
runCxdsBcdsHybrid1.9200.0751.215
runDEAnalysis0.4610.0080.469
runDecontX7.6110.0427.653
runDimReduce0.2740.0000.273
runDoubletFinder35.916 0.19036.107
runDropletQC0.0220.0010.023
runEmptyDrops6.2540.0126.267
runEnrichR0.4460.0252.542
runFastMNN1.6810.0451.725
runFeatureSelection0.2080.0000.208
runFindMarker1.3900.0231.413
runGSVA0.8790.0240.904
runHarmony0.0370.0020.040
runKMeans0.1720.0010.173
runLimmaBC0.0810.0000.081
runMNNCorrect0.3950.0030.397
runModelGeneVar0.2820.0020.283
runNormalization2.5440.1242.668
runPerCellQC0.3260.0030.329
runSCANORAMA0.0010.0000.001
runSCMerge0.0040.0000.004
runScDblFinder20.843 0.46121.003
runScanpyFindClusters0.0220.0010.023
runScanpyFindHVG0.0210.0010.022
runScanpyFindMarkers0.0220.0000.022
runScanpyNormalizeData0.0940.0000.095
runScanpyPCA0.0210.0010.021
runScanpyScaleData0.0220.0000.022
runScanpyTSNE0.0210.0010.022
runScanpyUMAP0.0220.0000.022
runScranSNN0.2840.0030.287
runScrublet0.0220.0000.022
runSeuratFindClusters0.0220.0000.022
runSeuratFindHVG0.4580.0140.472
runSeuratHeatmap0.0230.0000.022
runSeuratICA0.0220.0000.022
runSeuratJackStraw0.0220.0000.022
runSeuratNormalizeData0.0210.0010.022
runSeuratPCA0.0220.0000.022
runSeuratSCTransform28.876 0.30729.189
runSeuratScaleData0.0230.0000.023
runSeuratUMAP0.0220.0000.022
runSingleR0.0360.0010.037
runSoupX0.0000.0000.001
runTSCAN0.7030.0070.710
runTSCANClusterDEAnalysis0.7950.0050.801
runTSCANDEG0.7630.0050.769
runTSNE0.7180.0020.720
runUMAP8.3240.1468.469
runVAM0.3030.0010.304
runZINBWaVE0.0040.0010.005
sampleSummaryStats0.1700.0010.172
scaterCPM0.1300.0110.141
scaterPCA0.4680.0030.471
scaterlogNormCounts0.2430.0050.247
sce0.0230.0000.023
sctkListGeneSetCollections0.0810.0000.081
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0870.0010.088
setSCTKDisplayRow0.4300.0010.431
singleCellTK000
subDiffEx0.3340.0050.339
subsetSCECols0.0820.0040.086
subsetSCERows0.260.000.26
summarizeSCE0.0670.0030.070
trimCounts0.2020.0060.208