Back to Build/check report for BioC 3.22 experimental data
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-02-05 15:41 -0500 (Thu, 05 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4888
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 32/435HostnameOS / ArchINSTALLBUILDCHECK
BloodCancerMultiOmics2017 1.30.0  (landing page)
Małgorzata Oleś
Snapshot Date: 2026-02-05 07:30 -0500 (Thu, 05 Feb 2026)
git_url: https://git.bioconductor.org/packages/BloodCancerMultiOmics2017
git_branch: RELEASE_3_22
git_last_commit: f3bf310
git_last_commit_date: 2025-10-29 09:59:55 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    ERROR  skipped


BUILD results for BloodCancerMultiOmics2017 on nebbiolo2

To the developers/maintainers of the BloodCancerMultiOmics2017 package:
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BloodCancerMultiOmics2017
Version: 1.30.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD build --keep-empty-dirs --no-resave-data BloodCancerMultiOmics2017
StartedAt: 2026-02-05 11:08:20 -0500 (Thu, 05 Feb 2026)
EndedAt: 2026-02-05 11:26:49 -0500 (Thu, 05 Feb 2026)
EllapsedTime: 1108.7 seconds
RetCode: 1
Status:   ERROR  
PackageFile: None
PackageFileSize: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD build --keep-empty-dirs --no-resave-data BloodCancerMultiOmics2017
###
##############################################################################
##############################################################################


* checking for file ‘BloodCancerMultiOmics2017/DESCRIPTION’ ... OK
* preparing ‘BloodCancerMultiOmics2017’:
* checking DESCRIPTION meta-information ... OK
* installing the package to build vignettes
* creating vignettes ... ERROR
--- re-building ‘BloodCancerMultiOmics2017-dataOverview.Rmd’ using rmarkdown
--- finished re-building ‘BloodCancerMultiOmics2017-dataOverview.Rmd’

--- re-building ‘BloodCancerMultiOmics2017.Rmd’ using rmarkdown











``` r
options(stringsAsFactors=FALSE)
```


# Associations of drug responses with mutations in CLL (IGHV not included)

In this part, we use both gene mutations and chromosome aberrations to test for gene-drug response associations. In contrast to the analysis done previously, we exclude IGHV status from testing. Additionally, we use information on patient treatment status to account for its effect on drug response screening.

## Additional functions

Accessor functions:

``` r
# get drug responsee data
get.drugresp <- function(lpd) {
  drugresp = t(Biobase::exprs(lpd[fData(lpd)$type == 'viab'])) %>%
    dplyr::tbl_df() %>% dplyr::select(-ends_with(":5")) %>%
    dplyr::mutate(ID = colnames(lpd)) %>%
    tidyr::gather(drugconc, viab, -ID) %>%
    dplyr::mutate(drug = drugs[substring(drugconc, 1, 5), "name"],
           conc = sub("^D_([0-9]+_)", "", drugconc)) %>%
    dplyr::mutate(conc = as.integer(gsub("D_CHK_", "", conc)))
  
  drugresp
}

# extract mutations and IGHV status
get.somatic <- function(lpd) {
  somatic = t(Biobase::exprs(lpd[Biobase::fData(lpd)$type == 'gen' | 
                                   Biobase::fData(lpd)$type == 'IGHV']))
  ## rename IGHV Uppsala to 'IGHV' (simply)
  colnames(somatic)[grep("IGHV", colnames(somatic))] = "IGHV"
  
  ## at least 3 patients should have this mutation
  min.samples = which(Matrix::colSums(somatic, na.rm = T) > 2)
  somatic = dplyr::tbl_df(somatic[, min.samples]) %>%
    dplyr::select(-one_of("del13q14_bi", "del13q14_mono", 
                          "Chromothripsis", "RP11-766F14.2")) %>%
    dplyr::rename(del13q14 = del13q14_any) %>% 
    dplyr::mutate(ID = colnames(lpd)) %>%
    tidyr::gather(mutation, mut.value, -ID)
  somatic
}
```

Define the ggplot themes

``` r
t1<-theme(                              
  plot.background = element_blank(), 
  panel.grid.major = element_line(),
  panel.grid.major.x = element_line(linetype = "dotted", colour = "grey"),
  panel.grid.minor = element_blank(), 
  panel.border = element_blank(), 
  panel.background = element_blank(),
  axis.line = element_line(size=.4),
  axis.line.x = element_line(),
  axis.line.y = element_line(),
  axis.text.x  = element_text(angle=90, size=12, 
                              face="bold", hjust = 1, vjust = 0.4),
  axis.text.y = element_text(size = 14),
  axis.ticks.x = element_line(linetype = "dotted"),
  axis.ticks.length = unit(0.3,"cm"),
  axis.title.x = element_text(face="bold", size=16), 
  axis.title.y = element_text(face="bold", size=20),
  plot.title = element_text(face="bold", size=16, hjust = 0.5)
)

## theme for the legend
t.leg <-  theme(legend.title = element_text(face='bold', 
                                            hjust = 1, size=11),
                legend.position = c(0, 0.76),
                legend.key = element_blank(),
                legend.text = element_text(size=12),
                legend.background = element_rect(color = "black"))
```

Define the main color palette: 

``` r
colors= c("#015872","#3A9C94","#99977D","#ffbf00","#5991C7","#99cc00",
          "#D5A370","#801416","#B2221C","#ff5050","#33bbff","#5c5cd6",
          "#E394BB","#0066ff","#C0C0C0")
```

Get pretreatment status:

``` r
get.pretreat <- function(patmeta, lpd) {
  patmeta = patmeta[rownames(patmeta) %in% colnames(lpd),]
  data.frame(ID=rownames(patmeta), pretreat=!patmeta$IC50beforeTreatment) %>% 
    mutate(pretreat = as.factor(pretreat))
  
}
```

Merge drug response, pretreatment information and somatic mutation data sets

``` r
make.dr <- function(resp, features, patmeta, lpd) {
  treat = get.pretreat(patmeta, lpd)
  dr = full_join(resp, features) %>% 
    inner_join(treat) 
}
```

Summarize viabilities using Tukey's medpolish

``` r
get.medp <- function(drugresp) {
  tab = drugresp %>% group_by(drug, conc) %>% 
    do(data.frame(v = .$viab, ID = .$ID)) %>% spread(ID, v)
  
  med.p = foreach(n=unique(tab$drug), .combine = cbind) %dopar% {
    tb = filter(tab, drug == n) %>% ungroup() %>% dplyr::select(-(drug:conc)) %>% 
      as.matrix %>% `rownames<-`(1:5)
    mdp = stats::medpolish(tb)
    df = as.data.frame(mdp$col) + mdp$overall
    colnames(df) <- n
    df
  }
  
  medp.viab = dplyr::tbl_df(med.p) %>% dplyr::mutate(ID = rownames(med.p)) %>%
    tidyr::gather(drug, viab, -ID) 
  medp.viab
}
```

Process labels for the legend:

``` r
get.labels <- function(pvals) {
  lev = levels(factor(pvals$mutation))
  lev = gsub("^(gain)([0-9]+)([a-z][0-9]+)$", "\\1(\\2)(\\3)", lev)
  lev =  gsub("^(del)([0-9]+)([a-z].+)$", "\\1(\\2)(\\3)", lev)
  lev = gsub("trisomy12", "trisomy 12", lev)
  lev
}
```

Get order of mutations

``` r
get.mutation.order <- function(lev) {
  ord = c("trisomy 12", "TP53",
          "del(11)(q22.3)", "del(13)(q14)",
          "del(17)(p13)",
          "gain(8)(q24)",
          "BRAF", "CREBBP", "PRPF8",
          "KLHL6", "NRAS", "ABI3BP", "UMODL1")
  mut.order = c(match(ord, lev),
                grep("Other", lev), grep("Below", lev))
  
  mut.order
}
```

Group drugs by pathway/target

``` r
get.drug.order <- function(pvals, drugs) {
  ## determine drug order by column sums of log-p values
  dr.order = pvals %>% 
    mutate(logp = -log10(p.value)) %>% 
    group_by(drug) %>% summarise(logsum = sum(logp)) 
  
  dr.order = inner_join(dr.order, pvals %>%
                          group_by(drug) %>% 
                          summarise(n = length(unique(mutation)))) %>% 
    arrange(desc(n), desc(logsum))
  
  dr.order = inner_join(dr.order, drugs %>% rename(drug = name))
  
  dr.order = left_join(dr.order, dr.order %>% 
                         group_by(`target_category`) ) %>%
    arrange(`target_category`, drug) %>%
    filter(! `target_category` %in% c("ALK", "Angiogenesis", "Other")) %>%
    filter(!is.na(`target_category`))
  
  dr.order
}
```

Add pathway annotations for selected drug classes

``` r
make.annot <- function(g, dr.order) {
  # make a color palette for drug pathways
  drug.class = c("#273649", "#647184", "#B1B2C8",
                 "#A7755D", "#5D2E1C", "#38201C")
  pathways = c("BH3","B-cell receptor","DNA damage",
               "MAPK", "PI3K", "Reactive oxygen species")
  names(pathways) = c("BH3", "BCR inhibitors", "DNA damage",
                      "MAPK", "PI3K", "ROS")
  
  for (i in 1:6) {
    prange = grep(pathways[i], dr.order$`target_category`)
    path.grob <- grobTree(rectGrob(gp=gpar(fill=drug.class[i])),
                          textGrob(names(pathways)[i], 
                                   gp = gpar(cex =0.8, col = "white")))
    g = g + 
      annotation_custom(path.grob, 
                        xmin = min(prange) -0.25 - 0.1 * ifelse(i == 2, 1, 0), 
                        xmax = max(prange) + 0.25 + 0.1 * ifelse(i == 2, 1, 0), 
                        ymin = -0.52, ymax = -0.2)
  }
  g
}
```

Define a function for `glegend`

``` r
g_legend<-function(a.gplot){
  tmp <- ggplot_gtable(ggplot_build(a.gplot))
  leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
  legend <- tmp$grobs[[leg]]
  legend
} ## end define
```

## Data setup

Load the data.

``` r
data(list=c("conctab", "drugs", "lpdAll", "patmeta"))
```

Get drug response data.


































Quitting from ./src/part05.Rmd:248-252 [preprocesslpd]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<error/lifecycle_error_deprecated>
Error:
! `tbl_df()` was deprecated in dplyr 1.0.0 and is now defunct.
ℹ Please use `tibble::as_tibble()` instead.
---
Backtrace:
     ▆
  1. ├─global get.drugresp(lpdCLL)
  2. │ └─... %>% ...
  3. ├─dplyr::mutate(., conc = as.integer(gsub("D_CHK_", "", conc)))
  4. ├─dplyr::mutate(...)
  5. ├─tidyr::gather(., drugconc, viab, -ID)
  6. ├─dplyr::mutate(., ID = colnames(lpd))
  7. ├─dplyr::select(., -ends_with(":5"))
  8. └─dplyr::tbl_df(.)
  9.   └─lifecycle::deprecate_stop("1.0.0", "tbl_df()", "tibble::as_tibble()")
 10.     └─lifecycle:::deprecate_stop0(msg)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Quitting from BloodCancerMultiOmics2017.Rmd:153-154 [p05]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<error/lifecycle_error_deprecated>
Error:
! `tbl_df()` was deprecated in dplyr 1.0.0 and is now defunct.
ℹ Please use `tibble::as_tibble()` instead.
---
Backtrace:
     ▆
  1. ├─global get.drugresp(lpdCLL)
  2. │ └─... %>% ...
  3. ├─dplyr::mutate(., conc = as.integer(gsub("D_CHK_", "", conc)))
  4. ├─dplyr::mutate(...)
  5. ├─tidyr::gather(., drugconc, viab, -ID)
  6. ├─dplyr::mutate(., ID = colnames(lpd))
  7. ├─dplyr::select(., -ends_with(":5"))
  8. └─dplyr::tbl_df(.)
  9.   └─lifecycle::deprecate_stop("1.0.0", "tbl_df()", "tibble::as_tibble()")
 10.     └─lifecycle:::deprecate_stop0(msg)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Error: processing vignette 'BloodCancerMultiOmics2017.Rmd' failed with diagnostics:
`tbl_df()` was deprecated in dplyr 1.0.0 and is now defunct.
ℹ Please use `tibble::as_tibble()` instead.
--- failed re-building ‘BloodCancerMultiOmics2017.Rmd’

SUMMARY: processing the following file failed:
  ‘BloodCancerMultiOmics2017.Rmd’

Error: Vignette re-building failed.
Execution halted