Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-03-10 12:11 -0400 (Mon, 10 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4670
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4355
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4446
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4439
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4306
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1977/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.16.1  (landing page)
Joshua David Campbell
Snapshot Date: 2025-03-06 13:00 -0500 (Thu, 06 Mar 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_20
git_last_commit: e7e94ca1
git_last_commit_date: 2025-02-13 11:47:56 -0500 (Thu, 13 Feb 2025)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    ERROR  skipped


CHECK results for singleCellTK on kjohnson1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.16.1
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.16.1.tar.gz
StartedAt: 2025-03-08 09:48:52 -0500 (Sat, 08 Mar 2025)
EndedAt: 2025-03-08 10:06:16 -0500 (Sat, 08 Mar 2025)
EllapsedTime: 1044.4 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.16.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.16.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 42.854  0.217  43.635
plotScDblFinderResults   41.135  0.684  42.194
runDoubletFinder         39.431  0.209  40.101
runScDblFinder           29.869  0.489  30.550
importExampleData        18.489  1.285  22.335
plotBatchCorrCompare     14.188  0.103  14.463
plotScdsHybridResults    10.610  0.122  10.862
plotBcdsResults           9.508  0.176   9.739
plotDecontXResults        9.007  0.056   9.191
runUMAP                   8.373  0.059   8.489
runDecontX                8.378  0.044   8.485
plotUMAP                  8.126  0.058   8.263
plotCxdsResults           7.756  0.060   7.895
plotEmptyDropsResults     6.684  0.027   6.788
detectCellOutlier         6.515  0.137   6.726
plotEmptyDropsScatter     6.533  0.026   6.593
runSeuratSCTransform      6.384  0.076   6.532
runEmptyDrops             5.518  0.025   5.586
convertSCEToSeurat        4.920  0.214   5.185
getEnrichRResult          0.351  0.055  11.691
runEnrichR                0.319  0.028   5.076
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.214   0.070   0.301 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 20 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 20 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
291.576   6.051 312.343 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0030.005
SEG0.0030.0030.007
calcEffectSizes0.3430.0150.361
combineSCE1.7360.0301.783
computeZScore0.2950.0100.309
convertSCEToSeurat4.9200.2145.185
convertSeuratToSCE0.3350.0100.346
dedupRowNames0.0680.0050.073
detectCellOutlier6.5150.1376.726
diffAbundanceFET0.0750.0030.084
discreteColorPalette0.0080.0000.008
distinctColors0.0030.0000.002
downSampleCells0.7050.0610.801
downSampleDepth0.4920.0310.539
expData-ANY-character-method0.1450.0050.150
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1860.0060.193
expData-set0.1690.0060.175
expData0.1430.0050.148
expDataNames-ANY-method0.1340.0060.140
expDataNames0.1340.0060.141
expDeleteDataTag0.0450.0030.049
expSetDataTag0.0490.0030.052
expTaggedData0.0400.0030.044
exportSCE0.0360.0050.041
exportSCEtoAnnData0.1280.0070.136
exportSCEtoFlatFile0.1170.0060.126
featureIndex0.0510.0060.059
generateSimulatedData0.0980.0100.109
getBiomarker0.0730.0060.078
getDEGTopTable0.7390.0310.783
getDiffAbundanceResults0.0640.0050.081
getEnrichRResult 0.351 0.05511.691
getFindMarkerTopTable1.4580.0961.585
getMSigDBTable0.0050.0040.009
getPathwayResultNames0.0330.0060.040
getSampleSummaryStatsTable0.2270.0150.245
getSoupX000
getTSCANResults1.2790.0651.374
getTopHVG0.9280.0310.963
importAnnData0.0020.0010.003
importBUStools0.1750.0070.184
importCellRanger0.8480.0390.894
importCellRangerV2Sample0.1610.0040.168
importCellRangerV3Sample0.3360.0170.353
importDropEst0.2230.0040.228
importExampleData18.489 1.28522.335
importGeneSetsFromCollection0.8040.0800.917
importGeneSetsFromGMT0.0810.0060.088
importGeneSetsFromList0.1410.0060.148
importGeneSetsFromMSigDB4.8160.1104.969
importMitoGeneSet0.0640.0090.074
importOptimus0.0020.0010.003
importSEQC0.1710.0080.180
importSTARsolo0.1770.0100.189
iterateSimulations0.3020.0120.318
listSampleSummaryStatsTables0.3140.0060.320
mergeSCEColData0.3820.0230.407
mouseBrainSubsetSCE0.0540.0060.061
msigdb_table0.0020.0030.006
plotBarcodeRankDropsResults0.7540.0170.782
plotBarcodeRankScatter0.6750.0100.692
plotBatchCorrCompare14.188 0.10314.463
plotBatchVariance0.3570.0210.378
plotBcdsResults9.5080.1769.739
plotBubble0.8410.0430.889
plotClusterAbundance0.8620.0080.874
plotCxdsResults7.7560.0607.895
plotDEGHeatmap2.3480.0452.409
plotDEGRegression3.6880.0693.639
plotDEGViolin4.3770.1154.580
plotDEGVolcano0.9750.0151.012
plotDecontXResults9.0070.0569.191
plotDimRed0.3060.0070.315
plotDoubletFinderResults42.854 0.21743.635
plotEmptyDropsResults6.6840.0276.788
plotEmptyDropsScatter6.5330.0266.593
plotFindMarkerHeatmap4.2820.0324.336
plotMASTThresholdGenes1.3340.0291.370
plotPCA0.4010.0130.415
plotPathway0.5550.0120.572
plotRunPerCellQCResults1.9730.0202.005
plotSCEBarAssayData0.1880.0070.199
plotSCEBarColData0.0950.0040.101
plotSCEBatchFeatureMean0.1100.0020.113
plotSCEDensity0.2260.0060.239
plotSCEDensityAssayData0.1390.0080.149
plotSCEDensityColData0.1690.0070.181
plotSCEDimReduceColData0.4710.0150.490
plotSCEDimReduceFeatures0.2930.0100.307
plotSCEHeatmap0.5160.0080.527
plotSCEScatter0.2710.0090.283
plotSCEViolin0.2550.0080.264
plotSCEViolinAssayData0.2870.0080.302
plotSCEViolinColData0.2630.0070.273
plotScDblFinderResults41.135 0.68442.194
plotScanpyDotPlot0.0370.0060.043
plotScanpyEmbedding0.0380.0040.042
plotScanpyHVG0.0370.0060.044
plotScanpyHeatmap0.0360.0020.037
plotScanpyMarkerGenes0.0360.0060.042
plotScanpyMarkerGenesDotPlot0.0370.0040.040
plotScanpyMarkerGenesHeatmap0.0340.0030.037
plotScanpyMarkerGenesMatrixPlot0.0350.0050.040
plotScanpyMarkerGenesViolin0.0370.0050.041
plotScanpyMatrixPlot0.0380.0040.042
plotScanpyPCA0.0380.0040.041
plotScanpyPCAGeneRanking0.0350.0040.038
plotScanpyPCAVariance0.0360.0060.041
plotScanpyViolin0.0380.0030.041
plotScdsHybridResults10.610 0.12210.862
plotScrubletResults0.0170.0050.032
plotSeuratElbow0.0340.0060.043
plotSeuratHVG0.0270.0040.035
plotSeuratJackStraw0.0360.0060.043
plotSeuratReduction0.0320.0030.037
plotSoupXResults000
plotTSCANClusterDEG3.7800.0883.957
plotTSCANClusterPseudo1.2850.0241.316
plotTSCANDimReduceFeatures1.3250.0231.359
plotTSCANPseudotimeGenes1.4780.0291.518
plotTSCANPseudotimeHeatmap1.4600.0281.503
plotTSCANResults1.2430.0281.277
plotTSNE0.3490.0110.361
plotTopHVG0.5940.0170.614
plotUMAP8.1260.0588.263
readSingleCellMatrix0.0060.0010.007
reportCellQC0.1120.0040.117
reportDropletQC0.0340.0050.039
reportQCTool0.0980.0080.107
retrieveSCEIndex0.0410.0040.045
runBBKNN000
runBarcodeRankDrops0.2790.0080.288
runBcds1.8750.1142.007
runCellQC0.0950.0050.100
runClusterSummaryMetrics0.4190.0120.440
runComBatSeq0.5490.0140.569
runCxds0.4170.0130.434
runCxdsBcdsHybrid2.0340.1252.173
runDEAnalysis0.4650.0100.482
runDecontX8.3780.0448.485
runDimReduce0.3340.0110.350
runDoubletFinder39.431 0.20940.101
runDropletQC0.0340.0050.040
runEmptyDrops5.5180.0255.586
runEnrichR0.3190.0285.076
runFastMNN1.7410.0441.804
runFeatureSelection0.2600.0070.268
runFindMarker1.5850.0361.628
runGSVA0.8790.0400.925
runHarmony0.0440.0010.046
runKMeans0.2190.0110.231
runLimmaBC0.0890.0020.092
runMNNCorrect0.4600.0060.469
runModelGeneVar0.3520.0090.365
runNormalization2.8980.0472.965
runPerCellQC0.3700.0110.383
runSCANORAMA000
runSCMerge0.0050.0010.006
runScDblFinder29.869 0.48930.550
runScanpyFindClusters0.0350.0030.038
runScanpyFindHVG0.0410.0020.044
runScanpyFindMarkers0.0410.0060.047
runScanpyNormalizeData0.1220.0070.132
runScanpyPCA0.0360.0050.041
runScanpyScaleData0.0360.0050.041
runScanpyTSNE0.0360.0050.042
runScanpyUMAP0.0350.0040.040
runScranSNN0.3330.0140.348
runScrublet0.0380.0020.039
runSeuratFindClusters0.0340.0070.041
runSeuratFindHVG0.5030.0130.521
runSeuratHeatmap0.0370.0040.042
runSeuratICA0.0380.0060.044
runSeuratJackStraw0.0370.0100.047
runSeuratNormalizeData0.0370.0050.042
runSeuratPCA0.0350.0080.043
runSeuratSCTransform6.3840.0766.532
runSeuratScaleData0.0370.0060.042
runSeuratUMAP0.0350.0060.043
runSingleR0.0410.0040.046
runSoupX000
runTSCAN0.7220.0200.743
runTSCANClusterDEAnalysis0.8300.0190.852
runTSCANDEG0.8340.0260.863
runTSNE0.9440.0170.986
runUMAP8.3730.0598.489
runVAM0.3260.0100.336
runZINBWaVE0.0050.0010.007
sampleSummaryStats0.1710.0050.177
scaterCPM0.1810.0140.196
scaterPCA0.5000.0110.514
scaterlogNormCounts0.2880.0110.301
sce0.0350.0090.044
sctkListGeneSetCollections0.0970.0080.105
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0010.0000.001
selectSCTKConda0.0000.0000.001
selectSCTKVirtualEnvironment000
setRowNames0.1060.0060.113
setSCTKDisplayRow0.3520.0090.363
singleCellTK0.0000.0000.001
subDiffEx0.4050.0380.445
subsetSCECols0.1040.0080.112
subsetSCERows0.3250.0210.346
summarizeSCE0.0880.0070.096
trimCounts0.2530.0270.289