Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-11-27 12:05 -0500 (Thu, 27 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4876
merida1macOS 12.7.6 Montereyx86_644.5.2 Patched (2025-11-05 r88990) -- "[Not] Part in a Rumble" 4656
kjohnson1macOS 13.7.5 Venturaarm644.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble" 4602
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4668
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2033/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.20.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-11-24 13:45 -0500 (Mon, 24 Nov 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_22
git_last_commit: e2bff7b
git_last_commit_date: 2025-10-29 11:29:49 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.6 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.7.5 Ventura / arm64  OK    OK    OK    NA  
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on taishan

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: singleCellTK
Version: 2.20.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.20.0.tar.gz
StartedAt: 2025-11-25 14:51:18 -0000 (Tue, 25 Nov 2025)
EndedAt: 2025-11-25 15:13:32 -0000 (Tue, 25 Nov 2025)
EllapsedTime: 1334.6 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.20.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.20.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 51.789  0.970  52.889
plotDoubletFinderResults 45.479  0.250  46.015
runSeuratSCTransform     43.702  0.790  44.645
runDoubletFinder         38.516  0.289  38.895
plotScDblFinderResults   34.145  0.350  34.618
runScDblFinder           23.319  0.626  24.001
importExampleData        15.871  1.565  23.587
plotBatchCorrCompare     15.578  0.224  16.217
plotBcdsResults          11.690  0.147  11.150
plotScdsHybridResults    10.882  0.062  10.325
plotDecontXResults       10.374  0.093  10.493
plotCxdsResults           9.319  0.136   9.610
plotDEGViolin             8.808  0.116   8.947
runUMAP                   7.416  0.085   7.651
runDecontX                7.322  0.072   7.410
plotDEGRegression         7.140  0.072   7.234
plotTSCANClusterDEG       7.050  0.012   7.076
plotUMAP                  6.958  0.102   7.198
convertSCEToSeurat        5.971  0.295   6.283
plotFindMarkerHeatmap     6.131  0.100   6.255
detectCellOutlier         5.950  0.192   6.160
plotEmptyDropsResults     5.903  0.016   5.929
plotEmptyDropsScatter     5.723  0.032   5.764
runEmptyDrops             5.300  0.004   5.322
getEnrichRResult          0.435  0.066  10.017
runEnrichR                0.396  0.083  62.575
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.20.0’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.194   0.028   0.207 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
369.312   6.831 395.789 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0020.0000.003
calcEffectSizes0.2460.0000.247
combineSCE1.0950.0601.158
computeZScore0.2760.0240.300
convertSCEToSeurat5.9710.2956.283
convertSeuratToSCE0.4700.0160.488
dedupRowNames0.0850.0000.085
detectCellOutlier5.9500.1926.160
diffAbundanceFET0.0690.0000.069
discreteColorPalette0.0090.0000.009
distinctColors0.0030.0000.003
downSampleCells0.7720.0670.844
downSampleDepth0.6480.0080.657
expData-ANY-character-method0.1800.0000.181
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.2280.0070.237
expData-set0.2280.0000.228
expData0.1840.0080.192
expDataNames-ANY-method0.1870.0080.195
expDataNames0.1640.0040.168
expDeleteDataTag0.0380.0040.042
expSetDataTag0.0290.0000.029
expTaggedData0.0310.0000.030
exportSCE0.0260.0000.026
exportSCEtoAnnData0.0720.0080.080
exportSCEtoFlatFile0.0700.0080.079
featureIndex0.0490.0000.049
generateSimulatedData0.0590.0120.070
getBiomarker0.0720.0080.081
getDEGTopTable1.0300.0921.124
getDiffAbundanceResults0.0640.0080.072
getEnrichRResult 0.435 0.06610.017
getFindMarkerTopTable2.1180.1872.319
getMSigDBTable0.0050.0000.004
getPathwayResultNames0.0250.0030.028
getSampleSummaryStatsTable0.2650.0160.285
getSoupX000
getTSCANResults1.5510.1181.680
getTopHVG1.1740.0761.253
importAnnData0.0020.0000.002
importBUStools0.2790.0280.310
importCellRanger1.0550.0481.112
importCellRangerV2Sample0.2000.0200.221
importCellRangerV3Sample0.5450.0310.577
importDropEst0.2880.0110.302
importExampleData15.871 1.56523.587
importGeneSetsFromCollection1.0190.0671.090
importGeneSetsFromGMT0.0890.0080.098
importGeneSetsFromList0.2110.0160.227
importGeneSetsFromMSigDB51.789 0.97052.889
importMitoGeneSet0.0840.0000.084
importOptimus0.0020.0000.002
importSEQC0.2150.0080.226
importSTARsolo0.2460.0040.252
iterateSimulations0.2580.0000.258
listSampleSummaryStatsTables0.3560.0000.357
mergeSCEColData0.5470.0160.565
mouseBrainSubsetSCE0.0400.0040.044
msigdb_table0.0020.0000.002
plotBarcodeRankDropsResults2.9010.0672.977
plotBarcodeRankScatter1.2640.0601.327
plotBatchCorrCompare15.578 0.22416.217
plotBatchVariance0.7710.0000.773
plotBcdsResults11.690 0.14711.150
plotBubble1.2290.0091.240
plotClusterAbundance2.1330.0002.140
plotCxdsResults9.3190.1369.610
plotDEGHeatmap3.1890.0323.231
plotDEGRegression7.1400.0727.234
plotDEGViolin8.8080.1168.947
plotDEGVolcano1.3280.0041.335
plotDecontXResults10.374 0.09310.493
plotDimRed0.4310.0000.433
plotDoubletFinderResults45.479 0.25046.015
plotEmptyDropsResults5.9030.0165.929
plotEmptyDropsScatter5.7230.0325.764
plotFindMarkerHeatmap6.1310.1006.255
plotMASTThresholdGenes1.9520.0001.958
plotPCA0.5520.0080.562
plotPathway1.0760.0281.109
plotRunPerCellQCResults4.8310.0084.852
plotSCEBarAssayData0.3980.0040.403
plotSCEBarColData0.4090.0000.410
plotSCEBatchFeatureMean0.6130.0040.619
plotSCEDensity0.490.000.49
plotSCEDensityAssayData0.4240.0040.429
plotSCEDensityColData0.5570.0040.562
plotSCEDimReduceColData1.1570.0081.168
plotSCEDimReduceFeatures0.6870.0040.693
plotSCEHeatmap0.7040.0000.706
plotSCEScatter0.5280.0000.530
plotSCEViolin0.6370.0040.643
plotSCEViolinAssayData0.5610.0000.563
plotSCEViolinColData0.5340.0040.539
plotScDblFinderResults34.145 0.35034.618
plotScanpyDotPlot0.0210.0000.022
plotScanpyEmbedding0.0230.0000.023
plotScanpyHVG0.0220.0000.023
plotScanpyHeatmap0.0230.0000.022
plotScanpyMarkerGenes0.0230.0000.022
plotScanpyMarkerGenesDotPlot0.0220.0000.023
plotScanpyMarkerGenesHeatmap0.0220.0000.021
plotScanpyMarkerGenesMatrixPlot0.0220.0000.021
plotScanpyMarkerGenesViolin0.0210.0000.021
plotScanpyMatrixPlot0.0220.0000.021
plotScanpyPCA0.0220.0000.021
plotScanpyPCAGeneRanking0.0230.0000.022
plotScanpyPCAVariance0.0240.0040.028
plotScanpyViolin0.0230.0000.022
plotScdsHybridResults10.882 0.06210.325
plotScrubletResults0.0230.0040.026
plotSeuratElbow0.0260.0000.026
plotSeuratHVG0.0260.0000.025
plotSeuratJackStraw0.0260.0000.026
plotSeuratReduction0.0260.0000.026
plotSoupXResults000
plotTSCANClusterDEG7.0500.0127.076
plotTSCANClusterPseudo1.9590.0041.968
plotTSCANDimReduceFeatures1.9880.0081.999
plotTSCANPseudotimeGenes2.4000.0042.410
plotTSCANPseudotimeHeatmap1.8660.0161.886
plotTSCANResults1.8140.0121.830
plotTSNE0.5240.0040.529
plotTopHVG0.9710.0030.977
plotUMAP6.9580.1027.198
readSingleCellMatrix0.0070.0000.007
reportCellQC0.1120.0040.115
reportDropletQC0.0280.0000.028
reportQCTool0.1140.0000.115
retrieveSCEIndex0.0370.0040.041
runBBKNN000
runBarcodeRankDrops0.2800.0040.285
runBcds2.3460.0161.589
runCellQC0.1120.0000.112
runClusterSummaryMetrics0.5120.0080.522
runComBatSeq0.6490.0000.651
runCxds0.4150.0040.419
runCxdsBcdsHybrid2.3800.0411.619
runDEAnalysis0.6520.0160.677
runDecontX7.3220.0727.410
runDimReduce0.3860.0040.390
runDoubletFinder38.516 0.28938.895
runDropletQC0.0300.0000.031
runEmptyDrops5.3000.0045.322
runEnrichR 0.396 0.08362.575
runFastMNN2.5510.1992.761
runFeatureSelection0.3050.0120.319
runFindMarker2.1370.1592.303
runGSVA1.0610.0861.151
runHarmony0.0630.0000.063
runKMeans0.3630.0640.428
runLimmaBC0.1280.0000.128
runMNNCorrect0.6390.0240.667
runModelGeneVar0.4320.0280.461
runNormalization2.9090.3023.222
runPerCellQC0.5000.0120.513
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder23.319 0.62624.001
runScanpyFindClusters0.0270.0000.028
runScanpyFindHVG0.0270.0000.028
runScanpyFindMarkers0.0270.0000.026
runScanpyNormalizeData0.1500.0000.151
runScanpyPCA0.0280.0000.028
runScanpyScaleData0.030.000.03
runScanpyTSNE0.0310.0000.030
runScanpyUMAP0.030.000.03
runScranSNN0.4170.0160.435
runScrublet0.0250.0000.025
runSeuratFindClusters0.0280.0000.028
runSeuratFindHVG0.6660.0000.668
runSeuratHeatmap0.0240.0000.024
runSeuratICA0.0240.0000.024
runSeuratJackStraw0.0240.0000.024
runSeuratNormalizeData0.0250.0000.025
runSeuratPCA0.0240.0000.024
runSeuratSCTransform43.702 0.79044.645
runSeuratScaleData0.0240.0000.023
runSeuratUMAP0.0220.0000.022
runSingleR0.0510.0000.052
runSoupX000
runTSCAN0.9170.0080.927
runTSCANClusterDEAnalysis1.0330.0361.071
runTSCANDEG1.0420.0161.061
runTSNE1.0070.0081.018
runUMAP7.4160.0857.651
runVAM0.4190.0000.420
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.2170.0000.218
scaterCPM0.1340.0000.133
scaterPCA0.6270.0040.633
scaterlogNormCounts0.2770.0040.281
sce0.0280.0000.029
sctkListGeneSetCollections0.1070.0000.107
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.1130.0040.117
setSCTKDisplayRow0.5830.0110.596
singleCellTK000
subDiffEx0.4030.0040.408
subsetSCECols0.0980.0040.103
subsetSCERows0.3740.0120.387
summarizeSCE0.0880.0000.089
trimCounts0.2000.0000.201