Back to Multiple platform build/check report for BioC 3.18:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-04-17 11:36:24 -0400 (Wed, 17 Apr 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.3.3 (2024-02-29) -- "Angel Food Cake" 4676
palomino4Windows Server 2022 Datacenterx644.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" 4414
merida1macOS 12.7.1 Montereyx86_644.3.3 (2024-02-29) -- "Angel Food Cake" 4437
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1971/2266HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.12.2  (landing page)
Joshua David Campbell
Snapshot Date: 2024-04-15 14:05:01 -0400 (Mon, 15 Apr 2024)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_18
git_last_commit: 14c92130
git_last_commit_date: 2024-02-05 14:45:10 -0400 (Mon, 05 Feb 2024)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.1 Ventura / arm64see weekly results here

CHECK results for singleCellTK on nebbiolo2


To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.12.2
Command: /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings singleCellTK_2.12.2.tar.gz
StartedAt: 2024-04-16 04:01:27 -0400 (Tue, 16 Apr 2024)
EndedAt: 2024-04-16 04:17:01 -0400 (Tue, 16 Apr 2024)
EllapsedTime: 933.9 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings singleCellTK_2.12.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/singleCellTK.Rcheck’
* using R version 4.3.3 (2024-02-29)
* using platform: x86_64-pc-linux-gnu (64-bit)
* R was compiled by
    gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
    GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
* running under: Ubuntu 22.04.4 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.12.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.9Mb
  sub-directories of 1Mb or more:
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 34.606  0.456  35.059
runSeuratSCTransform     29.793  0.180  29.976
plotScDblFinderResults   28.735  0.644  29.377
runDoubletFinder         28.700  0.196  28.896
runScDblFinder           20.776  0.140  20.916
importExampleData        14.866  1.572  16.960
plotBatchCorrCompare     10.011  0.335  10.340
plotScdsHybridResults     9.242  0.108   8.463
plotBcdsResults           7.876  0.264   7.272
plotDecontXResults        7.494  0.168   7.661
plotEmptyDropsResults     6.654  0.012   6.666
plotEmptyDropsScatter     6.596  0.044   6.640
runDecontX                6.490  0.104   6.594
runUMAP                   6.308  0.084   6.389
runEmptyDrops             6.331  0.000   6.331
plotCxdsResults           6.181  0.100   6.278
plotUMAP                  5.996  0.028   6.021
detectCellOutlier         5.193  0.168   5.362
plotTSCANClusterDEG       5.216  0.032   5.248
getEnrichRResult          0.607  0.028  12.251
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘singleCellTK.Rmd’ using ‘UTF-8’... OK
 OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.18-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.18-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.3.3 (2024-02-29) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.138   0.042   0.169 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.3.3 (2024-02-29) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 22 | SKIP 0 | PASS 223 ]

[ FAIL 0 | WARN 22 | SKIP 0 | PASS 223 ]
> 
> proc.time()
   user  system elapsed 
274.741   8.153 286.919 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.002
SEG0.0020.0000.002
calcEffectSizes0.2510.0000.251
combineSCE1.8990.0551.955
computeZScore0.2490.0130.261
convertSCEToSeurat3.9460.1194.067
convertSeuratToSCE0.4640.0080.472
dedupRowNames0.0520.0000.052
detectCellOutlier5.1930.1685.362
diffAbundanceFET0.0560.0000.056
discreteColorPalette0.0050.0000.006
distinctColors0.0020.0000.002
downSampleCells0.6510.0520.702
downSampleDepth0.5140.0040.518
expData-ANY-character-method0.2800.0000.281
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3150.0000.315
expData-set0.3130.0120.324
expData0.3200.0160.336
expDataNames-ANY-method0.2660.0040.271
expDataNames0.2730.0000.274
expDeleteDataTag0.0340.0000.034
expSetDataTag0.0240.0000.025
expTaggedData0.0260.0000.026
exportSCE0.0230.0000.022
exportSCEtoAnnData0.0980.0000.097
exportSCEtoFlatFile0.0970.0040.101
featureIndex0.0340.0040.039
generateSimulatedData0.0510.0000.052
getBiomarker0.0520.0040.056
getDEGTopTable0.8070.0120.820
getDiffAbundanceResults0.0440.0040.049
getEnrichRResult 0.607 0.02812.251
getFindMarkerTopTable3.4000.0523.452
getMSigDBTable0.0030.0000.003
getPathwayResultNames0.0230.0000.022
getSampleSummaryStatsTable0.3000.0120.311
getSoupX000
getTSCANResults1.730.041.77
getTopHVG0.9990.0201.019
importAnnData0.0020.0000.001
importBUStools0.2580.0000.257
importCellRanger1.0870.0281.115
importCellRangerV2Sample0.2370.0000.237
importCellRangerV3Sample0.3700.0000.371
importDropEst0.2910.0000.291
importExampleData14.866 1.57216.960
importGeneSetsFromCollection0.6850.0760.761
importGeneSetsFromGMT0.0620.0040.066
importGeneSetsFromList0.1160.0000.117
importGeneSetsFromMSigDB3.4680.2643.732
importMitoGeneSet0.0480.0040.052
importOptimus0.0010.0000.002
importSEQC0.2290.0200.249
importSTARsolo0.2500.0160.266
iterateSimulations0.3750.0360.412
listSampleSummaryStatsTables0.3760.0120.388
mergeSCEColData0.4440.0200.465
mouseBrainSubsetSCE0.0370.0000.037
msigdb_table0.0010.0000.001
plotBarcodeRankDropsResults0.790.060.85
plotBarcodeRankScatter0.8030.0280.832
plotBatchCorrCompare10.011 0.33510.340
plotBatchVariance0.3180.0080.326
plotBcdsResults7.8760.2647.272
plotBubble1.0580.0041.062
plotClusterAbundance0.8610.0000.861
plotCxdsResults6.1810.1006.278
plotDEGHeatmap2.7980.0762.875
plotDEGRegression3.5380.0843.617
plotDEGViolin4.2470.1044.344
plotDEGVolcano0.9970.0161.013
plotDecontXResults7.4940.1687.661
plotDimRed0.270.000.27
plotDoubletFinderResults34.606 0.45635.059
plotEmptyDropsResults6.6540.0126.666
plotEmptyDropsScatter6.5960.0446.640
plotFindMarkerHeatmap4.1200.0444.165
plotMASTThresholdGenes1.5020.0321.533
plotPCA0.4560.0000.456
plotPathway0.7920.0040.797
plotRunPerCellQCResults2.1550.0202.176
plotSCEBarAssayData0.1760.0030.180
plotSCEBarColData0.1410.0000.141
plotSCEBatchFeatureMean0.2210.0000.221
plotSCEDensity0.2490.0040.253
plotSCEDensityAssayData0.1620.0000.162
plotSCEDensityColData0.2040.0000.204
plotSCEDimReduceColData0.720.000.72
plotSCEDimReduceFeatures0.3940.0000.394
plotSCEHeatmap0.6130.0110.625
plotSCEScatter0.3960.0040.400
plotSCEViolin0.2350.0080.243
plotSCEViolinAssayData0.2410.0040.245
plotSCEViolinColData0.2240.0080.232
plotScDblFinderResults28.735 0.64429.377
plotScanpyDotPlot0.0210.0040.025
plotScanpyEmbedding0.0240.0000.024
plotScanpyHVG0.0230.0000.023
plotScanpyHeatmap0.0230.0000.023
plotScanpyMarkerGenes0.0240.0000.024
plotScanpyMarkerGenesDotPlot0.0190.0040.024
plotScanpyMarkerGenesHeatmap0.0250.0000.024
plotScanpyMarkerGenesMatrixPlot0.0240.0000.023
plotScanpyMarkerGenesViolin0.0240.0000.024
plotScanpyMatrixPlot0.0240.0000.023
plotScanpyPCA0.0230.0000.024
plotScanpyPCAGeneRanking0.0250.0000.025
plotScanpyPCAVariance0.0260.0000.026
plotScanpyViolin0.0260.0000.026
plotScdsHybridResults9.2420.1088.463
plotScrubletResults0.0230.0000.023
plotSeuratElbow0.0230.0000.023
plotSeuratHVG0.0240.0000.024
plotSeuratJackStraw0.0240.0000.024
plotSeuratReduction0.0240.0000.024
plotSoupXResults000
plotTSCANClusterDEG5.2160.0325.248
plotTSCANClusterPseudo2.3340.0282.362
plotTSCANDimReduceFeatures2.1850.0082.193
plotTSCANPseudotimeGenes2.0800.0082.087
plotTSCANPseudotimeHeatmap2.1970.0362.232
plotTSCANResults2.1080.0042.113
plotTSNE0.4720.0000.472
plotTopHVG0.3900.0000.389
plotUMAP5.9960.0286.021
readSingleCellMatrix0.0050.0000.004
reportCellQC0.1630.0000.163
reportDropletQC0.0230.0000.023
reportQCTool0.1660.0000.166
retrieveSCEIndex0.0290.0000.029
runBBKNN000
runBarcodeRankDrops0.3910.0000.391
runBcds2.2620.0281.423
runCellQC0.1670.0040.170
runClusterSummaryMetrics0.6960.0040.701
runComBatSeq0.4280.0000.428
runCxds0.4380.0080.446
runCxdsBcdsHybrid2.3210.0041.447
runDEAnalysis0.6650.0000.664
runDecontX6.4900.1046.594
runDimReduce0.4230.0000.423
runDoubletFinder28.700 0.19628.896
runDropletQC0.0240.0000.023
runEmptyDrops6.3310.0006.331
runEnrichR0.5510.0172.376
runFastMNN1.6650.0561.721
runFeatureSelection0.2190.0000.218
runFindMarker3.3030.0123.315
runGSVA0.7670.0080.775
runHarmony0.0340.0000.034
runKMeans0.4070.0000.407
runLimmaBC0.0730.0000.072
runMNNCorrect0.4970.0000.497
runModelGeneVar0.4430.0080.452
runNormalization2.3400.0162.357
runPerCellQC0.5020.0000.502
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder20.776 0.14020.916
runScanpyFindClusters0.0200.0040.024
runScanpyFindHVG0.0230.0000.023
runScanpyFindMarkers0.0230.0000.023
runScanpyNormalizeData0.1830.0080.191
runScanpyPCA0.0240.0000.024
runScanpyScaleData0.0230.0000.024
runScanpyTSNE0.0240.0000.024
runScanpyUMAP0.0240.0000.024
runScranSNN0.7310.0240.755
runScrublet0.0240.0000.024
runSeuratFindClusters0.0250.0000.025
runSeuratFindHVG2.2940.1602.454
runSeuratHeatmap0.0240.0000.024
runSeuratICA0.0230.0000.023
runSeuratJackStraw0.0240.0000.024
runSeuratNormalizeData0.0240.0000.024
runSeuratPCA0.0230.0000.023
runSeuratSCTransform29.793 0.18029.976
runSeuratScaleData0.0200.0040.024
runSeuratUMAP0.0230.0000.023
runSingleR0.0340.0000.034
runSoupX000
runTSCAN1.3850.0001.384
runTSCANClusterDEAnalysis1.5270.0041.531
runTSCANDEG1.4970.0201.517
runTSNE0.8840.0000.884
runUMAP6.3080.0846.389
runVAM0.5040.0000.504
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.2690.0000.269
scaterCPM0.1200.0160.136
scaterPCA0.4060.0080.414
scaterlogNormCounts0.2440.0040.247
sce0.0230.0000.023
sctkListGeneSetCollections0.0720.0000.072
sctkPythonInstallConda0.0010.0000.001
sctkPythonInstallVirtualEnv000
selectSCTKConda0.0010.0000.001
selectSCTKVirtualEnvironment000
setRowNames0.0810.0000.081
setSCTKDisplayRow0.3920.0000.392
singleCellTK000
subDiffEx0.5080.0040.512
subsetSCECols0.1630.0000.163
subsetSCERows0.3790.0000.379
summarizeSCE0.0640.0000.064
trimCounts0.2060.0000.206