| Back to Build/check report for BioC 3.19 experimental data | 
 | 
This page was generated on 2024-10-17 14:51 -0400 (Thu, 17 Oct 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs | 
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 | 
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 378/430 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | ||||||||
| spatialLIBD 1.16.2  (landing page) Leonardo Collado-Torres 
 | nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK |  | |||||||
| To the developers/maintainers of the spatialLIBD package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. | 
| Package: spatialLIBD | 
| Version: 1.16.2 | 
| Command: /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:spatialLIBD.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings spatialLIBD_1.16.2.tar.gz | 
| StartedAt: 2024-10-17 12:08:41 -0400 (Thu, 17 Oct 2024) | 
| EndedAt: 2024-10-17 12:31:00 -0400 (Thu, 17 Oct 2024) | 
| EllapsedTime: 1338.5 seconds | 
| RetCode: 0 | 
| Status: OK | 
| CheckDir: spatialLIBD.Rcheck | 
| Warnings: 0 | 
##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:spatialLIBD.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings spatialLIBD_1.16.2.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.19-data-experiment/meat/spatialLIBD.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
    GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
* running under: Ubuntu 22.04.5 LTS
* using session charset: UTF-8
* checking for file ‘spatialLIBD/DESCRIPTION’ ... OK
* this is package ‘spatialLIBD’ version ‘1.16.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘spatialLIBD’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                 user system elapsed
vis_gene       42.329  2.205  45.122
vis_clus       31.502  1.909  35.039
add_images     29.178  3.124  42.459
img_update_all 26.993  1.830  28.876
check_spe      24.802  2.461  28.034
vis_grid_gene  25.607  1.580  29.545
vis_grid_clus  24.889  1.823  27.516
cluster_import 24.576  2.105  27.186
vis_clus_p     24.768  1.439  26.829
cluster_export 23.385  2.321  26.580
geom_spatial   23.694  1.996  26.183
add_key        23.158  2.349  26.901
vis_gene_p     23.776  1.292  25.957
img_edit       23.103  1.832  26.917
frame_limits   22.525  2.029  25.370
sce_to_spe     22.890  1.434  27.081
img_update     22.669  1.604  25.091
get_colors      1.401  0.129 104.862
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: OK
spatialLIBD.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD INSTALL spatialLIBD ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.19-bioc/R/site-library’ * installing *source* package ‘spatialLIBD’ ... ** using staged installation ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices *** copying figures ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (spatialLIBD)
spatialLIBD.Rcheck/tests/testthat.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(testthat)
> library(spatialLIBD)
Loading required package: SpatialExperiment
Loading required package: SingleCellExperiment
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
    union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':
    findMatches
The following objects are masked from 'package:base':
    I, expand.grid, unname
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
> 
> test_check("spatialLIBD")
rgstr_> ## Ensure reproducibility of example data
rgstr_> set.seed(20220907)
rgstr_> ## Generate example data
rgstr_> sce <- scuttle::mockSCE()
rgstr_> ## Add some sample IDs
rgstr_> sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)
rgstr_> ## Add a sample-level covariate: age
rgstr_> ages <- rnorm(5, mean = 20, sd = 4)
rgstr_> names(ages) <- LETTERS[1:5]
rgstr_> sce$age <- ages[sce$sample_id]
rgstr_> ## Add gene-level information
rgstr_> rowData(sce)$ensembl <- paste0("ENSG", seq_len(nrow(sce)))
rgstr_> rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))
rgstr_> ## Pseudo-bulk
rgstr_> sce_pseudo <- registration_pseudobulk(sce, "Cell_Cycle", "sample_id", c("age"), min_ncells = NULL)
rgstr_> colData(sce_pseudo)
DataFrame with 20 rows and 8 columns
     Mutation_Status  Cell_Cycle   Treatment   sample_id       age
         <character> <character> <character> <character> <numeric>
A_G0              NA          G0          NA           A   19.1872
B_G0              NA          G0          NA           B   25.3496
C_G0              NA          G0          NA           C   24.1802
D_G0              NA          G0          NA           D   15.5211
E_G0              NA          G0          NA           E   20.9701
...              ...         ...         ...         ...       ...
A_S               NA           S          NA           A   19.1872
B_S               NA           S          NA           B   25.3496
C_S               NA           S          NA           C   24.1802
D_S               NA           S          NA           D   15.5211
E_S               NA           S          NA           E   20.9701
     registration_variable registration_sample_id    ncells
               <character>            <character> <integer>
A_G0                    G0                      A         8
B_G0                    G0                      B        13
C_G0                    G0                      C         9
D_G0                    G0                      D         7
E_G0                    G0                      E        10
...                    ...                    ...       ...
A_S                      S                      A        12
B_S                      S                      B         8
C_S                      S                      C         7
D_S                      S                      D        14
E_S                      S                      E        11
rgstr_> ## Ensure reproducibility of example data
rgstr_> set.seed(20220907)
rgstr_> ## Generate example data
rgstr_> sce <- scuttle::mockSCE()
rgstr_> ## Add some sample IDs
rgstr_> sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)
rgstr_> ## Add a sample-level covariate: age
rgstr_> ages <- rnorm(5, mean = 20, sd = 4)
rgstr_> names(ages) <- LETTERS[1:5]
rgstr_> sce$age <- ages[sce$sample_id]
rgstr_> ## Add gene-level information
rgstr_> rowData(sce)$ensembl <- paste0("ENSG", seq_len(nrow(sce)))
rgstr_> rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))
rgstr_> ## Pseudo-bulk
rgstr_> sce_pseudo <- registration_pseudobulk(sce, "Cell_Cycle", "sample_id", c("age"), min_ncells = NULL)
rgstr_> colData(sce_pseudo)
DataFrame with 20 rows and 8 columns
     Mutation_Status  Cell_Cycle   Treatment   sample_id       age
         <character> <character> <character> <character> <numeric>
A_G0              NA          G0          NA           A   19.1872
B_G0              NA          G0          NA           B   25.3496
C_G0              NA          G0          NA           C   24.1802
D_G0              NA          G0          NA           D   15.5211
E_G0              NA          G0          NA           E   20.9701
...              ...         ...         ...         ...       ...
A_S               NA           S          NA           A   19.1872
B_S               NA           S          NA           B   25.3496
C_S               NA           S          NA           C   24.1802
D_S               NA           S          NA           D   15.5211
E_S               NA           S          NA           E   20.9701
     registration_variable registration_sample_id    ncells
               <character>            <character> <integer>
A_G0                    G0                      A         8
B_G0                    G0                      B        13
C_G0                    G0                      C         9
D_G0                    G0                      D         7
E_G0                    G0                      E        10
...                    ...                    ...       ...
A_S                      S                      A        12
B_S                      S                      B         8
C_S                      S                      C         7
D_S                      S                      D        14
E_S                      S                      E        11
rgst__> example("registration_model", package = "spatialLIBD")
rgstr_> example("registration_pseudobulk", package = "spatialLIBD")
rgstr_> ## Ensure reproducibility of example data
rgstr_> set.seed(20220907)
rgstr_> ## Generate example data
rgstr_> sce <- scuttle::mockSCE()
rgstr_> ## Add some sample IDs
rgstr_> sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)
rgstr_> ## Add a sample-level covariate: age
rgstr_> ages <- rnorm(5, mean = 20, sd = 4)
rgstr_> names(ages) <- LETTERS[1:5]
rgstr_> sce$age <- ages[sce$sample_id]
rgstr_> ## Add gene-level information
rgstr_> rowData(sce)$ensembl <- paste0("ENSG", seq_len(nrow(sce)))
rgstr_> rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))
rgstr_> ## Pseudo-bulk
rgstr_> sce_pseudo <- registration_pseudobulk(sce, "Cell_Cycle", "sample_id", c("age"), min_ncells = NULL)
rgstr_> colData(sce_pseudo)
DataFrame with 20 rows and 8 columns
     Mutation_Status  Cell_Cycle   Treatment   sample_id       age
         <character> <character> <character> <character> <numeric>
A_G0              NA          G0          NA           A   19.1872
B_G0              NA          G0          NA           B   25.3496
C_G0              NA          G0          NA           C   24.1802
D_G0              NA          G0          NA           D   15.5211
E_G0              NA          G0          NA           E   20.9701
...              ...         ...         ...         ...       ...
A_S               NA           S          NA           A   19.1872
B_S               NA           S          NA           B   25.3496
C_S               NA           S          NA           C   24.1802
D_S               NA           S          NA           D   15.5211
E_S               NA           S          NA           E   20.9701
     registration_variable registration_sample_id    ncells
               <character>            <character> <integer>
A_G0                    G0                      A         8
B_G0                    G0                      B        13
C_G0                    G0                      C         9
D_G0                    G0                      D         7
E_G0                    G0                      E        10
...                    ...                    ...       ...
A_S                      S                      A        12
B_S                      S                      B         8
C_S                      S                      C         7
D_S                      S                      D        14
E_S                      S                      E        11
rgstr_> registration_mod <- registration_model(sce_pseudo, "age")
rgstr_> head(registration_mod)
     registration_variableG0 registration_variableG1 registration_variableG2M
A_G0                       1                       0                        0
B_G0                       1                       0                        0
C_G0                       1                       0                        0
D_G0                       1                       0                        0
E_G0                       1                       0                        0
A_G1                       0                       1                        0
     registration_variableS      age
A_G0                      0 19.18719
B_G0                      0 25.34965
C_G0                      0 24.18019
D_G0                      0 15.52107
E_G0                      0 20.97006
A_G1                      0 19.18719
rgst__> block_cor <- registration_block_cor(sce_pseudo, registration_mod)
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 23 ]
> 
> proc.time()
   user  system elapsed 
 53.496   4.241  58.546 
spatialLIBD.Rcheck/spatialLIBD-Ex.timings
| name | user | system | elapsed | |
| add10xVisiumAnalysis | 0 | 0 | 0 | |
| add_images | 29.178 | 3.124 | 42.459 | |
| add_key | 23.158 | 2.349 | 26.901 | |
| annotate_registered_clusters | 1.224 | 0.137 | 1.571 | |
| check_modeling_results | 1.124 | 0.116 | 1.419 | |
| check_sce | 3.460 | 0.228 | 3.868 | |
| check_sce_layer | 1.270 | 0.153 | 1.825 | |
| check_spe | 24.802 | 2.461 | 28.034 | |
| cluster_export | 23.385 | 2.321 | 26.580 | |
| cluster_import | 24.576 | 2.105 | 27.186 | |
| enough_ram | 0.004 | 0.008 | 0.012 | |
| fetch_data | 1.295 | 0.140 | 1.646 | |
| frame_limits | 22.525 | 2.029 | 25.370 | |
| gene_set_enrichment | 1.378 | 0.144 | 1.730 | |
| gene_set_enrichment_plot | 1.502 | 0.200 | 1.886 | |
| geom_spatial | 23.694 | 1.996 | 26.183 | |
| get_colors | 1.401 | 0.129 | 104.862 | |
| img_edit | 23.103 | 1.832 | 26.917 | |
| img_update | 22.669 | 1.604 | 25.091 | |
| img_update_all | 26.993 | 1.830 | 28.876 | |
| layer_boxplot | 3.194 | 0.200 | 3.806 | |
| layer_matrix_plot | 0.01 | 0.00 | 0.01 | |
| layer_stat_cor | 1.277 | 0.100 | 1.456 | |
| layer_stat_cor_plot | 1.171 | 0.101 | 1.450 | |
| locate_images | 0 | 0 | 0 | |
| read10xVisiumAnalysis | 0 | 0 | 0 | |
| read10xVisiumWrapper | 0.001 | 0.000 | 0.000 | |
| registration_block_cor | 3.906 | 0.236 | 4.143 | |
| registration_model | 0.883 | 0.016 | 0.899 | |
| registration_pseudobulk | 0.805 | 0.012 | 0.817 | |
| registration_stats_anova | 3.070 | 0.032 | 3.102 | |
| registration_stats_enrichment | 3.269 | 0.091 | 3.360 | |
| registration_stats_pairwise | 3.067 | 0.056 | 3.123 | |
| registration_wrapper | 4.437 | 0.020 | 4.457 | |
| run_app | 0.000 | 0.001 | 0.002 | |
| sce_to_spe | 22.890 | 1.434 | 27.081 | |
| sig_genes_extract | 2.703 | 0.811 | 3.911 | |
| sig_genes_extract_all | 3.156 | 0.132 | 3.877 | |
| sort_clusters | 0.003 | 0.000 | 0.003 | |
| vis_clus | 31.502 | 1.909 | 35.039 | |
| vis_clus_p | 24.768 | 1.439 | 26.829 | |
| vis_gene | 42.329 | 2.205 | 45.122 | |
| vis_gene_p | 23.776 | 1.292 | 25.957 | |
| vis_grid_clus | 24.889 | 1.823 | 27.516 | |
| vis_grid_gene | 25.607 | 1.580 | 29.545 | |