Back to Multiple platform build/check report for BioC 3.19:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2024-10-18 20:40 -0400 (Fri, 18 Oct 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.3 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4763
palomino7Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4500
merida1macOS 12.7.5 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4530
kjohnson1macOS 13.6.6 Venturaarm644.4.1 (2024-06-14) -- "Race for Your Life" 4480
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 249/2300HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.68.0  (landing page)
Ben Bolstad
Snapshot Date: 2024-10-16 14:00 -0400 (Wed, 16 Oct 2024)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_19
git_last_commit: af6c73d
git_last_commit_date: 2024-04-30 10:16:21 -0400 (Tue, 30 Apr 2024)
nebbiolo1Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on merida1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.68.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.68.0.tar.gz
StartedAt: 2024-10-17 02:08:15 -0400 (Thu, 17 Oct 2024)
EndedAt: 2024-10-17 02:09:37 -0400 (Thu, 17 Oct 2024)
EllapsedTime: 81.4 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.68.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.68.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.599   0.213   0.893 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 474173 25.4    1035480 55.4         NA   638600 34.2
Vcells 877659  6.7    8388608 64.0      65536  2072434 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Oct 17 02:08:52 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Oct 17 02:08:53 2024"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600002f14000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Oct 17 02:09:00 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Oct 17 02:09:03 2024"
> 
> ColMode(tmp2)
<pointer: 0x600002f14000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]       [,4]
[1,] 99.2768670 -0.6714689  0.5296076  0.1644077
[2,] -0.7899389  0.7133868 -0.5299751 -0.1880200
[3,] -0.1853523 -0.6786394 -0.4274572  1.4548212
[4,] -1.2389442  0.3227120 -0.9302163  0.6557304
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 99.2768670 0.6714689 0.5296076 0.1644077
[2,]  0.7899389 0.7133868 0.5299751 0.1880200
[3,]  0.1853523 0.6786394 0.4274572 1.4548212
[4,]  1.2389442 0.3227120 0.9302163 0.6557304
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9637777 0.8194321 0.7277415 0.4054722
[2,] 0.8887851 0.8446223 0.7279939 0.4336128
[3,] 0.4305256 0.8237957 0.6538021 1.2061597
[4,] 1.1130787 0.5680775 0.9644772 0.8097718
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.91464 33.86579 32.80702 29.21913
[2,]  34.67779 34.15961 32.80991 29.52415
[3,]  29.49061 33.91660 31.96548 38.51642
[4,]  37.36973 31.00349 35.57499 33.75345
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600002f64000>
> exp(tmp5)
<pointer: 0x600002f64000>
> log(tmp5,2)
<pointer: 0x600002f64000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.049
> Min(tmp5)
[1] 53.54176
> mean(tmp5)
[1] 71.7335
> Sum(tmp5)
[1] 14346.7
> Var(tmp5)
[1] 861.3366
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.55271 69.45175 70.43970 69.30675 70.34215 70.67631 70.68040 71.18487
 [9] 67.61860 68.08172
> rowSums(tmp5)
 [1] 1791.054 1389.035 1408.794 1386.135 1406.843 1413.526 1413.608 1423.697
 [9] 1352.372 1361.634
> rowVars(tmp5)
 [1] 7939.44217   60.28430   71.83434   80.31560   63.19495   53.02999
 [7]  102.49381  128.52186   78.89137   59.12254
> rowSd(tmp5)
 [1] 89.103547  7.764297  8.475514  8.961897  7.949525  7.282169 10.123923
 [8] 11.336748  8.882081  7.689118
> rowMax(tmp5)
 [1] 466.04900  84.25827  85.29781  85.21447  85.25761  82.78014  86.24867
 [8]  94.18836  82.37375  82.17939
> rowMin(tmp5)
 [1] 56.94545 56.59539 56.81354 57.39952 58.66036 55.81846 55.39084 56.44488
 [9] 53.54176 57.43474
> 
> colMeans(tmp5)
 [1] 108.55595  69.47974  68.44711  73.14008  64.07718  63.99938  69.98812
 [8]  73.58477  63.02268  66.96150  70.50272  72.35046  73.31937  70.23960
[15]  71.46380  71.88813  75.23702  69.88711  69.71454  68.81066
> colSums(tmp5)
 [1] 1085.5595  694.7974  684.4711  731.4008  640.7718  639.9938  699.8812
 [8]  735.8477  630.2268  669.6150  705.0272  723.5046  733.1937  702.3960
[15]  714.6380  718.8813  752.3702  698.8711  697.1454  688.1066
> colVars(tmp5)
 [1] 15865.87506    60.93199    94.64495   124.73616    34.35929    22.71546
 [7]    68.96438    71.46816    52.90223    37.90217    85.37469    41.25217
[13]    69.48383    71.34787    97.60710    47.64499    75.00603   111.71163
[19]   129.50980    67.94674
> colSd(tmp5)
 [1] 125.959815   7.805895   9.728563  11.168534   5.861680   4.766074
 [7]   8.304479   8.453884   7.273392   6.156473   9.239843   6.422785
[13]   8.335696   8.446767   9.879631   6.902535   8.660602  10.569372
[19]  11.380237   8.242981
> colMax(tmp5)
 [1] 466.04900  85.82301  84.71604  94.18836  73.42463  69.70140  81.39202
 [8]  85.25761  76.79704  73.77411  86.19661  79.05846  86.24867  81.55325
[15]  85.29781  81.48136  83.09424  85.21447  96.51093  81.74706
> colMin(tmp5)
 [1] 59.36582 58.74773 54.54024 58.53505 56.94545 56.44415 53.54176 58.75512
 [9] 55.80332 56.79665 57.43474 61.41132 60.63353 57.87557 57.39952 59.83747
[17] 57.31357 55.39084 56.81354 55.81846
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1]       NA 69.45175 70.43970 69.30675 70.34215 70.67631 70.68040 71.18487
 [9] 67.61860 68.08172
> rowSums(tmp5)
 [1]       NA 1389.035 1408.794 1386.135 1406.843 1413.526 1413.608 1423.697
 [9] 1352.372 1361.634
> rowVars(tmp5)
 [1] 8366.15703   60.28430   71.83434   80.31560   63.19495   53.02999
 [7]  102.49381  128.52186   78.89137   59.12254
> rowSd(tmp5)
 [1] 91.466699  7.764297  8.475514  8.961897  7.949525  7.282169 10.123923
 [8] 11.336748  8.882081  7.689118
> rowMax(tmp5)
 [1]       NA 84.25827 85.29781 85.21447 85.25761 82.78014 86.24867 94.18836
 [9] 82.37375 82.17939
> rowMin(tmp5)
 [1]       NA 56.59539 56.81354 57.39952 58.66036 55.81846 55.39084 56.44488
 [9] 53.54176 57.43474
> 
> colMeans(tmp5)
 [1] 108.55595  69.47974  68.44711  73.14008  64.07718  63.99938  69.98812
 [8]  73.58477  63.02268  66.96150  70.50272  72.35046  73.31937  70.23960
[15]  71.46380  71.88813  75.23702        NA  69.71454  68.81066
> colSums(tmp5)
 [1] 1085.5595  694.7974  684.4711  731.4008  640.7718  639.9938  699.8812
 [8]  735.8477  630.2268  669.6150  705.0272  723.5046  733.1937  702.3960
[15]  714.6380  718.8813  752.3702        NA  697.1454  688.1066
> colVars(tmp5)
 [1] 15865.87506    60.93199    94.64495   124.73616    34.35929    22.71546
 [7]    68.96438    71.46816    52.90223    37.90217    85.37469    41.25217
[13]    69.48383    71.34787    97.60710    47.64499    75.00603          NA
[19]   129.50980    67.94674
> colSd(tmp5)
 [1] 125.959815   7.805895   9.728563  11.168534   5.861680   4.766074
 [7]   8.304479   8.453884   7.273392   6.156473   9.239843   6.422785
[13]   8.335696   8.446767   9.879631   6.902535   8.660602         NA
[19]  11.380237   8.242981
> colMax(tmp5)
 [1] 466.04900  85.82301  84.71604  94.18836  73.42463  69.70140  81.39202
 [8]  85.25761  76.79704  73.77411  86.19661  79.05846  86.24867  81.55325
[15]  85.29781  81.48136  83.09424        NA  96.51093  81.74706
> colMin(tmp5)
 [1] 59.36582 58.74773 54.54024 58.53505 56.94545 56.44415 53.54176 58.75512
 [9] 55.80332 56.79665 57.43474 61.41132 60.63353 57.87557 57.39952 59.83747
[17] 57.31357       NA 56.81354 55.81846
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.049
> Min(tmp5,na.rm=TRUE)
[1] 53.54176
> mean(tmp5,na.rm=TRUE)
[1] 71.72271
> Sum(tmp5,na.rm=TRUE)
[1] 14272.82
> Var(tmp5,na.rm=TRUE)
[1] 865.6634
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.37761 69.45175 70.43970 69.30675 70.34215 70.67631 70.68040 71.18487
 [9] 67.61860 68.08172
> rowSums(tmp5,na.rm=TRUE)
 [1] 1717.175 1389.035 1408.794 1386.135 1406.843 1413.526 1413.608 1423.697
 [9] 1352.372 1361.634
> rowVars(tmp5,na.rm=TRUE)
 [1] 8366.15703   60.28430   71.83434   80.31560   63.19495   53.02999
 [7]  102.49381  128.52186   78.89137   59.12254
> rowSd(tmp5,na.rm=TRUE)
 [1] 91.466699  7.764297  8.475514  8.961897  7.949525  7.282169 10.123923
 [8] 11.336748  8.882081  7.689118
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.04900  84.25827  85.29781  85.21447  85.25761  82.78014  86.24867
 [8]  94.18836  82.37375  82.17939
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.94545 56.59539 56.81354 57.39952 58.66036 55.81846 55.39084 56.44488
 [9] 53.54176 57.43474
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 108.55595  69.47974  68.44711  73.14008  64.07718  63.99938  69.98812
 [8]  73.58477  63.02268  66.96150  70.50272  72.35046  73.31937  70.23960
[15]  71.46380  71.88813  75.23702  69.44350  69.71454  68.81066
> colSums(tmp5,na.rm=TRUE)
 [1] 1085.5595  694.7974  684.4711  731.4008  640.7718  639.9938  699.8812
 [8]  735.8477  630.2268  669.6150  705.0272  723.5046  733.1937  702.3960
[15]  714.6380  718.8813  752.3702  624.9915  697.1454  688.1066
> colVars(tmp5,na.rm=TRUE)
 [1] 15865.87506    60.93199    94.64495   124.73616    34.35929    22.71546
 [7]    68.96438    71.46816    52.90223    37.90217    85.37469    41.25217
[13]    69.48383    71.34787    97.60710    47.64499    75.00603   123.46168
[19]   129.50980    67.94674
> colSd(tmp5,na.rm=TRUE)
 [1] 125.959815   7.805895   9.728563  11.168534   5.861680   4.766074
 [7]   8.304479   8.453884   7.273392   6.156473   9.239843   6.422785
[13]   8.335696   8.446767   9.879631   6.902535   8.660602  11.111331
[19]  11.380237   8.242981
> colMax(tmp5,na.rm=TRUE)
 [1] 466.04900  85.82301  84.71604  94.18836  73.42463  69.70140  81.39202
 [8]  85.25761  76.79704  73.77411  86.19661  79.05846  86.24867  81.55325
[15]  85.29781  81.48136  83.09424  85.21447  96.51093  81.74706
> colMin(tmp5,na.rm=TRUE)
 [1] 59.36582 58.74773 54.54024 58.53505 56.94545 56.44415 53.54176 58.75512
 [9] 55.80332 56.79665 57.43474 61.41132 60.63353 57.87557 57.39952 59.83747
[17] 57.31357 55.39084 56.81354 55.81846
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1]      NaN 69.45175 70.43970 69.30675 70.34215 70.67631 70.68040 71.18487
 [9] 67.61860 68.08172
> rowSums(tmp5,na.rm=TRUE)
 [1]    0.000 1389.035 1408.794 1386.135 1406.843 1413.526 1413.608 1423.697
 [9] 1352.372 1361.634
> rowVars(tmp5,na.rm=TRUE)
 [1]        NA  60.28430  71.83434  80.31560  63.19495  53.02999 102.49381
 [8] 128.52186  78.89137  59.12254
> rowSd(tmp5,na.rm=TRUE)
 [1]        NA  7.764297  8.475514  8.961897  7.949525  7.282169 10.123923
 [8] 11.336748  8.882081  7.689118
> rowMax(tmp5,na.rm=TRUE)
 [1]       NA 84.25827 85.29781 85.21447 85.25761 82.78014 86.24867 94.18836
 [9] 82.37375 82.17939
> rowMin(tmp5,na.rm=TRUE)
 [1]       NA 56.59539 56.81354 57.39952 58.66036 55.81846 55.39084 56.44488
 [9] 53.54176 57.43474
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 68.83450 69.36780 68.46528 74.50945 64.86959 63.56966 70.44621 75.23251
 [9] 63.09959 67.66268 70.37513 71.63344 72.30536 70.29687 72.51086 72.01501
[17] 75.94902      NaN 66.73716 67.74805
> colSums(tmp5,na.rm=TRUE)
 [1] 619.5105 624.3102 616.1875 670.5851 583.8264 572.1270 634.0159 677.0926
 [9] 567.8963 608.9641 633.3762 644.7009 650.7482 632.6718 652.5977 648.1351
[17] 683.5412   0.0000 600.6345 609.7324
> colVars(tmp5,na.rm=TRUE)
 [1]  98.93228  68.40752 106.47185 119.23259  31.59010  23.47747  75.22406
 [8]  49.85744  59.44847  37.10886  95.86341  40.62474  66.60190  80.22945
[15]  97.47435  53.41951  78.67864        NA  45.96980  63.73714
> colSd(tmp5,na.rm=TRUE)
 [1]  9.946471  8.270884 10.318520 10.919368  5.620507  4.845355  8.673180
 [8]  7.060980  7.710284  6.091705  9.790986  6.373754  8.160999  8.957090
[15]  9.872910  7.308865  8.870098        NA  6.780103  7.983554
> colMax(tmp5,na.rm=TRUE)
 [1] 82.78014 85.82301 84.71604 94.18836 73.42463 69.70140 81.39202 85.25761
 [9] 76.79704 73.77411 86.19661 79.05846 86.24867 81.55325 85.29781 81.48136
[17] 83.09424     -Inf 77.05934 81.74706
> colMin(tmp5,na.rm=TRUE)
 [1] 59.36582 58.74773 54.54024 58.53505 58.00317 56.44415 53.54176 62.21628
 [9] 55.80332 56.79665 57.43474 61.41132 60.63353 57.87557 57.39952 59.83747
[17] 57.31357      Inf 56.81354 55.81846
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 222.8505 145.1863 257.4591 306.3786 262.1404 149.6866 118.6181 220.9623
 [9] 303.8351 178.7603
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 222.8505 145.1863 257.4591 306.3786 262.1404 149.6866 118.6181 220.9623
 [9] 303.8351 178.7603
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  5.684342e-14 -1.136868e-13  0.000000e+00  2.273737e-13 -1.136868e-13
 [6]  2.842171e-14  1.136868e-13  1.136868e-13  2.131628e-13  5.684342e-14
[11] -3.126388e-13  0.000000e+00  1.136868e-13  5.684342e-14 -2.842171e-14
[16]  0.000000e+00  5.684342e-14  1.421085e-14  8.526513e-14 -1.705303e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   9 
4   19 
3   2 
3   18 
10   10 
8   17 
6   13 
4   9 
10   5 
9   18 
5   3 
10   12 
7   15 
4   5 
5   13 
3   16 
4   17 
4   20 
9   3 
4   2 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 1.799476
> Min(tmp)
[1] -1.903485
> mean(tmp)
[1] -0.06105925
> Sum(tmp)
[1] -6.105925
> Var(tmp)
[1] 0.9492404
> 
> rowMeans(tmp)
[1] -0.06105925
> rowSums(tmp)
[1] -6.105925
> rowVars(tmp)
[1] 0.9492404
> rowSd(tmp)
[1] 0.9742897
> rowMax(tmp)
[1] 1.799476
> rowMin(tmp)
[1] -1.903485
> 
> colMeans(tmp)
  [1] -0.662209703 -0.232672979 -1.654340429  0.136473723 -1.646669946
  [6] -0.552404446 -0.859770624 -1.309148060  0.468008744 -1.903485357
 [11] -0.798747335 -0.347410870  0.451902746  0.505124888  0.404127855
 [16] -0.172256458  0.693262085  0.257491454  0.837981488  0.267929946
 [21]  0.234539109 -1.682503668 -1.280995821  0.532329814 -0.106138067
 [26] -0.247578062 -0.064061785 -1.333020452  1.243231535 -0.185595608
 [31]  0.212884182  0.792731163  1.045873985 -1.794525152 -0.300793744
 [36] -0.791608877  0.856946381  0.567659205  1.376910041  1.639245533
 [41] -0.794056496  1.411095018  1.450085102 -1.551207411  0.411108278
 [46] -0.411850163 -1.810021251 -0.441000298  0.281309438 -0.655234270
 [51]  0.375109934 -1.266012629 -0.853425512  0.216185724 -0.546033045
 [56] -0.876117417 -0.429030967  0.039009306  1.666072754 -0.745079669
 [61]  0.505302474 -1.343764328 -1.096284968  1.751504205  1.741702777
 [66] -0.525464767  1.258702841 -0.015749829  0.408665187  0.341724409
 [71]  0.493071290  0.255886065  1.799475904  0.706601647 -1.267664237
 [76]  0.060561341 -1.318544737  0.834444859 -0.945240289  0.824549613
 [81]  0.734781135 -0.181181386 -0.248214386 -1.055432854  0.774313418
 [86] -1.804843879  0.016364743 -0.611301529  0.380124798  0.003894397
 [91]  1.702447188  0.358615373 -0.526006742  0.811310904  1.370025367
 [96] -0.978090544  1.131661227 -1.415383392 -1.763821824  0.655710201
> colSums(tmp)
  [1] -0.662209703 -0.232672979 -1.654340429  0.136473723 -1.646669946
  [6] -0.552404446 -0.859770624 -1.309148060  0.468008744 -1.903485357
 [11] -0.798747335 -0.347410870  0.451902746  0.505124888  0.404127855
 [16] -0.172256458  0.693262085  0.257491454  0.837981488  0.267929946
 [21]  0.234539109 -1.682503668 -1.280995821  0.532329814 -0.106138067
 [26] -0.247578062 -0.064061785 -1.333020452  1.243231535 -0.185595608
 [31]  0.212884182  0.792731163  1.045873985 -1.794525152 -0.300793744
 [36] -0.791608877  0.856946381  0.567659205  1.376910041  1.639245533
 [41] -0.794056496  1.411095018  1.450085102 -1.551207411  0.411108278
 [46] -0.411850163 -1.810021251 -0.441000298  0.281309438 -0.655234270
 [51]  0.375109934 -1.266012629 -0.853425512  0.216185724 -0.546033045
 [56] -0.876117417 -0.429030967  0.039009306  1.666072754 -0.745079669
 [61]  0.505302474 -1.343764328 -1.096284968  1.751504205  1.741702777
 [66] -0.525464767  1.258702841 -0.015749829  0.408665187  0.341724409
 [71]  0.493071290  0.255886065  1.799475904  0.706601647 -1.267664237
 [76]  0.060561341 -1.318544737  0.834444859 -0.945240289  0.824549613
 [81]  0.734781135 -0.181181386 -0.248214386 -1.055432854  0.774313418
 [86] -1.804843879  0.016364743 -0.611301529  0.380124798  0.003894397
 [91]  1.702447188  0.358615373 -0.526006742  0.811310904  1.370025367
 [96] -0.978090544  1.131661227 -1.415383392 -1.763821824  0.655710201
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.662209703 -0.232672979 -1.654340429  0.136473723 -1.646669946
  [6] -0.552404446 -0.859770624 -1.309148060  0.468008744 -1.903485357
 [11] -0.798747335 -0.347410870  0.451902746  0.505124888  0.404127855
 [16] -0.172256458  0.693262085  0.257491454  0.837981488  0.267929946
 [21]  0.234539109 -1.682503668 -1.280995821  0.532329814 -0.106138067
 [26] -0.247578062 -0.064061785 -1.333020452  1.243231535 -0.185595608
 [31]  0.212884182  0.792731163  1.045873985 -1.794525152 -0.300793744
 [36] -0.791608877  0.856946381  0.567659205  1.376910041  1.639245533
 [41] -0.794056496  1.411095018  1.450085102 -1.551207411  0.411108278
 [46] -0.411850163 -1.810021251 -0.441000298  0.281309438 -0.655234270
 [51]  0.375109934 -1.266012629 -0.853425512  0.216185724 -0.546033045
 [56] -0.876117417 -0.429030967  0.039009306  1.666072754 -0.745079669
 [61]  0.505302474 -1.343764328 -1.096284968  1.751504205  1.741702777
 [66] -0.525464767  1.258702841 -0.015749829  0.408665187  0.341724409
 [71]  0.493071290  0.255886065  1.799475904  0.706601647 -1.267664237
 [76]  0.060561341 -1.318544737  0.834444859 -0.945240289  0.824549613
 [81]  0.734781135 -0.181181386 -0.248214386 -1.055432854  0.774313418
 [86] -1.804843879  0.016364743 -0.611301529  0.380124798  0.003894397
 [91]  1.702447188  0.358615373 -0.526006742  0.811310904  1.370025367
 [96] -0.978090544  1.131661227 -1.415383392 -1.763821824  0.655710201
> colMin(tmp)
  [1] -0.662209703 -0.232672979 -1.654340429  0.136473723 -1.646669946
  [6] -0.552404446 -0.859770624 -1.309148060  0.468008744 -1.903485357
 [11] -0.798747335 -0.347410870  0.451902746  0.505124888  0.404127855
 [16] -0.172256458  0.693262085  0.257491454  0.837981488  0.267929946
 [21]  0.234539109 -1.682503668 -1.280995821  0.532329814 -0.106138067
 [26] -0.247578062 -0.064061785 -1.333020452  1.243231535 -0.185595608
 [31]  0.212884182  0.792731163  1.045873985 -1.794525152 -0.300793744
 [36] -0.791608877  0.856946381  0.567659205  1.376910041  1.639245533
 [41] -0.794056496  1.411095018  1.450085102 -1.551207411  0.411108278
 [46] -0.411850163 -1.810021251 -0.441000298  0.281309438 -0.655234270
 [51]  0.375109934 -1.266012629 -0.853425512  0.216185724 -0.546033045
 [56] -0.876117417 -0.429030967  0.039009306  1.666072754 -0.745079669
 [61]  0.505302474 -1.343764328 -1.096284968  1.751504205  1.741702777
 [66] -0.525464767  1.258702841 -0.015749829  0.408665187  0.341724409
 [71]  0.493071290  0.255886065  1.799475904  0.706601647 -1.267664237
 [76]  0.060561341 -1.318544737  0.834444859 -0.945240289  0.824549613
 [81]  0.734781135 -0.181181386 -0.248214386 -1.055432854  0.774313418
 [86] -1.804843879  0.016364743 -0.611301529  0.380124798  0.003894397
 [91]  1.702447188  0.358615373 -0.526006742  0.811310904  1.370025367
 [96] -0.978090544  1.131661227 -1.415383392 -1.763821824  0.655710201
> colMedians(tmp)
  [1] -0.662209703 -0.232672979 -1.654340429  0.136473723 -1.646669946
  [6] -0.552404446 -0.859770624 -1.309148060  0.468008744 -1.903485357
 [11] -0.798747335 -0.347410870  0.451902746  0.505124888  0.404127855
 [16] -0.172256458  0.693262085  0.257491454  0.837981488  0.267929946
 [21]  0.234539109 -1.682503668 -1.280995821  0.532329814 -0.106138067
 [26] -0.247578062 -0.064061785 -1.333020452  1.243231535 -0.185595608
 [31]  0.212884182  0.792731163  1.045873985 -1.794525152 -0.300793744
 [36] -0.791608877  0.856946381  0.567659205  1.376910041  1.639245533
 [41] -0.794056496  1.411095018  1.450085102 -1.551207411  0.411108278
 [46] -0.411850163 -1.810021251 -0.441000298  0.281309438 -0.655234270
 [51]  0.375109934 -1.266012629 -0.853425512  0.216185724 -0.546033045
 [56] -0.876117417 -0.429030967  0.039009306  1.666072754 -0.745079669
 [61]  0.505302474 -1.343764328 -1.096284968  1.751504205  1.741702777
 [66] -0.525464767  1.258702841 -0.015749829  0.408665187  0.341724409
 [71]  0.493071290  0.255886065  1.799475904  0.706601647 -1.267664237
 [76]  0.060561341 -1.318544737  0.834444859 -0.945240289  0.824549613
 [81]  0.734781135 -0.181181386 -0.248214386 -1.055432854  0.774313418
 [86] -1.804843879  0.016364743 -0.611301529  0.380124798  0.003894397
 [91]  1.702447188  0.358615373 -0.526006742  0.811310904  1.370025367
 [96] -0.978090544  1.131661227 -1.415383392 -1.763821824  0.655710201
> colRanges(tmp)
           [,1]      [,2]     [,3]      [,4]     [,5]       [,6]       [,7]
[1,] -0.6622097 -0.232673 -1.65434 0.1364737 -1.64667 -0.5524044 -0.8597706
[2,] -0.6622097 -0.232673 -1.65434 0.1364737 -1.64667 -0.5524044 -0.8597706
          [,8]      [,9]     [,10]      [,11]      [,12]     [,13]     [,14]
[1,] -1.309148 0.4680087 -1.903485 -0.7987473 -0.3474109 0.4519027 0.5051249
[2,] -1.309148 0.4680087 -1.903485 -0.7987473 -0.3474109 0.4519027 0.5051249
         [,15]      [,16]     [,17]     [,18]     [,19]     [,20]     [,21]
[1,] 0.4041279 -0.1722565 0.6932621 0.2574915 0.8379815 0.2679299 0.2345391
[2,] 0.4041279 -0.1722565 0.6932621 0.2574915 0.8379815 0.2679299 0.2345391
         [,22]     [,23]     [,24]      [,25]      [,26]       [,27]    [,28]
[1,] -1.682504 -1.280996 0.5323298 -0.1061381 -0.2475781 -0.06406179 -1.33302
[2,] -1.682504 -1.280996 0.5323298 -0.1061381 -0.2475781 -0.06406179 -1.33302
        [,29]      [,30]     [,31]     [,32]    [,33]     [,34]      [,35]
[1,] 1.243232 -0.1855956 0.2128842 0.7927312 1.045874 -1.794525 -0.3007937
[2,] 1.243232 -0.1855956 0.2128842 0.7927312 1.045874 -1.794525 -0.3007937
          [,36]     [,37]     [,38]   [,39]    [,40]      [,41]    [,42]
[1,] -0.7916089 0.8569464 0.5676592 1.37691 1.639246 -0.7940565 1.411095
[2,] -0.7916089 0.8569464 0.5676592 1.37691 1.639246 -0.7940565 1.411095
        [,43]     [,44]     [,45]      [,46]     [,47]      [,48]     [,49]
[1,] 1.450085 -1.551207 0.4111083 -0.4118502 -1.810021 -0.4410003 0.2813094
[2,] 1.450085 -1.551207 0.4111083 -0.4118502 -1.810021 -0.4410003 0.2813094
          [,50]     [,51]     [,52]      [,53]     [,54]     [,55]      [,56]
[1,] -0.6552343 0.3751099 -1.266013 -0.8534255 0.2161857 -0.546033 -0.8761174
[2,] -0.6552343 0.3751099 -1.266013 -0.8534255 0.2161857 -0.546033 -0.8761174
         [,57]      [,58]    [,59]      [,60]     [,61]     [,62]     [,63]
[1,] -0.429031 0.03900931 1.666073 -0.7450797 0.5053025 -1.343764 -1.096285
[2,] -0.429031 0.03900931 1.666073 -0.7450797 0.5053025 -1.343764 -1.096285
        [,64]    [,65]      [,66]    [,67]       [,68]     [,69]     [,70]
[1,] 1.751504 1.741703 -0.5254648 1.258703 -0.01574983 0.4086652 0.3417244
[2,] 1.751504 1.741703 -0.5254648 1.258703 -0.01574983 0.4086652 0.3417244
         [,71]     [,72]    [,73]     [,74]     [,75]      [,76]     [,77]
[1,] 0.4930713 0.2558861 1.799476 0.7066016 -1.267664 0.06056134 -1.318545
[2,] 0.4930713 0.2558861 1.799476 0.7066016 -1.267664 0.06056134 -1.318545
         [,78]      [,79]     [,80]     [,81]      [,82]      [,83]     [,84]
[1,] 0.8344449 -0.9452403 0.8245496 0.7347811 -0.1811814 -0.2482144 -1.055433
[2,] 0.8344449 -0.9452403 0.8245496 0.7347811 -0.1811814 -0.2482144 -1.055433
         [,85]     [,86]      [,87]      [,88]     [,89]       [,90]    [,91]
[1,] 0.7743134 -1.804844 0.01636474 -0.6113015 0.3801248 0.003894397 1.702447
[2,] 0.7743134 -1.804844 0.01636474 -0.6113015 0.3801248 0.003894397 1.702447
         [,92]      [,93]     [,94]    [,95]      [,96]    [,97]     [,98]
[1,] 0.3586154 -0.5260067 0.8113109 1.370025 -0.9780905 1.131661 -1.415383
[2,] 0.3586154 -0.5260067 0.8113109 1.370025 -0.9780905 1.131661 -1.415383
         [,99]    [,100]
[1,] -1.763822 0.6557102
[2,] -1.763822 0.6557102
> 
> 
> Max(tmp2)
[1] 2.91181
> Min(tmp2)
[1] -2.815247
> mean(tmp2)
[1] -0.07947557
> Sum(tmp2)
[1] -7.947557
> Var(tmp2)
[1] 1.124687
> 
> rowMeans(tmp2)
  [1] -0.03008263  1.10259684  0.42577665 -1.19571508 -0.69396685 -0.13414561
  [7] -0.23628767 -2.34648939 -0.97663863 -0.73578392 -0.91505706  0.50883084
 [13]  0.13217349 -1.43538653  1.83642793 -1.12927622 -0.09807004 -2.21559845
 [19] -0.28505204 -1.42682248  0.02736738  0.26606725 -0.05367233  0.08176950
 [25] -0.89390394 -0.45676719  1.12275203  0.05456407  0.74134024 -2.27201737
 [31]  0.42574478 -2.16764282  0.73102119 -0.56168445  0.68095219  0.19480194
 [37] -1.13602888  0.26181614  1.06997640 -0.23220259 -1.01740562 -0.28259461
 [43]  0.25060863  1.91028317 -0.08023639 -0.98391035  1.11239846  0.51497350
 [49]  1.26818770 -1.13950980 -0.95681445 -0.14944914  0.18724172 -0.69945709
 [55] -0.03760622 -0.44269237  0.25020892 -0.27613837 -0.36943440 -0.35388001
 [61]  1.59973096  0.37300841  0.46921610 -0.64424642 -0.89810907 -0.44769479
 [67] -0.69236315  0.97509524  2.55208832  0.24369580  1.12252683  1.11201882
 [73] -0.88327327 -0.36656850  0.08566988 -0.21349881 -1.10016254  2.91181014
 [79]  2.60139692  0.06210950 -2.81524718  1.03244458  0.11348375  0.82367555
 [85] -1.11688628  2.48124795 -0.75221517 -0.06249028 -0.66269520  0.26744152
 [91] -1.61363656  0.87389646 -0.04197523 -0.17481337  0.87466934 -0.66755927
 [97] -0.90661921  0.45423961 -0.54360262 -1.11382586
> rowSums(tmp2)
  [1] -0.03008263  1.10259684  0.42577665 -1.19571508 -0.69396685 -0.13414561
  [7] -0.23628767 -2.34648939 -0.97663863 -0.73578392 -0.91505706  0.50883084
 [13]  0.13217349 -1.43538653  1.83642793 -1.12927622 -0.09807004 -2.21559845
 [19] -0.28505204 -1.42682248  0.02736738  0.26606725 -0.05367233  0.08176950
 [25] -0.89390394 -0.45676719  1.12275203  0.05456407  0.74134024 -2.27201737
 [31]  0.42574478 -2.16764282  0.73102119 -0.56168445  0.68095219  0.19480194
 [37] -1.13602888  0.26181614  1.06997640 -0.23220259 -1.01740562 -0.28259461
 [43]  0.25060863  1.91028317 -0.08023639 -0.98391035  1.11239846  0.51497350
 [49]  1.26818770 -1.13950980 -0.95681445 -0.14944914  0.18724172 -0.69945709
 [55] -0.03760622 -0.44269237  0.25020892 -0.27613837 -0.36943440 -0.35388001
 [61]  1.59973096  0.37300841  0.46921610 -0.64424642 -0.89810907 -0.44769479
 [67] -0.69236315  0.97509524  2.55208832  0.24369580  1.12252683  1.11201882
 [73] -0.88327327 -0.36656850  0.08566988 -0.21349881 -1.10016254  2.91181014
 [79]  2.60139692  0.06210950 -2.81524718  1.03244458  0.11348375  0.82367555
 [85] -1.11688628  2.48124795 -0.75221517 -0.06249028 -0.66269520  0.26744152
 [91] -1.61363656  0.87389646 -0.04197523 -0.17481337  0.87466934 -0.66755927
 [97] -0.90661921  0.45423961 -0.54360262 -1.11382586
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.03008263  1.10259684  0.42577665 -1.19571508 -0.69396685 -0.13414561
  [7] -0.23628767 -2.34648939 -0.97663863 -0.73578392 -0.91505706  0.50883084
 [13]  0.13217349 -1.43538653  1.83642793 -1.12927622 -0.09807004 -2.21559845
 [19] -0.28505204 -1.42682248  0.02736738  0.26606725 -0.05367233  0.08176950
 [25] -0.89390394 -0.45676719  1.12275203  0.05456407  0.74134024 -2.27201737
 [31]  0.42574478 -2.16764282  0.73102119 -0.56168445  0.68095219  0.19480194
 [37] -1.13602888  0.26181614  1.06997640 -0.23220259 -1.01740562 -0.28259461
 [43]  0.25060863  1.91028317 -0.08023639 -0.98391035  1.11239846  0.51497350
 [49]  1.26818770 -1.13950980 -0.95681445 -0.14944914  0.18724172 -0.69945709
 [55] -0.03760622 -0.44269237  0.25020892 -0.27613837 -0.36943440 -0.35388001
 [61]  1.59973096  0.37300841  0.46921610 -0.64424642 -0.89810907 -0.44769479
 [67] -0.69236315  0.97509524  2.55208832  0.24369580  1.12252683  1.11201882
 [73] -0.88327327 -0.36656850  0.08566988 -0.21349881 -1.10016254  2.91181014
 [79]  2.60139692  0.06210950 -2.81524718  1.03244458  0.11348375  0.82367555
 [85] -1.11688628  2.48124795 -0.75221517 -0.06249028 -0.66269520  0.26744152
 [91] -1.61363656  0.87389646 -0.04197523 -0.17481337  0.87466934 -0.66755927
 [97] -0.90661921  0.45423961 -0.54360262 -1.11382586
> rowMin(tmp2)
  [1] -0.03008263  1.10259684  0.42577665 -1.19571508 -0.69396685 -0.13414561
  [7] -0.23628767 -2.34648939 -0.97663863 -0.73578392 -0.91505706  0.50883084
 [13]  0.13217349 -1.43538653  1.83642793 -1.12927622 -0.09807004 -2.21559845
 [19] -0.28505204 -1.42682248  0.02736738  0.26606725 -0.05367233  0.08176950
 [25] -0.89390394 -0.45676719  1.12275203  0.05456407  0.74134024 -2.27201737
 [31]  0.42574478 -2.16764282  0.73102119 -0.56168445  0.68095219  0.19480194
 [37] -1.13602888  0.26181614  1.06997640 -0.23220259 -1.01740562 -0.28259461
 [43]  0.25060863  1.91028317 -0.08023639 -0.98391035  1.11239846  0.51497350
 [49]  1.26818770 -1.13950980 -0.95681445 -0.14944914  0.18724172 -0.69945709
 [55] -0.03760622 -0.44269237  0.25020892 -0.27613837 -0.36943440 -0.35388001
 [61]  1.59973096  0.37300841  0.46921610 -0.64424642 -0.89810907 -0.44769479
 [67] -0.69236315  0.97509524  2.55208832  0.24369580  1.12252683  1.11201882
 [73] -0.88327327 -0.36656850  0.08566988 -0.21349881 -1.10016254  2.91181014
 [79]  2.60139692  0.06210950 -2.81524718  1.03244458  0.11348375  0.82367555
 [85] -1.11688628  2.48124795 -0.75221517 -0.06249028 -0.66269520  0.26744152
 [91] -1.61363656  0.87389646 -0.04197523 -0.17481337  0.87466934 -0.66755927
 [97] -0.90661921  0.45423961 -0.54360262 -1.11382586
> 
> colMeans(tmp2)
[1] -0.07947557
> colSums(tmp2)
[1] -7.947557
> colVars(tmp2)
[1] 1.124687
> colSd(tmp2)
[1] 1.060513
> colMax(tmp2)
[1] 2.91181
> colMin(tmp2)
[1] -2.815247
> colMedians(tmp2)
[1] -0.08915322
> colRanges(tmp2)
          [,1]
[1,] -2.815247
[2,]  2.911810
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  5.5466229  1.1370084  0.6780858  4.4115986  1.6742698  2.0262928
 [7] -6.1672681 -3.6211220  2.6015055  3.4700530
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.6121199
[2,]  0.2080457
[3,]  0.5820249
[4,]  1.2441631
[5,]  1.7794994
> 
> rowApply(tmp,sum)
 [1] -3.47656870  6.85900925  1.13171097  8.65997220  0.06849531  2.42857362
 [7] -0.84873476  1.73021115  0.50424968 -5.29987189
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    7    4    8    7   10   10    8    1    7     8
 [2,]    3    9    4    5    8    7    7    2    6     1
 [3,]    2    1    2    8    4    2    9   10    3    10
 [4,]    9    7   10    9    5    3    2    9    5     2
 [5,]    4    3    5   10    9    9    3    4    2     5
 [6,]    8    5    1    6    7    8    5    8    1     7
 [7,]    1    2    7    2    1    6    1    6    9     4
 [8,]    6   10    3    1    2    5    4    7    8     3
 [9,]    5    6    6    4    6    4    6    3   10     6
[10,]   10    8    9    3    3    1   10    5    4     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.80810360  0.96056666 -1.94461421 -0.82192939  0.18255704  1.21229222
 [7]  1.43463368  6.31550147  3.35190812 -1.91189797  3.14031977  0.52883773
[13] -1.13373609 -2.23183358 -0.06648039 -0.93191251 -2.38656154 -2.05402953
[19] -0.46383599 -3.76912876
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.0588929
[2,] -1.5329606
[3,] -0.3631897
[4,]  0.5736904
[5,]  2.5732492
> 
> rowApply(tmp,sum)
[1] -4.036248  3.453182  1.057659  1.428039 -3.300078
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    8    2   20    2   17
[2,]   18   18    8    5   12
[3,]   11   15    2    9    1
[4,]   10   10    1   15   18
[5,]   13   11    5   13   11
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]        [,4]        [,5]       [,6]
[1,] -0.3631897  0.77913528 -0.2426398 -0.31748230  0.17952722  0.8134994
[2,] -1.5329606  1.30328830  1.0965519  0.04539065  0.45833766 -1.9341978
[3,]  2.5732492 -0.48462641 -1.5714665 -1.97685084 -0.68146832 -0.4922303
[4,] -2.0588929 -0.71737493  0.2434728  0.73613143  0.32207472  1.2899115
[5,]  0.5736904  0.08014443 -1.4705326  0.69088168 -0.09591424  1.5353094
           [,7]      [,8]      [,9]      [,10]      [,11]      [,12]      [,13]
[1,]  0.2467373 0.4936393 0.3948861 -1.4480154  0.6455758  1.9975044 -0.7104038
[2,] -0.3029821 1.4718345 1.1036417  0.6320793  1.2007716 -0.2774736 -1.1317516
[3,]  1.5871263 1.1301977 0.8166495  0.8168771 -0.6339429 -0.2719758  0.9189849
[4,]  0.7121738 3.1134672 0.8855966 -0.6285332  1.5093259  0.2535031  0.2709682
[5,] -0.8084217 0.1063627 0.1511343 -1.2843057  0.4185894 -1.1727205 -0.4815338
          [,14]      [,15]         [,16]       [,17]      [,18]       [,19]
[1,] -1.2744813 -0.3620862 -1.0037947489 -1.77645413 -0.9090276 -0.11960844
[2,]  1.0208656  1.3767700 -0.0005195733 -1.39703720 -0.3334426 -0.02516289
[3,]  0.3819785 -1.1040077  1.2506591402  0.01828247 -0.9555029 -0.08252097
[4,] -1.5966354 -0.8922126 -0.4049858325  1.39970499 -0.2349530  0.26026930
[5,] -0.7635611  0.9150562 -0.7732714975 -0.63105767  0.3788965 -0.49681299
          [,20]
[1,] -1.0595697
[2,]  0.6791790
[3,] -0.1817537
[4,] -3.0349728
[5,] -0.1720116
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2      col3     col4      col5      col6       col7
row1 0.5188595 -1.232727 0.6257678 1.817565 -1.202058 0.3165668 -0.7395753
          col8       col9     col10     col11     col12    col13     col14
row1 0.5530774 -0.2005672 0.5898193 -0.214712 -1.566747 2.128848 0.5292314
         col15     col16      col17       col18    col19     col20
row1 0.3272902 0.7643034 -0.6922704 -0.02825685 1.958897 -1.126719
> tmp[,"col10"]
          col10
row1  0.5898193
row2 -0.1926239
row3 -0.9828166
row4  0.5662580
row5 -0.1597212
> tmp[c("row1","row5"),]
           col1      col2       col3      col4      col5      col6       col7
row1  0.5188595 -1.232727  0.6257678 1.8175654 -1.202058 0.3165668 -0.7395753
row5 -0.3162196  1.504392 -0.7803893 0.4261889  1.207574 0.7703898 -1.3354422
           col8       col9      col10      col11       col12     col13
row1  0.5530774 -0.2005672  0.5898193 -0.2147120 -1.56674659  2.128848
row5 -0.9018742 -0.6170160 -0.1597212  0.8106872  0.07818222 -0.428363
           col14     col15     col16      col17       col18      col19
row1  0.52923145 0.3272902 0.7643034 -0.6922704 -0.02825685  1.9588970
row5 -0.02430885 0.1102894 0.1991564  2.3555080 -1.04669358 -0.5198104
          col20
row1 -1.1267189
row5 -0.7617483
> tmp[,c("col6","col20")]
           col6      col20
row1  0.3165668 -1.1267189
row2 -1.1944900  0.1484385
row3 -0.2882329 -1.5732087
row4  0.8653789 -0.4226181
row5  0.7703898 -0.7617483
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.3165668 -1.1267189
row5 0.7703898 -0.7617483
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.32789 50.68625 50.63923 49.86496 49.52794 104.2524 50.48088 50.02386
         col9    col10    col11    col12    col13   col14    col15    col16
row1 49.29281 48.94447 49.69855 50.79101 49.53792 48.5865 50.06973 50.43551
        col17    col18    col19    col20
row1 50.61356 52.53623 49.83828 103.3021
> tmp[,"col10"]
        col10
row1 48.94447
row2 28.80527
row3 29.39522
row4 30.20442
row5 50.90837
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.32789 50.68625 50.63923 49.86496 49.52794 104.2524 50.48088 50.02386
row5 49.41925 48.99940 51.74570 49.79162 49.92358 105.2149 49.40652 49.39362
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.29281 48.94447 49.69855 50.79101 49.53792 48.58650 50.06973 50.43551
row5 48.96644 50.90837 49.88112 51.24998 50.29737 50.23122 49.41956 51.36534
        col17    col18    col19    col20
row1 50.61356 52.53623 49.83828 103.3021
row5 50.91066 49.20853 49.60758 104.4203
> tmp[,c("col6","col20")]
          col6     col20
row1 104.25242 103.30207
row2  75.27459  74.31214
row3  76.72645  75.42350
row4  73.88728  72.95419
row5 105.21487 104.42034
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.2524 103.3021
row5 105.2149 104.4203
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.2524 103.3021
row5 105.2149 104.4203
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  1.7343059
[2,] -0.1175643
[3,] -0.6296149
[4,] -0.3868774
[5,]  1.0414967
> tmp[,c("col17","col7")]
          col17        col7
[1,]  1.0551682 -0.36808036
[2,] -1.1970201  0.18669867
[3,]  1.2831779  2.72403112
[4,] -0.2287294  0.75423878
[5,] -1.8299791  0.03536581
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,] -0.75613514  0.3813641
[2,]  0.08463772  2.0980623
[3,]  0.84181637 -0.4200117
[4,]  1.03064003  0.3458816
[5,]  0.18448249 -0.3047817
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.7561351
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
            col6
[1,] -0.75613514
[2,]  0.08463772
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]      [,5]      [,6]       [,7]
row3 0.08690826  0.7234287  0.7579068 -0.5038913  1.675204 1.9035527  0.8866067
row1 0.97730232 -0.7308569 -1.4825709 -0.8276002 -1.159916 0.1524169 -2.5196827
          [,8]       [,9]      [,10]      [,11]       [,12]     [,13]     [,14]
row3 -1.562882 1.30420196  0.5100465 -0.7729264 -0.53478374 1.3759129 0.6377113
row1 -1.545540 0.03679966 -0.9219221 -0.5236371 -0.03465327 0.6778151 1.2271131
           [,15]       [,16]       [,17]      [,18]      [,19]      [,20]
row3  0.35784058 -0.98653610 -0.27363528 -0.1313602 -0.1320311 -0.2972534
row1 -0.09513542 -0.03384559 -0.09239849 -0.8435800  0.4877619  1.2396408
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]      [,3]       [,4]      [,5]      [,6]       [,7]
row2 0.6569575 -1.186593 -1.088937 0.05732334 0.9047182 0.6810695 0.04242563
          [,8]      [,9]      [,10]
row2 -1.126114 0.6642672 -0.4309565
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]       [,3]       [,4]     [,5]      [,6]     [,7]
row5 -0.245879 -0.4338672 -0.2791935 -0.9499476 0.517149 0.6345234 1.141094
          [,8]      [,9]    [,10]    [,11]      [,12]      [,13]    [,14]
row5 -1.549513 0.7644368 1.269362 0.976527 -0.6813235 -0.4764313 1.272764
         [,15]     [,16]      [,17]       [,18]     [,19]      [,20]
row5 0.5419792 0.1797683 -0.8627815 -0.09948667 0.2475852 -0.6108475
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600002f18000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb1561c10ed"
 [2] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb14c9b63c5"
 [3] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb16db341cd"
 [4] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb113a531ff"
 [5] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb14275666c"
 [6] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb129975e8a"
 [7] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb110bfcb5b"
 [8] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb11fbfcbf4"
 [9] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb168e71074"
[10] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb119e9657a"
[11] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb12a0539e0"
[12] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb13d1ab6ad"
[13] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb124cf3732"
[14] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb12030c67f"
[15] "/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests/BMbbb16237cc5b"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600002f0c1e0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600002f0c1e0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.19-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600002f0c1e0>
> rowMedians(tmp)
  [1]  0.466330525 -0.039913084  0.448656568  0.177717900  0.191257123
  [6] -0.334402539  0.036152879 -0.475220661  0.005952281  0.096171920
 [11] -0.033658484 -0.353201204 -0.193675250  0.214921597  0.454393136
 [16]  0.366601288  0.167392862  0.258732957 -0.006171213  0.763216985
 [21]  0.132379527  0.407821235  0.643958659  0.498124090 -0.052524173
 [26] -0.245515288 -0.045144214 -0.155529244  0.234066888  0.528928638
 [31] -0.318301160 -0.183391307 -0.322565194  0.013674889  0.232015641
 [36]  0.018884755  0.141362998  0.403746268  0.049955204  0.202295716
 [41]  0.194034670  0.071684526 -0.083659655 -0.005762049 -0.004694837
 [46] -0.031145734  0.140664997 -0.283965026  0.258278841  0.074297873
 [51] -0.147346184 -0.148893530 -0.206287367  0.881414878 -0.445363738
 [56] -0.091122484 -0.600080670  0.038250528  0.136171949 -0.038779427
 [61] -0.227278134  0.935473263  0.136010347 -0.205293050  0.131498707
 [66]  0.104560502 -0.027248824 -0.034553693 -0.333687879 -0.589163558
 [71]  0.386237528 -0.161291666  0.116181198 -0.167303025 -0.302630240
 [76]  0.079486910 -0.091235031 -0.414042397 -0.011230110 -0.004920209
 [81] -0.080742373 -0.248117241  0.463399845  0.201486384  0.641297290
 [86] -0.166715705  0.029697323 -0.081706698  0.197141520 -0.430613232
 [91] -0.155518642  0.229777268 -0.053518757  0.174291905 -0.590713201
 [96]  0.567705602 -0.512017633  0.322249725  0.423240590  0.350016789
[101] -0.093434326  0.574157594  0.097604420 -0.181576188 -0.097559378
[106]  0.649990683  0.043515728 -0.129158372  0.269321488 -0.170416753
[111] -0.417170439  0.949194975 -0.330332467  0.333276087 -0.434680338
[116]  0.440061786  0.593092099  0.089002658 -0.157139837 -0.068996089
[121]  0.209612081 -0.381064301  0.122420727 -0.100220376  0.469521496
[126] -0.118565327 -0.174239761  0.300981652 -0.379420356  0.456043639
[131] -0.039843361 -0.196873753  0.483101009  0.411576566 -0.186016049
[136]  0.440317913  0.136225756 -0.489681595 -0.199333470  0.588508090
[141] -0.319693164  0.183723151 -0.058867735  0.094843300  0.102578054
[146] -0.056382364  0.164149221 -0.522921146 -0.316470886 -0.103727735
[151]  0.611803736 -0.102841024 -0.522110111  0.578065196  0.281223980
[156] -0.119833559 -0.361188042  0.048452411 -0.498933784  0.416100076
[161] -0.354359215 -0.456099195  0.320944133  0.313944364  0.586650341
[166]  0.326610802  0.284034644 -0.026820357  0.321332745  0.079758765
[171] -0.170449173 -0.105301875  0.370827985  0.089059848  0.169563330
[176] -0.309644686  0.119528255  0.653864648  0.065861735 -0.338406632
[181]  0.304117021  0.185452417  0.228120980 -0.130569414  0.176198770
[186]  0.474202633  0.293344902  0.302763667  0.159775781 -0.013228307
[191] -0.119358268 -0.767502313 -0.267102775 -0.200479723  0.562968881
[196]  0.444346469  0.287537573 -0.060231941 -0.126137844 -0.037395417
[201] -0.092834959 -0.386269908 -0.219470692 -0.103297737 -0.127008314
[206]  0.625960963  0.798923760 -0.618040943  0.095495293  0.003980665
[211] -0.240759848  0.074868913  0.396313482  0.193488087 -0.012636533
[216]  0.331159918 -0.040916973  0.052534674 -0.144505035 -0.243717520
[221] -0.640053172  0.048315914 -0.064545728  0.010843534 -0.163673218
[226] -0.095302477  0.330399285 -0.493327108  0.167433083  0.065563065
> 
> proc.time()
   user  system elapsed 
  5.233  18.924  31.181 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001ec8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001ec8000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001ec8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600001ec8000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600001ecc000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ecc000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600001ecc000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ecc000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001ecc000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ecc180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ecc180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001ecc180>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001ecc180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001ecc180>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600001ecc180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001ecc180>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600001ecc180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001ecc180>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ef01e0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600001ef01e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ef01e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ef01e0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFiled85e36efaf45" "BufferedMatrixFiled85e59bbc6a9"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFiled85e36efaf45" "BufferedMatrixFiled85e59bbc6a9"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ee44e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ee44e0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001ee44e0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001ee44e0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600001ee44e0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600001ee44e0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ed4000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001ed4000>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001ed4000>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600001ed4000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001ed4180>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001ed4180>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.615   0.228   0.904 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.602   0.141   0.745 

Example timings