Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-06-11 15:43 -0400 (Tue, 11 Jun 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.4.0 RC (2024-04-16 r86468) -- "Puppy Cup" 4679
palomino4Windows Server 2022 Datacenterx644.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup" 4414
merida1macOS 12.7.4 Montereyx86_644.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" 4441
kjohnson1macOS 13.6.6 Venturaarm644.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" 4394
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1937/2239HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.15.0  (landing page)
Joshua David Campbell
Snapshot Date: 2024-06-09 14:00 -0400 (Sun, 09 Jun 2024)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 4d7a515
git_last_commit_date: 2024-04-30 11:06:02 -0400 (Tue, 30 Apr 2024)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.4 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published


CHECK results for singleCellTK on kjohnson1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.15.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.15.0.tar.gz
StartedAt: 2024-06-11 08:47:56 -0400 (Tue, 11 Jun 2024)
EndedAt: 2024-06-11 09:05:30 -0400 (Tue, 11 Jun 2024)
EllapsedTime: 1053.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.15.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.0 Patched (2024-04-24 r86482)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.6.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.15.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) dedupRowNames.Rd:10: Lost braces
    10 | \item{x}{A matrix like or /linkS4class{SingleCellExperiment} object, on which
       |                                       ^
checkRd: (-1) dedupRowNames.Rd:14: Lost braces
    14 | /linkS4class{SingleCellExperiment} object. When set to \code{TRUE}, will
       |             ^
checkRd: (-1) dedupRowNames.Rd:22: Lost braces
    22 | By default, a matrix or /linkS4class{SingleCellExperiment} object
       |                                     ^
checkRd: (-1) dedupRowNames.Rd:24: Lost braces
    24 | When \code{x} is a /linkS4class{SingleCellExperiment} and \code{as.rowData}
       |                                ^
checkRd: (-1) plotBubble.Rd:42: Lost braces
    42 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runClusterSummaryMetrics.Rd:27: Lost braces
    27 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runEmptyDrops.Rd:66: Lost braces
    66 | provided \\linkS4class{SingleCellExperiment} object.
       |                       ^
checkRd: (-1) runSCMerge.Rd:44: Lost braces
    44 | construct pseudo-replicates. The length of code{kmeansK} needs to be the same
       |                                                ^
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 43.444  0.236  43.990
runDoubletFinder         39.491  0.168  39.829
plotScDblFinderResults   36.872  0.673  37.750
importExampleData        22.607  1.605  26.533
runScDblFinder           21.090  0.462  21.742
plotBatchCorrCompare     14.033  0.100  14.189
plotScdsHybridResults    11.040  0.170  11.241
plotBcdsResults           9.877  0.186  10.145
plotDecontXResults        9.743  0.063   9.845
runDecontX                8.709  0.048   8.778
plotUMAP                  8.537  0.055   8.619
runUMAP                   8.525  0.046   8.597
detectCellOutlier         7.878  0.108   8.014
plotCxdsResults           7.904  0.056   7.999
runSeuratSCTransform      6.826  0.084   6.955
plotEmptyDropsResults     6.651  0.025   6.708
plotEmptyDropsScatter     6.625  0.027   6.674
runEmptyDrops             6.333  0.024   6.381
plotTSCANClusterDEG       5.700  0.081   5.795
convertSCEToSeurat        4.873  0.183   5.074
getEnrichRResult          0.366  0.036   7.677
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.224   0.063   0.271 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
    union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
304.579   5.602 320.054 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0040.007
SEG0.0040.0040.007
calcEffectSizes0.2080.0190.228
combineSCE1.4950.0451.549
computeZScore0.3130.0090.323
convertSCEToSeurat4.8730.1835.074
convertSeuratToSCE0.5300.0090.540
dedupRowNames0.0740.0050.079
detectCellOutlier7.8780.1088.014
diffAbundanceFET0.0830.0040.087
discreteColorPalette0.0090.0010.009
distinctColors0.0030.0010.003
downSampleCells0.8090.0660.878
downSampleDepth0.6490.0350.689
expData-ANY-character-method0.3250.0060.333
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3930.0080.403
expData-set0.3580.0080.367
expData0.3640.0220.386
expDataNames-ANY-method0.3770.0280.406
expDataNames0.3060.0070.315
expDeleteDataTag0.0490.0020.051
expSetDataTag0.0400.0030.046
expTaggedData0.0440.0030.047
exportSCE0.0380.0050.043
exportSCEtoAnnData0.1390.0030.142
exportSCEtoFlatFile0.1370.0040.140
featureIndex0.0510.0050.056
generateSimulatedData0.0700.0080.078
getBiomarker0.0750.0060.081
getDEGTopTable0.9600.0350.996
getDiffAbundanceResults0.0750.0030.079
getEnrichRResult0.3660.0367.677
getFindMarkerTopTable3.4710.0543.569
getMSigDBTable0.0040.0040.009
getPathwayResultNames0.0360.0060.041
getSampleSummaryStatsTable0.3630.0070.373
getSoupX0.0000.0000.001
getTSCANResults2.0240.0452.074
getTopHVG1.3470.0181.369
importAnnData0.0020.0000.003
importBUStools0.3010.0050.308
importCellRanger1.2970.0421.346
importCellRangerV2Sample0.2470.0040.258
importCellRangerV3Sample0.4130.0150.429
importDropEst0.3210.0050.326
importExampleData22.607 1.60526.533
importGeneSetsFromCollection0.8340.0750.912
importGeneSetsFromGMT0.0840.0080.092
importGeneSetsFromList0.1430.0070.150
importGeneSetsFromMSigDB3.1600.1053.275
importMitoGeneSet0.0650.0090.075
importOptimus0.0020.0010.002
importSEQC0.3290.0110.343
importSTARsolo0.2770.0040.283
iterateSimulations0.4020.0110.415
listSampleSummaryStatsTables0.5080.0090.518
mergeSCEColData0.5190.0230.543
mouseBrainSubsetSCE0.0530.0050.058
msigdb_table0.0020.0040.006
plotBarcodeRankDropsResults0.9670.0200.990
plotBarcodeRankScatter0.9010.0120.915
plotBatchCorrCompare14.033 0.10014.189
plotBatchVariance0.3580.0220.382
plotBcdsResults 9.877 0.18610.145
plotBubble1.1480.0401.190
plotClusterAbundance0.8780.0100.896
plotCxdsResults7.9040.0567.999
plotDEGHeatmap3.1170.0843.210
plotDEGRegression3.8210.0503.883
plotDEGViolin4.6210.1034.738
plotDEGVolcano1.2880.0181.329
plotDecontXResults9.7430.0639.845
plotDimRed0.3260.0080.336
plotDoubletFinderResults43.444 0.23643.990
plotEmptyDropsResults6.6510.0256.708
plotEmptyDropsScatter6.6250.0276.674
plotFindMarkerHeatmap4.3520.0404.428
plotMASTThresholdGenes1.5830.0321.657
plotPCA0.5110.0130.528
plotPathway0.9230.0140.944
plotRunPerCellQCResults2.1950.0222.224
plotSCEBarAssayData0.2220.0080.230
plotSCEBarColData0.1530.0080.162
plotSCEBatchFeatureMean0.2090.0030.212
plotSCEDensity0.2920.0100.304
plotSCEDensityAssayData0.1960.0110.208
plotSCEDensityColData0.2190.0080.227
plotSCEDimReduceColData0.7640.0140.781
plotSCEDimReduceFeatures0.4490.0120.463
plotSCEHeatmap0.6900.0100.701
plotSCEScatter0.3970.0110.408
plotSCEViolin0.2680.0090.278
plotSCEViolinAssayData0.3220.0080.333
plotSCEViolinColData0.2610.0090.270
plotScDblFinderResults36.872 0.67337.750
plotScanpyDotPlot0.0340.0040.038
plotScanpyEmbedding0.0330.0050.038
plotScanpyHVG0.0340.0060.040
plotScanpyHeatmap0.0360.0060.042
plotScanpyMarkerGenes0.0350.0040.040
plotScanpyMarkerGenesDotPlot0.0350.0020.038
plotScanpyMarkerGenesHeatmap0.0370.0020.040
plotScanpyMarkerGenesMatrixPlot0.0370.0020.038
plotScanpyMarkerGenesViolin0.0370.0050.042
plotScanpyMatrixPlot0.0350.0010.037
plotScanpyPCA0.0340.0020.038
plotScanpyPCAGeneRanking0.0340.0050.040
plotScanpyPCAVariance0.0380.0040.042
plotScanpyViolin0.0350.0040.039
plotScdsHybridResults11.040 0.17011.241
plotScrubletResults0.0380.0070.045
plotSeuratElbow0.0350.0050.040
plotSeuratHVG0.0360.0040.040
plotSeuratJackStraw0.0360.0020.038
plotSeuratReduction0.0360.0050.041
plotSoupXResults0.0000.0000.001
plotTSCANClusterDEG5.7000.0815.795
plotTSCANClusterPseudo2.4630.0342.504
plotTSCANDimReduceFeatures2.5370.0292.572
plotTSCANPseudotimeGenes2.2970.0282.331
plotTSCANPseudotimeHeatmap2.5460.0342.623
plotTSCANResults2.3440.0312.399
plotTSNE0.5810.0130.594
plotTopHVG0.5740.0120.588
plotUMAP8.5370.0558.619
readSingleCellMatrix0.0060.0010.006
reportCellQC0.1900.0060.197
reportDropletQC0.0360.0020.039
reportQCTool0.2100.0070.218
retrieveSCEIndex0.0440.0050.051
runBBKNN000
runBarcodeRankDrops0.4720.0120.484
runBcds2.0650.0802.150
runCellQC0.1990.0170.244
runClusterSummaryMetrics0.8030.0300.835
runComBatSeq0.5270.0140.541
runCxds0.5320.0150.547
runCxdsBcdsHybrid2.0960.1002.204
runDEAnalysis0.8290.0300.863
runDecontX8.7090.0488.778
runDimReduce0.5010.0120.514
runDoubletFinder39.491 0.16839.829
runDropletQC0.0330.0090.042
runEmptyDrops6.3330.0246.381
runEnrichR0.3310.0284.055
runFastMNN1.5950.0331.636
runFeatureSelection0.2540.0060.260
runFindMarker3.9550.0604.026
runGSVA0.9830.0401.027
runHarmony0.0470.0010.049
runKMeans0.5270.0160.544
runLimmaBC0.0880.0010.090
runMNNCorrect0.6770.0110.698
runModelGeneVar0.4940.0060.503
runNormalization2.9480.0363.000
runPerCellQC0.5760.0130.592
runSCANORAMA000
runSCMerge0.0060.0010.007
runScDblFinder21.090 0.46221.742
runScanpyFindClusters0.0240.0030.029
runScanpyFindHVG0.0390.0030.042
runScanpyFindMarkers0.0200.0020.023
runScanpyNormalizeData0.1410.0030.157
runScanpyPCA0.0220.0050.037
runScanpyScaleData0.0220.0030.027
runScanpyTSNE0.0140.0020.017
runScanpyUMAP0.0170.0050.022
runScranSNN0.7300.0170.781
runScrublet0.0350.0020.038
runSeuratFindClusters0.0330.0020.037
runSeuratFindHVG0.8550.0420.902
runSeuratHeatmap0.0370.0090.045
runSeuratICA0.0370.0040.041
runSeuratJackStraw0.0350.0040.038
runSeuratNormalizeData0.0340.0080.042
runSeuratPCA0.0360.0060.042
runSeuratSCTransform6.8260.0846.955
runSeuratScaleData0.0340.0040.037
runSeuratUMAP0.0360.0040.039
runSingleR0.0370.0040.040
runSoupX0.0010.0010.001
runTSCAN1.6600.0271.692
runTSCANClusterDEAnalysis1.6920.0251.728
runTSCANDEG1.6390.0241.670
runTSNE1.1050.0201.129
runUMAP8.5250.0468.597
runVAM0.5620.0140.578
runZINBWaVE0.0050.0010.006
sampleSummaryStats0.3190.0100.330
scaterCPM0.1660.0050.173
scaterPCA0.3790.0210.405
scaterlogNormCounts0.1890.0080.199
sce0.0180.0050.024
sctkListGeneSetCollections0.0730.0080.080
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0000.0010.000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.1670.0210.189
setSCTKDisplayRow0.4380.0180.459
singleCellTK0.0000.0010.001
subDiffEx0.5760.0310.608
subsetSCECols0.1900.0180.208
subsetSCERows0.4510.0180.470
summarizeSCE0.0870.0110.099
trimCounts0.2680.0160.285