Back to Rapid builds (Linux only) of a subset of BioC 3.21 Report updated every 6 hours |
This page was generated on 2025-04-06 20:18 -0400 (Sun, 06 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 871 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 59/217 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | |||||||
DelayedArray 0.33.6 (landing page) Hervé Pagès
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | ERROR | |||||||
To the developers/maintainers of the DelayedArray package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: DelayedArray |
Version: 0.33.6 |
Command: _R_CHECK_CODETOOLS_PROFILE_="suppressFundefMismatch=TRUE" /home/rapidbuild/bbs-3.21-bioc-rapid/R/bin/R CMD check --install=check:DelayedArray.install-out.txt --library=/home/rapidbuild/bbs-3.21-bioc-rapid/R/site-library --timings DelayedArray_0.33.6.tar.gz |
StartedAt: 2025-04-06 19:25:50 -0400 (Sun, 06 Apr 2025) |
EndedAt: 2025-04-06 19:46:01 -0400 (Sun, 06 Apr 2025) |
EllapsedTime: 1210.3 seconds |
RetCode: 1 |
Status: ERROR |
CheckDir: DelayedArray.Rcheck |
Warnings: NA |
############################################################################## ############################################################################## ### ### Running command: ### ### _R_CHECK_CODETOOLS_PROFILE_="suppressFundefMismatch=TRUE" /home/rapidbuild/bbs-3.21-bioc-rapid/R/bin/R CMD check --install=check:DelayedArray.install-out.txt --library=/home/rapidbuild/bbs-3.21-bioc-rapid/R/site-library --timings DelayedArray_0.33.6.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/media/volume/teran2_disk/rapidbuild/bbs-3.21-bioc-rapid/meat/DelayedArray.Rcheck’ * using R Under development (unstable) (2025-01-20 r87609) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘DelayedArray/DESCRIPTION’ ... OK * this is package ‘DelayedArray’ version ‘0.33.6’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... INFO Depends: includes the non-default packages: 'stats4', 'Matrix', 'BiocGenerics', 'MatrixGenerics', 'S4Vectors', 'IRanges', 'S4Arrays', 'SparseArray' Adding so many packages to the search path is excessive and importing selectively is preferable. * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... NOTE Found the following hidden files and directories: .BBSoptions These were most likely included in error. See section ‘Package structure’ in the ‘Writing R Extensions’ manual. * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘DelayedArray’ can be installed ... OK * used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’ * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking whether startup messages can be suppressed ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: DelayedArray-utils.Rd: arbind, acbind Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. * checking for missing documentation entries ... WARNING Undocumented code objects: ‘defaultMultAutoGrids’ Undocumented S4 methods: generic '[' and siglist 'DelayedArray,ANY,ANY,ANY' generic '[<-' and siglist 'DelayedArray,ANY,ANY,ANY' All user-level objects in a package (including S4 classes and methods) should have documentation entries. See chapter ‘Writing R documentation files’ in the ‘Writing R Extensions’ manual. * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking compiled code ... NOTE Note: information on .o files is not available * checking files in ‘vignettes’ ... OK * checking examples ... ERROR Running examples in ‘DelayedArray-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: RealizationSink > ### Title: RealizationSink objects > ### Aliases: class:RealizationSink RealizationSink-class RealizationSink > ### close,RealizationSink-method class:arrayRealizationSink > ### arrayRealizationSink-class dim,arrayRealizationSink-method > ### write_block,arrayRealizationSink-method > ### coerce,arrayRealizationSink,DelayedArray-method AutoRealizationSink > ### supportedRealizationBackends registeredRealizationBackends > ### getAutoRealizationBackend setAutoRealizationBackend sinkApply > ### Keywords: utilities > > ### ** Examples > > ## --------------------------------------------------------------------- > ## USING THE "RealizationSink API": EXAMPLE 1 > ## --------------------------------------------------------------------- > > ## -- STEP 1 -- > ## Create a realization sink. Note that instead of creating a > ## realization sink by calling a backend-specific sink constructor > ## (e.g. HDF5Array::HDF5RealizationSink), we set the "automatic > ## realization backend" to "HDF5Array" and use backend-agnostic > ## constructor AutoRealizationSink(): > setAutoRealizationBackend("HDF5Array") > sink <- AutoRealizationSink(c(35L, 50L, 8L)) > dim(sink) [1] 35 50 8 > > ## -- STEP 2 -- > ## Define the grid of viewports to walk on. Here we define a grid made > ## of very small viewports on 'sink'. Note that, for real-world use cases, > ## block processing will typically use grids made of much bigger > ## viewports, usually obtained with defaultSinkAutoGrid(). > ## Also please note that this grid would not be compatible with "linear > ## write only" realization backends. See "Cross realization backend > ## compatibility" above in this man page for more information. > sink_grid <- RegularArrayGrid(dim(sink), spacings=c(20, 20, 4)) > > ## -- STEP 3 -- > ## Walk on the grid, and, for each viewport, write random data to it. > for (bid in seq_along(sink_grid)) { + viewport <- sink_grid[[bid]] + block <- array(runif(length(viewport)), dim=dim(viewport)) + sink <- write_block(sink, viewport, block) + } > > ## -- An alternative to STEP 3 -- > FUN <- function(sink, viewport) { + block <- array(runif(length(viewport)), dim=dim(viewport)) + write_block(sink, viewport, block) + } > sink <- sinkApply(sink, FUN, grid=sink_grid, verbose=TRUE) \ processing viewport 1/12 ... ok \ processing viewport 2/12 ... ok \ processing viewport 3/12 ... ok \ processing viewport 4/12 ... ok \ processing viewport 5/12 ... ok \ processing viewport 6/12 ... ok \ processing viewport 7/12 ... ok \ processing viewport 8/12 ... ok \ processing viewport 9/12 ... ok \ processing viewport 10/12 ... ok \ processing viewport 11/12 ... ok \ processing viewport 12/12 ... ok > > ## -- STEP 4 -- > ## Close the sink and turn it into a DelayedArray object: > close(sink) > A <- as(sink, "DelayedArray") > A <35 x 50 x 8> HDF5Array object of type "double": ,,1 [,1] [,2] [,3] ... [,49] [,50] [1,] 0.09251632 0.73715309 0.57826006 . 0.44599135 0.06597004 [2,] 0.44674406 0.33379887 0.89571557 . 0.69924371 0.20470113 ... . . . . . . [34,] 0.8648171 0.2410861 0.7959126 . 0.90928265 0.03788946 [35,] 0.2427737 0.8570406 0.8277267 . 0.33881426 0.51074875 ... ,,8 [,1] [,2] [,3] ... [,49] [,50] [1,] 0.2475538 0.6427626 0.7057213 . 0.1230515 0.9533773 [2,] 0.4705060 0.9561530 0.3302344 . 0.6292483 0.4183444 ... . . . . . . [34,] 0.69497962 0.56221399 0.40872342 . 0.2511284 0.3580837 [35,] 0.29284090 0.46846839 0.08948379 . 0.1186285 0.8980875 > > setAutoRealizationBackend() # restore default (NULL) > > ## --------------------------------------------------------------------- > ## USING THE "RealizationSink API": EXAMPLE 2 > ## --------------------------------------------------------------------- > > ## Say we have a 3D array and want to collapse its 3rd dimension by > ## summing the array elements that are stacked vertically, that is, we > ## want to compute the matrix M obtained by doing sum(A[i, j, ]) for all > ## valid i and j. This is very easy to do with an ordinary array: > collapse_3rd_dim <- function(a) apply(a, MARGIN=1:2, sum) > > ## or, in a slightly more efficient way: > collapse_3rd_dim <- function(a) { + m <- matrix(0, nrow=nrow(a), ncol=ncol(a)) + for (z in seq_len(dim(a)[[3]])) + m <- m + a[ , , z] + m + } > > ## With a toy 3D array: > a <- array(runif(8000), dim=c(25, 40, 8)) > dim(collapse_3rd_dim(a)) [1] 25 40 > stopifnot(identical(sum(a), sum(collapse_3rd_dim(a)))) # sanity check > > ## Now say that A is so big that even M wouldn't fit in memory. This is > ## a situation where we'd want to compute M block by block: > > ## -- STEP 1 -- > ## Create the 2D realization sink: > setAutoRealizationBackend("HDF5Array") > sink <- AutoRealizationSink(dim(a)[1:2]) > dim(sink) [1] 25 40 > > ## -- STEP 2 -- > ## Define two grids: one for 'sink' and one for 'a'. Since we're going > ## to walk on the two grids simultaneously, read a block from 'a' and > ## write it to 'sink', we need to make sure that we define grids that > ## are "aligned". More precisely, the two grids must have the same number > ## of viewports, and the viewports in one must correspond to the viewports > ## in the other one: > sink_grid <- colAutoGrid(sink, ncol=10) > a_spacings <- c(dim(sink_grid[[1L]]), dim(a)[[3]]) > a_grid <- RegularArrayGrid(dim(a), spacings=a_spacings) > dims(sink_grid) # dimensions of the individual viewports [,1] [,2] [1,] 25 10 [2,] 25 10 [3,] 25 10 [4,] 25 10 > dims(a_grid) # dimensions of the individual viewports [,1] [,2] [,3] [1,] 25 10 8 [2,] 25 10 8 [3,] 25 10 8 [4,] 25 10 8 > > ## Let's check that our two grids are actually "aligned": > stopifnot(identical(length(sink_grid), length(a_grid))) > stopifnot(identical(dims(sink_grid), dims(a_grid)[ , 1:2, drop=FALSE])) > > ## -- STEP 3 -- > ## Walk on the two grids simultaneously: > for (bid in seq_along(sink_grid)) { + ## Read block from 'a'. + a_viewport <- a_grid[[bid]] + block <- read_block(a, a_viewport) + ## Collapse it. + block <- collapse_3rd_dim(block) + ## Write the collapsed block to 'sink'. + sink_viewport <- sink_grid[[bid]] + sink <- write_block(sink, sink_viewport, block) + } > > ## -- An alternative to STEP 3 -- > FUN <- function(sink, sink_viewport) { + ## Read block from 'a'. + bid <- currentBlockId() + a_viewport <- a_grid[[bid]] + block <- read_block(a, a_viewport) + ## Collapse it. + block <- collapse_3rd_dim(block) + ## Write the collapsed block to 'sink'. + write_block(sink, sink_viewport, block) + } > sink <- sinkApply(sink, FUN, grid=sink_grid, verbose=TRUE) \ processing viewport 1/4 ... ok \ processing viewport 2/4 ... ok \ processing viewport 3/4 ... ok \ processing viewport 4/4 ... ok > > ## -- STEP 4 -- > ## Close the sink and turn it into a DelayedArray object: > close(sink) > M <- as(sink, "DelayedArray") > M <25 x 40> HDF5Matrix object of type "double": [,1] [,2] [,3] ... [,39] [,40] [1,] 3.605488 4.428343 3.515007 . 4.490627 3.567119 [2,] 3.971004 2.981488 4.022526 . 2.996765 4.582575 [3,] 3.644131 5.740389 3.919445 . 3.321812 4.778346 [4,] 5.481778 3.556413 3.578300 . 3.204930 3.513076 [5,] 3.255126 5.320396 4.631426 . 3.684879 3.591320 ... . . . . . . [21,] 3.979501 3.753845 4.779659 . 4.557505 3.786337 [22,] 2.799614 4.675706 4.166002 . 4.272493 3.825482 [23,] 5.047167 5.156586 3.834504 . 5.014369 4.585006 [24,] 4.857444 3.110475 4.105436 . 2.845470 4.476643 [25,] 4.229303 3.589894 3.714495 . 2.814014 4.124024 > > ## Sanity check: > stopifnot(identical(collapse_3rd_dim(a), as.array(M))) > > setAutoRealizationBackend() # restore default (NULL) > > ## --------------------------------------------------------------------- > ## USING THE "RealizationSink API": AN ADVANCED EXAMPLE > ## --------------------------------------------------------------------- > > ## Say we have 2 matrices with the same number of columns. Each column > ## represents a biological sample: > library(HDF5Array) Loading required package: h5mread Loading required package: rhdf5 Attaching package: ‘h5mread’ The following object is masked from ‘package:rhdf5’: h5ls > R <- as(matrix(runif(75000), ncol=1000), "HDF5Array") # 75 rows > G <- as(matrix(runif(250000), ncol=1000), "HDF5Array") # 250 rows > > ## Say we want to compute the matrix U obtained by applying the same > ## binary functions FUN() to all samples i.e. U is defined as: > ## > ## U[ , j] <- FUN(R[ , j], G[ , j]) for 1 <= j <= 1000 > ## > ## Note that FUN() should return a vector of constant length, say 200, > ## so U will be a 200x1000 matrix. A naive implementation would be: > ## > ## pFUN <- function(r, g) { > ## stopifnot(ncol(r) == ncol(g)) # sanity check > ## sapply(seq_len(ncol(r)), function(j) FUN(r[ , j], g[ , j])) > ## } > ## > ## But because U is going to be too big to fit in memory, we can't > ## just do pFUN(R, G). So we want to compute U block by block and > ## write the blocks to disk as we go. The blocks will be made of full > ## columns. Also since we need to walk on 2 matrices at the same time > ## (R and G), we can't use blockApply() or blockReduce() so we'll use > ## a "for" loop. > > ## Before we get to the "for" loop, we need 4 things: > > ## 1. Two grids of blocks, one on R and one on G. The blocks in the > ## two grids must contain the same number of columns. We arbitrarily > ## choose to use blocks of 150 columns: > R_grid <- colAutoGrid(R, ncol=150) > G_grid <- colAutoGrid(G, ncol=150) > > ## 2. The function pFUN(). It will take 2 blocks as input, 1 from R > ## and 1 from G, apply FUN() to all the samples in the blocks, > ## and return a matrix with one columns per sample: > pFUN <- function(r, g) { + stopifnot(ncol(r) == ncol(g)) # sanity check + ## Return a matrix with 200 rows with random values. Completely + ## artificial sorry. A realistic example would actually need to + ## apply the same binary function to r[ ,j] and g[ , j] for + ## 1 <= j <= ncol(r). + matrix(runif(200 * ncol(r)), nrow=200) + } > > ## 3. A RealizationSink derivative where to write the matrices returned > ## by pFUN() as we go: > setAutoRealizationBackend("HDF5Array") > U_sink <- AutoRealizationSink(c(200L, 1000L)) > > ## 4. Finally, we create a grid on U_sink with viewports that contain > ## the same number of columns as the corresponding blocks in R and G: > U_grid <- colAutoGrid(U_sink, ncol=150) > > ## Note that the three grids should have the same number of viewports: > stopifnot(length(U_grid) == length(R_grid)) > stopifnot(length(U_grid) == length(G_grid)) > > ## 5. Now we can proceed. We use a "for" loop to walk on R and G > ## simultaneously, block by block, apply pFUN(), and write the > ## output of pFUN() to U_sink: > for (bid in seq_along(U_grid)) { + R_block <- read_block(R, R_grid[[bid]]) + G_block <- read_block(G, G_grid[[bid]]) + U_block <- pFUN(R_block, G_block) + U_sink <- write_block(U_sink, U_grid[[bid]], U_block) + } Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. > > ## An alternative to the "for" loop is to use sinkApply(): > FUN <- function(U_sink, U_viewport) { + bid <- currentBlockId() + R_block <- read_block(R, R_grid[[bid]]) + G_block <- read_block(G, G_grid[[bid]]) + U_block <- pFUN(R_block, G_block) + write_block(U_sink, U_viewport, U_block) + } > U_sink <- sinkApply(U_sink, FUN, grid=U_grid, verbose=TRUE) \ processing viewport 1/7 ... Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. ok \ processing viewport 2/7 ... Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. ok \ processing viewport 3/7 ... Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. ok \ processing viewport 4/7 ... Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. ok \ processing viewport 5/7 ... Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. ok \ processing viewport 6/7 ... Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. ok \ processing viewport 7/7 ... Error in H5Dwrite(h5dataset, obj, h5spaceMem = h5spaceMem, h5spaceFile = h5spaceFile) : HDF5. Dataset. Write failed. ok > > close(U_sink) > U <- as(U_sink, "DelayedArray") Error in h(simpleError(msg, call)) : error in evaluating the argument 'seed' in selecting a method for function 'DelayedArray': H5Dread() returned an error Calls: as ... .read_h5dataset_first_val -> h5mread -> .Call2 -> .handleSimpleError -> h Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed DelayedMatrix-rowsum 10.283 1.401 15.738 DelayedArray-utils 7.344 0.132 11.009 DelayedArray-class 5.833 0.204 12.179 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘run_unitTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 1 ERROR, 1 WARNING, 3 NOTEs See ‘/media/volume/teran2_disk/rapidbuild/bbs-3.21-bioc-rapid/meat/DelayedArray.Rcheck/00check.log’ for details.
DelayedArray.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/rapidbuild/bbs-3.21-bioc-rapid/R/bin/R CMD INSTALL DelayedArray ### ############################################################################## ############################################################################## * installing to library ‘/media/volume/teran2_disk/rapidbuild/bbs-3.21-bioc-rapid/R/site-library’ * installing *source* package ‘DelayedArray’ ... ** this is package ‘DelayedArray’ version ‘0.33.6’ ** using staged installation ** libs using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’ gcc -I"/home/rapidbuild/bbs-3.21-bioc-rapid/R/include" -DNDEBUG -I'/media/volume/teran2_disk/rapidbuild/bbs-3.21-bioc-rapid/R/site-library/S4Vectors/include' -I/usr/local/include -fpic -g -O2 -Wall -Werror=format-security -c R_init_DelayedArray.c -o R_init_DelayedArray.o gcc -I"/home/rapidbuild/bbs-3.21-bioc-rapid/R/include" -DNDEBUG -I'/media/volume/teran2_disk/rapidbuild/bbs-3.21-bioc-rapid/R/site-library/S4Vectors/include' -I/usr/local/include -fpic -g -O2 -Wall -Werror=format-security -c S4Vectors_stubs.c -o S4Vectors_stubs.o gcc -I"/home/rapidbuild/bbs-3.21-bioc-rapid/R/include" -DNDEBUG -I'/media/volume/teran2_disk/rapidbuild/bbs-3.21-bioc-rapid/R/site-library/S4Vectors/include' -I/usr/local/include -fpic -g -O2 -Wall -Werror=format-security -c compress_atomic_vector.c -o compress_atomic_vector.o gcc -shared -L/usr/local/lib -o DelayedArray.so R_init_DelayedArray.o S4Vectors_stubs.o compress_atomic_vector.o installing to /media/volume/teran2_disk/rapidbuild/bbs-3.21-bioc-rapid/R/site-library/00LOCK-DelayedArray/00new/DelayedArray/libs ** R ** inst ** byte-compile and prepare package for lazy loading Creating a new generic function for ‘apply’ in package ‘DelayedArray’ Creating a new generic function for ‘sweep’ in package ‘DelayedArray’ Creating a new generic function for ‘scale’ in package ‘DelayedArray’ Creating a generic function for ‘dnorm’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘pnorm’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘qnorm’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘dbinom’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘pbinom’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘qbinom’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘dpois’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘ppois’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘qpois’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘dlogis’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘plogis’ from package ‘stats’ in package ‘DelayedArray’ Creating a generic function for ‘qlogis’ from package ‘stats’ in package ‘DelayedArray’ ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (DelayedArray)
DelayedArray.Rcheck/tests/run_unitTests.Rout
R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > require("DelayedArray") || stop("unable to load DelayedArray package") Loading required package: DelayedArray Loading required package: stats4 Loading required package: Matrix Loading required package: BiocGenerics Loading required package: generics Attaching package: 'generics' The following objects are masked from 'package:base': as.difftime, as.factor, as.ordered, intersect, is.element, setdiff, setequal, union Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, saveRDS, table, tapply, unique, unsplit, which.max, which.min Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: S4Vectors Attaching package: 'S4Vectors' The following objects are masked from 'package:Matrix': expand, unname The following object is masked from 'package:utils': findMatches The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Loading required package: S4Arrays Loading required package: abind Attaching package: 'S4Arrays' The following object is masked from 'package:abind': abind The following object is masked from 'package:base': rowsum Loading required package: SparseArray Attaching package: 'DelayedArray' The following objects are masked from 'package:base': apply, scale, sweep [1] TRUE > DelayedArray:::.test() Error in S4Arrays:::normarg_perm(perm, dim(seed)) : 'perm' must be an integer vector Error in validObject(.Object) : invalid class "DelayedAperm" object: 'perm' cannot be an empty vector Error in validObject(.Object) : invalid class "DelayedAperm" object: only dimensions with an extent of 1 can be dropped Error in validObject(.Object) : invalid class "DelayedAperm" object: all non-NA values in 'perm' must be >= 1 and <= 'length(dim(a))' Error in validObject(.Object) : invalid class "DelayedAperm" object: only dimensions with an extent of 1 can be dropped Loading required package: h5mread Loading required package: rhdf5 Attaching package: 'h5mread' The following object is masked from 'package:rhdf5': h5ls Loading required namespace: HDF5Array Loading required namespace: HDF5Array Loading required namespace: HDF5Array Loading required namespace: HDF5Array Loading required namespace: HDF5Array Loading required namespace: HDF5Array Loading required namespace: HDF5Array Loading required namespace: HDF5Array Attaching package: 'genefilter' The following object is masked from 'package:DelayedArray': rowVars The following objects are masked from 'package:SparseArray': rowSds, rowVars The following objects are masked from 'package:MatrixGenerics': rowSds, rowVars The following objects are masked from 'package:matrixStats': rowSds, rowVars Error in seed(x) : seed() is not supported on a DelayedArray object with multiple seeds at the moment. Note that you can check the number of seeds with nseed(). You can use 'seedApply(x, identity)' to extract all the seeds as a list. In addition: Warning messages: 1: In log(a + 0.2) : NaNs produced 2: In OP(a) : NaNs produced Error : unable to find an inherited method for function 'is_noop' for signature 'x = "DelayedNaryIsoOp"' Error in seed(x) : seed() is not supported on a DelayedArray object with multiple seeds at the moment. Note that you can check the number of seeds with nseed(). You can use 'seedApply(x, identity)' to extract all the seeds as a list. Error : unable to find an inherited method for function 'is_noop' for signature 'x = "DelayedNaryIsoOp"' Error in seed(x) : seed() is not supported on a DelayedArray object with multiple seeds at the moment. Note that you can check the number of seeds with nseed(). You can use 'seedApply(x, identity)' to extract all the seeds as a list. Error : unable to find an inherited method for function 'is_noop' for signature 'x = "DelayedNaryIsoOp"' Error in seed(x) : seed() is not supported on a DelayedArray object with multiple seeds at the moment. Note that you can check the number of seeds with nseed(). You can use 'seedApply(x, identity)' to extract all the seeds as a list. Error : unable to find an inherited method for function 'is_noop' for signature 'x = "DelayedNaryIsoOp"' Error in seed(x) : seed() is not supported on a DelayedArray object with multiple seeds at the moment. Note that you can check the number of seeds with nseed(). You can use 'seedApply(x, identity)' to extract all the seeds as a list. Error : unable to find an inherited method for function 'is_noop' for signature 'x = "DelayedNaryIsoOp"' Error in match.fun(OP) : 'NULL' is not a function, character or symbol Error in match.fun(OP) : 'list(NULL)' is not a function, character or symbol Error in get(as.character(FUN), mode = "function", envir = envir) : object 'not-an-existing-function' of mode 'function' was not found Error in new_DelayedNaryIsoOp("<=", array(dim = 4:2), array(dim = 2:4)) : non-conformable array-like objects Error in S4Arrays:::normarg_dimnames(dimnames, seed_dim) : the supplied 'dimnames' must be NULL or a list Error in S4Arrays:::normarg_dimnames(dimnames, seed_dim) : the supplied 'dimnames' must have one list element per dimension Error in FUN(X[[i]], ...) : each list element in the supplied 'dimnames' must be NULL or a character vector Error in FUN(X[[i]], ...) : length of 'dimnames[[1]]' (26) must equal the array extent (5) Error in S4Arrays:::normalize_Nindex(Nindex, seed) : 'Nindex' must be a list with one list element per dimension in 'x' Error in S4Arrays:::normalize_Nindex(Nindex, seed) : 'Nindex' must be a list with one list element per dimension in 'x' Error : subscript contains out-of-bounds indices Error : subscript contains invalid names Error : subscript contains out-of-bounds ranges Error : subscript contains out-of-bounds ranges Error in new_DelayedUnaryIsoOpStack(.TEST_SVT3, NULL) : 'OPS' must be a list Error in FUN(X[[i]], ...) : 'OPS[[1L]]' is not a function, character or symbol Error in get(as.character(FUN), mode = "function", envir = envir) : object 'not-an-existing-function' of mode 'function' was not found RUNIT TEST PROTOCOL -- Sun Apr 6 19:45:23 2025 *********************************************** Number of test functions: 43 Number of errors: 0 Number of failures: 0 1 Test Suite : DelayedArray RUnit Tests - 43 test functions, 0 errors, 0 failures Number of test functions: 43 Number of errors: 0 Number of failures: 0 > > proc.time() user system elapsed 709.516 5.453 995.541
DelayedArray.Rcheck/DelayedArray-Ex.timings
name | user | system | elapsed | |
AutoBlock-global-settings | 0.282 | 0.003 | 0.391 | |
AutoGrid | 1.396 | 0.153 | 2.691 | |
ConstantArray-class | 0.042 | 0.012 | 0.105 | |
DelayedAbind-class | 0.077 | 0.019 | 0.196 | |
DelayedAperm-class | 0.026 | 0.006 | 0.063 | |
DelayedArray-class | 5.833 | 0.204 | 12.179 | |
DelayedArray-stats | 1.664 | 0.070 | 1.834 | |
DelayedArray-utils | 7.344 | 0.132 | 11.009 | |
DelayedMatrix-mult | 0.330 | 0.015 | 0.679 | |
DelayedMatrix-rowsum | 10.283 | 1.401 | 15.738 | |
DelayedNaryIsoOp-class | 0.030 | 0.000 | 0.063 | |
DelayedSetDimnames-class | 0.014 | 0.000 | 0.025 | |
DelayedSubassign-class | 0.037 | 0.000 | 0.078 | |
DelayedSubset-class | 0.032 | 0.000 | 0.068 | |
DelayedUnaryIsoOpStack-class | 0.049 | 0.000 | 0.097 | |
DelayedUnaryIsoOpWithArgs-class | 0.102 | 0.000 | 0.117 | |