| Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-04-17 11:36:00 -0400 (Wed, 17 Apr 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4676 |
| palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" | 4414 |
| merida1 | macOS 12.7.1 Monterey | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4437 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 885/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| goSorensen 1.4.0 (landing page) Pablo Flores
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.1 Monterey / x86_64 | OK | OK | TIMEOUT | OK | |||||||||
| kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
|
To the developers/maintainers of the goSorensen package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/goSorensen.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: goSorensen |
| Version: 1.4.0 |
| Command: /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:goSorensen.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings goSorensen_1.4.0.tar.gz |
| StartedAt: 2024-04-15 23:25:43 -0400 (Mon, 15 Apr 2024) |
| EndedAt: 2024-04-15 23:58:28 -0400 (Mon, 15 Apr 2024) |
| EllapsedTime: 1964.6 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: goSorensen.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:goSorensen.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings goSorensen_1.4.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/goSorensen.Rcheck’
* using R version 4.3.3 (2024-02-29)
* using platform: x86_64-pc-linux-gnu (64-bit)
* R was compiled by
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
* running under: Ubuntu 22.04.4 LTS
* using session charset: UTF-8
* checking for file ‘goSorensen/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘goSorensen’ version ‘1.4.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘goSorensen’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
hclustThreshold 805.813 7.011 829.732
buildEnrichTable 16.173 0.836 17.016
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘test_gosorensen_funcs.R’
Running ‘test_nonsense_genes.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
‘goSorensen_Introduction.Rmd’ using ‘UTF-8’... OK
OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: OK
goSorensen.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD INSTALL goSorensen ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.18-bioc/R/site-library’ * installing *source* package ‘goSorensen’ ... ** using staged installation ** R ** data ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (goSorensen)
goSorensen.Rcheck/tests/test_gosorensen_funcs.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(goSorensen)
Attaching package: 'goSorensen'
The following object is masked from 'package:utils':
upgrade
>
> # A contingency table of GO terms mutual enrichment
> # between gene lists "atlas" and "sanger":
> data(tab_atlas.sanger_BP3)
> tab_atlas.sanger_BP3
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 38 31
FALSE 2 452
> ?tab_atlas.sanger_BP3
tab_atlas.sanger_BP3 package:goSorensen R Documentation
_C_r_o_s_s-_t_a_b_u_l_a_t_i_o_n _o_f _e_n_r_i_c_h_e_d _G_O _i_t_e_m_s _a_t _l_e_v_e_l _3 _o_f _o_n_t_o_l_o_g_y _B_P _i_n _t_w_o
_g_e_n_e _l_i_s_t_s
_D_e_s_c_r_i_p_t_i_o_n:
From the "Cancer gene list" of Bushman Lab, a collection of gene
lists related with cancer, for gene lists "Atlas" and "Sanger",
this dataset is the cross-tabulation of all GO items of ontology
BP at level 3 which are: Enriched in both lists, enriched in
sanger but not in atlas, non-enriched in sanger but enriched in
atlas and non-enriched in both lists. Take it just as an
illustrative example, non up-to-date for changes in the gene lists
or changes in the GO. The present version was obtained under
Bioconductor 3.17.
_U_s_a_g_e:
data(tab_atlas.sanger_BP3)
_F_o_r_m_a_t:
An object of class "table" representing a 2x2 contingency table.
_S_o_u_r_c_e:
<http://www.bushmanlab.org/links/genelists>
> class(tab_atlas.sanger_BP3)
[1] "table"
>
> # Sorensen-Dice dissimilarity on this contingency table:
> ?dSorensen
dSorensen package:goSorensen R Documentation
_C_o_m_p_u_t_a_t_i_o_n _o_f _t_h_e _S_o_r_e_n_s_e_n-_D_i_c_e _d_i_s_s_i_m_i_l_a_r_i_t_y
_D_e_s_c_r_i_p_t_i_o_n:
Computation of the Sorensen-Dice dissimilarity
_U_s_a_g_e:
dSorensen(x, ...)
## S3 method for class 'table'
dSorensen(x, check.table = TRUE, ...)
## S3 method for class 'matrix'
dSorensen(x, check.table = TRUE, ...)
## S3 method for class 'numeric'
dSorensen(x, check.table = TRUE, ...)
## S3 method for class 'character'
dSorensen(x, y, check.table = TRUE, ...)
## S3 method for class 'list'
dSorensen(x, check.table = TRUE, ...)
## S3 method for class 'tableList'
dSorensen(x, check.table = TRUE, ...)
_A_r_g_u_m_e_n_t_s:
x: either an object of class "table", "matrix" or "numeric"
representing a 2x2 contingency table, or a "character" vector
(a set of gene identifiers) or "list" or "tableList" object.
See the details section for more information.
...: extra parameters for function 'buildEnrichTable'.
check.table: Boolean. If TRUE (default), argument 'x' is checked to
adequately represent a 2x2 contingency table, by means of
function 'nice2x2Table'.
y: an object of class "character" representing a vector of valid
gene identifiers.
_D_e_t_a_i_l_s:
Given a 2x2 arrangement of frequencies (either implemented as a
"table", a "matrix" or a "numeric" object):
n11 n01
n10 n00,
this function computes the Sorensen-Dice dissimilarity
{n_10 + n_01}/{2 n_11 + n_10 + n_01}.
The subindex '11' corresponds to those GO items enriched in both
lists, '01' to items enriched in the second list but not in the
first one, '10' to items enriched in the first list but not
enriched in the second one and '00' corresponds to those GO items
non enriched in both gene lists, i.e., to the double negatives, a
value which is ignored in the computations.
In the "numeric" interface, if 'length(x) >= 3', the values are
interpreted as
(n_11, n_01, n_10, n_00), always in this order and discarding
extra values if necessary. The result is correct, regardless the
frequencies being absolute or relative.
If 'x' is an object of class "character", then 'x' (and 'y') must
represent two "character" vectors of valid gene identifiers. Then
the dissimilarity between lists 'x' and 'y' is computed, after
internally summarizing them as a 2x2 contingency table of joint
enrichment. This last operation is performed by function
'buildEnrichTable' and "valid gene identifiers" stands for the
coherency of these gene identifiers with the arguments
'geneUniverse' and 'orgPackg' of 'buildEnrichTable', passed by the
ellipsis argument '...' in 'dSorensen'.
If 'x' is an object of class "list", the argument must be a list
of "character" vectors, each one representing a gene list
(character identifiers). Then, all pairwise dissimilarities
between these gene lists are computed.
If 'x' is an object of class "tableList", the Sorensen-Dice
dissimilarity is computed over each one of these tables. Given k
gene lists (i.e. "character" vectors of gene identifiers) l1, l2,
..., lk, an object of class "tableList" (typically constructed by
a call to function 'buildEnrichTable') is a list of lists of
contingency tables t(i,j) generated from each pair of gene lists i
and j, with the following structure:
$l2
$l2$l1$t(2,1)
$l3
$l3$l1$t(3,1), $l3$l2$t(3,2)
...
$lk
$lk$l1$t(k,1), $lk$l2$t(k,2), ..., $lk$l(k-1)t(k,k-1)
_V_a_l_u_e:
In the "table", "matrix", "numeric" and "character" interfaces,
the value of the Sorensen-Dice dissimilarity. In the "list" and
"tableList" interfaces, the symmetric matrix of all pairwise
Sorensen-Dice dissimilarities.
_M_e_t_h_o_d_s (_b_y _c_l_a_s_s):
• 'dSorensen(table)': S3 method for class "table"
• 'dSorensen(matrix)': S3 method for class "matrix"
• 'dSorensen(numeric)': S3 method for class "numeric"
• 'dSorensen(character)': S3 method for class "character"
• 'dSorensen(list)': S3 method for class "list"
• 'dSorensen(tableList)': S3 method for class "tableList"
_S_e_e _A_l_s_o:
'buildEnrichTable' for constructing contingency tables of mutual
enrichment, 'nice2x2Table' for checking contingency tables
validity, 'seSorensen' for computing the standard error of the
dissimilarity, 'duppSorensen' for the upper limit of a one-sided
confidence interval of the dissimilarity, 'equivTestSorensen' for
an equivalence test.
_E_x_a_m_p_l_e_s:
# Gene lists 'atlas' and 'sanger' in 'allOncoGeneLists' dataset. Table of joint enrichment
# of GO items in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
tab_atlas.sanger_BP3
?tab_atlas.sanger_BP3
dSorensen(tab_atlas.sanger_BP3)
# Table represented as a vector:
conti4 <- c(56, 1, 30, 471)
dSorensen(conti4)
# or as a plain matrix:
dSorensen(matrix(conti4, nrow = 2))
# This function is also appropriate for proportions:
dSorensen(conti4 / sum(conti4))
conti3 <- c(56, 1, 30)
dSorensen(conti3)
# Sorensen-Dice dissimilarity from scratch, directly from two gene lists:
# (These examples may be considerably time consuming due to many enrichment
# tests to build the contingency tables of mutual enrichment)
# data(pbtGeneLists)
# ?pbtGeneLists
# data(humanEntrezIDs)
# (Time consuming, building the table requires many enrichment tests:)
# dSorensen(pbtGeneLists[[2]], pbtGeneLists[[4]],
# onto = "CC", GOLevel = 3,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
# Essentially, the above code makes the same as:
# tab.IRITD3vsKT1 <- buildEnrichTable(pbtGeneLists[[2]], pbtGeneLists[[4]],
# onto = "CC", GOLevel = 3,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
# dSorensen(tab.IRITD3vsKT1)
# (Quite time consuming, all pairwise dissimilarities:)
# dSorensen(pbtGeneLists,
# onto = "CC", GOLevel = 3,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> dSorensen(tab_atlas.sanger_BP3)
[1] 0.3027523
>
> # Standard error of this Sorensen-Dice dissimilarity estimate:
> ?seSorensen
seSorensen package:goSorensen R Documentation
_S_t_a_n_d_a_r_d _e_r_r_o_r _o_f _t_h_e _s_a_m_p_l_e _S_o_r_e_n_s_e_n-_D_i_c_e _d_i_s_s_i_m_i_l_a_r_i_t_y, _a_s_y_m_p_t_o_t_i_c
_a_p_p_r_o_a_c_h
_D_e_s_c_r_i_p_t_i_o_n:
Standard error of the sample Sorensen-Dice dissimilarity,
asymptotic approach
_U_s_a_g_e:
seSorensen(x, ...)
## S3 method for class 'table'
seSorensen(x, check.table = TRUE, ...)
## S3 method for class 'matrix'
seSorensen(x, check.table = TRUE, ...)
## S3 method for class 'numeric'
seSorensen(x, check.table = TRUE, ...)
## S3 method for class 'character'
seSorensen(x, y, check.table = TRUE, ...)
## S3 method for class 'list'
seSorensen(x, check.table = TRUE, ...)
## S3 method for class 'tableList'
seSorensen(x, check.table = TRUE, ...)
_A_r_g_u_m_e_n_t_s:
x: either an object of class "table", "matrix" or "numeric"
representing a 2x2 contingency table, or a "character" (a set
of gene identifiers) or "list" or "tableList" object. See the
details section for more information.
...: extra parameters for function 'buildEnrichTable'.
check.table: Boolean. If TRUE (default), argument 'x' is checked to
adequately represent a 2x2 contingency table. This checking
is performed by means of function 'nice2x2Table'.
y: an object of class "character" representing a vector of gene
identifiers.
_D_e_t_a_i_l_s:
This function computes the standard error estimate of the sample
Sorensen-Dice dissimilarity, given a 2x2 arrangement of
frequencies (either implemented as a "table", a "matrix" or a
"numeric" object):
n11 n10
n01 n00,
The subindex '11' corresponds to those GO items enriched in both
lists, '01' to items enriched in the second list but not in the
first one, '10' to items enriched in the first list but not
enriched in the second one and '00' corresponds to those GO items
non enriched in both gene lists, i.e., to the double negatives, a
value which is ignored in the computations.
In the "numeric" interface, if 'length(x) >= 3', the values are
interpreted as
(n_11, n_01, n_10), always in this order.
If 'x' is an object of class "character", then 'x' (and 'y') must
represent two "character" vectors of valid gene identifiers. Then
the standard error for the dissimilarity between lists 'x' and 'y'
is computed, after internally summarizing them as a 2x2
contingency table of joint enrichment. This last operation is
performed by function 'buildEnrichTable' and "valid gene
identifiers" stands for the coherency of these gene identifiers
with the arguments 'geneUniverse' and 'orgPackg' of
'buildEnrichTable', passed by the ellipsis argument '...' in
'seSorensen'.
In the "list" interface, the argument must be a list of
"character" vectors, each one representing a gene list (character
identifiers). Then, all pairwise standard errors of the
dissimilarity between these gene lists are computed.
If 'x' is an object of class "tableList", the standard error of
the Sorensen-Dice dissimilarity estimate is computed over each one
of these tables. Given k gene lists (i.e. "character" vectors of
gene identifiers) l1, l2, ..., lk, an object of class "tableList"
(typically constructed by a call to function 'buildEnrichTable')
is a list of lists of contingency tables t(i,j) generated from
each pair of gene lists i and j, with the following structure:
$l2
$l2$l1$t(2,1)
$l3
$l3$l1$t(3,1), $l3$l2$t(3,2)
...
$lk
$lk$l1$t(k,1), $lk$l2$t(k,2), ..., $lk$l(k-1)t(k,k-1)
_V_a_l_u_e:
In the "table", "matrix", "numeric" and "character" interfaces,
the value of the standard error of the Sorensen-Dice dissimilarity
estimate. In the "list" and "tableList" interfaces, the symmetric
matrix of all standard error dissimilarity estimates.
_M_e_t_h_o_d_s (_b_y _c_l_a_s_s):
• 'seSorensen(table)': S3 method for class "table"
• 'seSorensen(matrix)': S3 method for class "matrix"
• 'seSorensen(numeric)': S3 method for class "numeric"
• 'seSorensen(character)': S3 method for class "character"
• 'seSorensen(list)': S3 method for class "list"
• 'seSorensen(tableList)': S3 method for class "tableList"
_S_e_e _A_l_s_o:
'buildEnrichTable' for constructing contingency tables of mutual
enrichment, 'nice2x2Table' for checking the validity of enrichment
contingency tables, 'dSorensen' for computing the Sorensen-Dice
dissimilarity, 'duppSorensen' for the upper limit of a one-sided
confidence interval of the dissimilarity, 'equivTestSorensen' for
an equivalence test.
_E_x_a_m_p_l_e_s:
# Gene lists 'atlas' and 'sanger' in 'Cangenes' dataset. Table of joint enrichment
# of GO items in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
tab_atlas.sanger_BP3
dSorensen(tab_atlas.sanger_BP3)
seSorensen(tab_atlas.sanger_BP3)
# Contingency table as a numeric vector:
seSorensen(c(56, 1, 30, 47))
seSorensen(c(56, 1, 30))
# (These examples may be considerably time consuming due to many enrichment
# tests to build the contingency tables of mutual enrichment)
# ?pbtGeneLists
# Standard error of the sample Sorensen-Dice dissimilarity, directly from
# two gene lists, from scratch:
# seSorensen(pbtGeneLists[[2]], pbtGeneLists[[4]],
# onto = "CC", GOLevel = 5,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
# Essentially, the above code makes the same as:
# tab.IRITD3vsKT1 <- buildEnrichTable(pbtGeneLists[[2]], pbtGeneLists[[4]],
# onto = "CC", GOLevel = 5,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
# tab.IRITD3vsKT1
# seSorensen(tab.IRITD3vsKT1)
# All pairwise standard errors (quite time consuming):
# seSorensen(pbtGeneLists,
# onto = "CC", GOLevel = 5,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> seSorensen(tab_atlas.sanger_BP3)
[1] 0.05058655
>
> # Upper 95% confidence limit for the Sorensen-Dice dissimilarity:
> ?duppSorensen
duppSorensen package:goSorensen R Documentation
_U_p_p_e_r _l_i_m_i_t _o_f _a _o_n_e-_s_i_d_e_d _c_o_n_f_i_d_e_n_c_e _i_n_t_e_r_v_a_l (_0, _d_U_p_p] _f_o_r _t_h_e
_S_o_r_e_n_s_e_n-_D_i_c_e _d_i_s_s_i_m_i_l_a_r_i_t_y
_D_e_s_c_r_i_p_t_i_o_n:
Upper limit of a one-sided confidence interval (0, dUpp] for the
Sorensen-Dice dissimilarity
_U_s_a_g_e:
duppSorensen(x, ...)
## S3 method for class 'table'
duppSorensen(
x,
dis = dSorensen.table(x, check.table = FALSE),
se = seSorensen.table(x, check.table = FALSE),
conf.level = 0.95,
z.conf.level = qnorm(1 - conf.level),
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'matrix'
duppSorensen(
x,
dis = dSorensen.matrix(x, check.table = FALSE),
se = seSorensen.matrix(x, check.table = FALSE),
conf.level = 0.95,
z.conf.level = qnorm(1 - conf.level),
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'numeric'
duppSorensen(
x,
dis = dSorensen.numeric(x, check.table = FALSE),
se = seSorensen.numeric(x, check.table = FALSE),
conf.level = 0.95,
z.conf.level = qnorm(1 - conf.level),
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'character'
duppSorensen(
x,
y,
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'list'
duppSorensen(
x,
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'tableList'
duppSorensen(
x,
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
_A_r_g_u_m_e_n_t_s:
x: either an object of class "table", "matrix" or "numeric"
representing a 2x2 contingency table, or a "character" (a set
of gene identifiers) or "list" or "tableList" object. See the
details section for more information.
...: additional arguments for function 'buildEnrichTable'.
dis: Sorensen-Dice dissimilarity value. Only required to speed
computations if this value is known in advance.
se: standard error estimate of the sample dissimilarity. Only
required to speed computations if this value is known in
advance.
conf.level: confidence level of the one-sided confidence interval, a
numeric value between 0 and 1.
z.conf.level: standard normal (or bootstrap, see arguments below)
distribution quantile at the '1 - conf.level' value. Only
required to speed computations if this value is known in
advance. Then, the argument 'conf.level' is ignored.
boot: boolean. If TRUE, 'z.conf.level' is computed by means of a
bootstrap approach instead of the asymptotic normal approach.
Defaults to FALSE.
nboot: numeric, number of initially planned bootstrap replicates.
Ignored if 'boot == FALSE'. Defaults to 10000.
check.table: Boolean. If TRUE (default), argument 'x' is checked to
adequately represent a 2x2 contingency table. This checking
is performed by means of function 'nice2x2Table'.
y: an object of class "character" representing a vector of gene
identifiers.
_D_e_t_a_i_l_s:
This function computes the upper limit of a one-sided confidence
interval for the Sorensen-Dice dissimilarity, given a 2x2
arrangement of frequencies (either implemented as a "table", a
"matrix" or a "numeric" object):
n11 n01
n10 n00,
The subindex '11' corresponds to those GO items enriched in both
lists, '01' to items enriched in the second list but not in the
first one, '10' to items enriched in the first list but not
enriched in the second one and '00' corresponds to those GO items
non enriched in both gene lists, i.e., to the double negatives, a
value which is ignored in the computations, except if 'boot ==
TRUE'.
In the "numeric" interface, if 'length(x) >= 4', the values are
interpreted as
(n_11, n_01, n_10, n_00), always in this order and discarding
extra values if necessary.
Arguments 'dis', 'se' and 'z.conf.level' are not required. If
known in advance (e.g., as a consequence of previous computations
with the same data), providing its value may speed the
computations.
By default, 'z.conf.level' corresponds to the 1 - conf.level
quantile of a standard normal N(0,1) distribution, as the
studentized statistic (^d - d) / ^se) is asymptotically N(0,1). In
the studentized statistic, d stands for the "true" Sorensen-Dice
dissimilarity, ^d to its sample estimate and ^se for the estimate
of its standard error. In fact, the normal is its limiting
distribution but, for finite samples, the true sampling
distribution may present departures from normality (mainly with
some inflation in the left tail). The bootstrap method provides a
better approximation to the true sampling distribution. In the
bootstrap approach, 'nboot' new bootstrap contingency tables are
generated from a multinomial distribution with parameters 'size ='
n11 + n01 + n10 + n00 and probabilities %. Sometimes, some of
these generated tables may present so low frequencies of
enrichment that make them unable for Sorensen-Dice computations.
As a consequence, the number of effective bootstrap samples may be
lower than the number of initially planned bootstrap samples
'nboot'. Computing in advance the value of argument 'z.conf.level'
may be a way to cope with these departures from normality, by
means of a more adequate quantile function. Alternatively, if
'boot == TRUE', a bootstrap quantile is internally computed.
If 'x' is an object of class "character", then 'x' (and 'y') must
represent two "character" vectors of valid gene identifiers. Then
the confidence interval for the dissimilarity between lists 'x'
and 'y' is computed, after internally summarizing them as a 2x2
contingency table of joint enrichment. This last operation is
performed by function 'buildEnrichTable' and "valid gene
identifiers" stands for the coherency of these gene identifiers
with the arguments 'geneUniverse' and 'orgPackg' of
'buildEnrichTable', passed by the ellipsis argument '...' in
'dUppSorensen'.
In the "list" interface, the argument must be a list of
"character" vectors, each one representing a gene list (character
identifiers). Then, all pairwise upper limits of the dissimilarity
between these gene lists are computed.
In the "tableList" interface, the upper limits are computed over
each one of these tables. Given gene lists (i.e. "character"
vectors of gene identifiers) l1, l2, ..., lk, an object of class
"tableList" (typically constructed by a call to function
'buildEnrichTable') is a list of lists of contingency tables
t(i,j) generated from each pair of gene lists i and j, with the
following structure:
$l2
$l2$l1$t(2,1)
$l3
$l3$l1$t(3,1), $l3$l2$t(3,2)
...
$lk
$lk$l1$t(k,1), $lk$l2$t(k,2), ..., $lk$l(k-1)t(k,k-1)
_V_a_l_u_e:
In the "table", "matrix", "numeric" and "character" interfaces,
the value of the Upper limit of the confidence interval for the
Sorensen-Dice dissimilarity. When 'boot == TRUE', this result also
haves a an extra attribute: "eff.nboot" which corresponds to the
number of effective bootstrap replicats, see the details section.
In the "list" and "tableList" interfaces, the result is the
symmetric matrix of all pairwise upper limits.
_M_e_t_h_o_d_s (_b_y _c_l_a_s_s):
• 'duppSorensen(table)': S3 method for class "table"
• 'duppSorensen(matrix)': S3 method for class "matrix"
• 'duppSorensen(numeric)': S3 method for class "numeric"
• 'duppSorensen(character)': S3 method for class "character"
• 'duppSorensen(list)': S3 method for class "list"
• 'duppSorensen(tableList)': S3 method for class "tableList"
_S_e_e _A_l_s_o:
'buildEnrichTable' for constructing contingency tables of mutual
enrichment, 'nice2x2Table' for checking contingency tables
validity, 'dSorensen' for computing the Sorensen-Dice
dissimilarity, 'seSorensen' for computing the standard error of
the dissimilarity, 'equivTestSorensen' for an equivalence test.
_E_x_a_m_p_l_e_s:
# Gene lists 'atlas' and 'sanger' in 'Cangenes' dataset. Table of joint enrichment
# of GO items in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
?tab_atlas.sanger_BP3
duppSorensen(tab_atlas.sanger_BP3)
dSorensen(tab_atlas.sanger_BP3) + qnorm(0.95) * seSorensen(tab_atlas.sanger_BP3)
# Using the bootstrap approximation instead of the normal approximation to
# the sampling distribution of (^d - d) / se(^d):
duppSorensen(tab_atlas.sanger_BP3, boot = TRUE)
# Contingency table as a numeric vector:
duppSorensen(c(56, 1, 30, 47))
duppSorensen(c(56, 1, 30))
# Upper confidence limit for the Sorensen-Dice dissimilarity, from scratch,
# directly from two gene lists:
# (These examples may be considerably time consuming due to many enrichment
# tests to build the contingency tables of mutual enrichment)
# data(pbtGeneLists)
# ?pbtGeneLists
# data(humanEntrezIDs)
# duppSorensen(pbtGeneLists[[2]], pbtGeneLists[[4]],
# onto = "CC", GOLevel = 5,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
# Even more time consuming (all pairwise values):
# duppSorensen(pbtGeneLists,
# onto = "CC", GOLevel = 5,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> duppSorensen(tab_atlas.sanger_BP3)
[1] 0.3859598
> # This confidence limit is based on an assimptotic normal N(0,1)
> # approximation to the distribution of (dSampl - d) / se, where
> # dSampl stands for the sample dissimilarity, d for the true dissimilarity
> # and se for the sample dissimilarity standard error estimate.
>
> # Upper confidence limit but using a Student's t instead of a N(0,1)
> # (just as an example, not recommended -no theoretical justification)
> df <- sum(tab_atlas.sanger_BP3[1:3]) - 2
> duppSorensen(tab_atlas.sanger_BP3, z.conf.level = qt(1 - 0.95, df))
[1] 0.3870921
>
> # Upper confidence limit but using a bootstrap approximation
> # to the sampling distribution, instead of a N(0,1)
> set.seed(123)
> duppSorensen(tab_atlas.sanger_BP3, boot = TRUE)
[1] 0.3941622
attr(,"eff.nboot")
[1] 10000
>
> # Some computations on diverse data structures:
> badConti <- as.table(matrix(c(501, 27, 36, 12, 43, 15, 0, 0, 0),
+ nrow = 3, ncol = 3,
+ dimnames = list(c("a1","a2","a3"),
+ c("b1", "b2","b3"))))
> tryCatch(nice2x2Table(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(badConti): Not a 2x2 table>
>
> incompleteConti <- badConti[1,1:min(2,ncol(badConti)), drop = FALSE]
> incompleteConti
b1 b2
a1 501 12
> tryCatch(nice2x2Table(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(incompleteConti): Not a 2x2 table>
>
> contiAsVector <- c(32, 21, 81, 1439)
> nice2x2Table(contiAsVector)
[1] TRUE
> contiAsVector.mat <- matrix(contiAsVector, nrow = 2)
> contiAsVector.mat
[,1] [,2]
[1,] 32 81
[2,] 21 1439
> contiAsVectorLen3 <- c(32, 21, 81)
> nice2x2Table(contiAsVectorLen3)
[1] TRUE
>
> tryCatch(dSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
>
> # Apparently, the next order works fine, but returns a wrong value!
> dSorensen(badConti, check.table = FALSE)
[1] 0.05915493
>
> tryCatch(dSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> dSorensen(contiAsVector)
[1] 0.6144578
> dSorensen(contiAsVector.mat)
[1] 0.6144578
> dSorensen(contiAsVectorLen3)
[1] 0.6144578
> dSorensen(contiAsVectorLen3, check.table = FALSE)
[1] 0.6144578
> dSorensen(c(0,0,0,45))
[1] NaN
>
> tryCatch(seSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(seSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> seSorensen(contiAsVector)
[1] 0.04818012
> seSorensen(contiAsVector.mat)
[1] 0.04818012
> seSorensen(contiAsVectorLen3)
[1] 0.04818012
> seSorensen(contiAsVectorLen3, check.table = FALSE)
[1] 0.04818012
> tryCatch(seSorensen(contiAsVectorLen3, check.table = "not"), error = function(e) {return(e)})
<simpleError in seSorensen.numeric(contiAsVectorLen3, check.table = "not"): Argument 'check.table' must be logical>
> seSorensen(c(0,0,0,45))
[1] NaN
>
> tryCatch(duppSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(duppSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> duppSorensen(contiAsVector)
[1] 0.6937071
> duppSorensen(contiAsVector.mat)
[1] 0.6937071
> set.seed(123)
> duppSorensen(contiAsVector, boot = TRUE)
[1] 0.6922658
attr(,"eff.nboot")
[1] 10000
> set.seed(123)
> duppSorensen(contiAsVector.mat, boot = TRUE)
[1] 0.6922658
attr(,"eff.nboot")
[1] 10000
> duppSorensen(contiAsVectorLen3)
[1] 0.6937071
> # Bootstrapping requires full contingency tables (4 values)
> set.seed(123)
> tryCatch(duppSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)})
<simpleError in duppSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies>
> duppSorensen(c(0,0,0,45))
[1] NaN
>
> # Equivalence test, H0: d >= d0 vs H1: d < d0 (d0 = 0.4444)
> ?equivTestSorensen
equivTestSorensen package:goSorensen R Documentation
_E_q_u_i_v_a_l_e_n_c_e _t_e_s_t _b_a_s_e_d _o_n _t_h_e _S_o_r_e_n_s_e_n-_D_i_c_e _d_i_s_s_i_m_i_l_a_r_i_t_y
_D_e_s_c_r_i_p_t_i_o_n:
Equivalence test based on the Sorensen-Dice dissimilarity,
computed either by an asymptotic normal approach or by a bootstrap
approach.
_U_s_a_g_e:
equivTestSorensen(x, ...)
## S3 method for class 'table'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'matrix'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'numeric'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'character'
equivTestSorensen(
x,
y,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'list'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
## S3 method for class 'tableList'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...
)
_A_r_g_u_m_e_n_t_s:
x: either an object of class "table", "matrix", "numeric",
"character", "list" or "tableList". See the details section
for more information.
...: extra parameters for function 'buildEnrichTable'.
d0: equivalence threshold for the Sorensen-Dice dissimilarity, d.
The null hypothesis states that d >= d0, i.e., inequivalence
between the compared gene lists and the alternative that d <
d0, i.e., equivalence or dissimilarity irrelevance (up to a
level d0).
conf.level: confidence level of the one-sided confidence interval, a
value between 0 and 1.
boot: boolean. If TRUE, the confidence interval and the test
p-value are computed by means of a bootstrap approach instead
of the asymptotic normal approach. Defaults to FALSE.
nboot: numeric, number of initially planned bootstrap replicates.
Ignored if 'boot == FALSE'. Defaults to 10000.
check.table: Boolean. If TRUE (default), argument 'x' is checked to
adequately represent a 2x2 contingency table (or an aggregate
of them) or gene lists producing a correct table. This
checking is performed by means of function 'nice2x2Table'.
y: an object of class "character" representing a list of gene
identifiers.
_D_e_t_a_i_l_s:
This function computes either the normal asymptotic or the
bootstrap equivalence test based on the Sorensen-Dice
dissimilarity, given a 2x2 arrangement of frequencies (either
implemented as a "table", a "matrix" or a "numeric" object):
n11 n10
n01 n00,
The subindex '11' corresponds to those GO items enriched in both
lists, '01' to items enriched in the second list but not in the
first one, '10' to items enriched in the first list but not
enriched in the second one and '00' corresponds to those GO items
non enriched in both gene lists, i.e., to the double negatives, a
value which is ignored in the computations.
In the "numeric" interface, if 'length(x) >= 4', the values are
interpreted as
(n_11, n_01, n_10, n_00), always in this order and discarding
extra values if necessary.
If 'x' is an object of class "character", then 'x' (and 'y') must
represent two "character" vectors of valid gene identifiers. Then
the equivalence test is performed between 'x' and 'y', after
internally summarizing them as a 2x2 contingency table of joint
enrichment. This last operation is performed by function
'buildEnrichTable' and "valid gene identifiers" stands for the
coherency of these gene identifiers with the arguments
'geneUniverse' and 'orgPackg' of 'buildEnrichTable', passed by the
ellipsis argument '...' in 'equivTestSorensen'.
If 'x' is an object of class "list", each of its elements must be
a "character" vector of gene identifiers. Then all pairwise
equivalence tests are performed between these gene lists.
Class "tableList" corresponds to objects representing all mutual
enrichment contingency tables generated in a pairwise fashion:
Given gene lists l1, l2, ..., lk, an object of class "tableList"
(typically constructed by a call to function 'buildEnrichTable')
is a list of lists of contingency tables tij generated from each
pair of gene lists i and j, with the following structure:
$l2
$l2$l1$t21
$l3
$l3$l1$t31, $l3$l2$t32
...
$lk$l1$tk1, $lk$l2$tk2, ..., $lk$l(k-1)tk(k-1)
If 'x' is an object of class "tableList", the test is performed
over each one of these tables.
The test is based on the fact that the studentized statistic (^d -
d) / ^se is approximately distributed as a standard normal. ^d
stands for the sample Sorensen-Dice dissimilarity, d for its true
(unknown) value and ^se for the estimate of its standard error.
This result is asymptotically correct, but the true distribution
of the studentized statistic is not exactly normal for finite
samples, with a heavier left tail than expected under the Gaussian
model, which may produce some type I error inflation. The
bootstrap method provides a better approximation to this
distribution. In the bootstrap approach, 'nboot' new bootstrap
contingency tables are generated from a multinomial distribution
with parameters 'size =' (n11 + n01 + n10 + n00) and probabilities
%. Sometimes, some of these generated tables may present so low
frequencies of enrichment that make them unable for Sorensen-Dice
computations. As a consequence, the number of effective bootstrap
samples may be lower than the number of initially planned ones,
'nboot', but our simulation studies concluded that this makes the
test more conservative, less prone to reject a truly false null
hypothesis of inequivalence, but in any case protects from
inflating the type I error.
In a bootstrap test result, use 'getNboot' to access the number of
initially planned bootstrap replicates and 'getEffNboot' to access
the number of finally effective bootstrap replicates.
_V_a_l_u_e:
For all interfaces (except for the "list" and "tableList"
interfaces) the result is a list of class "equivSDhtest" which
inherits from "htest", with the following components:
statistic the value of the studentized statistic (dSorensen(x) -
d0) / seSorensen(x)
p.value the p-value of the test
conf.int the one-sided confidence interval (0, dUpp]
estimate the Sorensen dissimilarity estimate, dSorensen(x)
null.value the value of d0
stderr the standard error of the Sorensen dissimilarity estimate,
seSorensen(x), used as denominator in the studentized
statistic
alternative a character string describing the alternative
hypothesis
method a character string describing the test
data.name a character string giving the names of the data
enrichTab the 2x2 contingency table of joint enrichment whereby
the test was based
For the "list" and "tableList" interfaces, the result is an
"equivSDhtestList", a list of objects with all pairwise
comparisons, each one being an object of "equivSDhtest" class.
_M_e_t_h_o_d_s (_b_y _c_l_a_s_s):
• 'equivTestSorensen(table)': S3 method for class "table"
• 'equivTestSorensen(matrix)': S3 method for class "matrix"
• 'equivTestSorensen(numeric)': S3 method for class "numeric"
• 'equivTestSorensen(character)': S3 method for class
"character"
• 'equivTestSorensen(list)': S3 method for class "list"
• 'equivTestSorensen(tableList)': S3 method for class
"tableList"
_S_e_e _A_l_s_o:
'nice2x2Table' for checking and reformatting data, 'dSorensen' for
computing the Sorensen-Dice dissimilarity, 'seSorensen' for
computing the standard error of the dissimilarity, 'duppSorensen'
for the upper limit of a one-sided confidence interval of the
dissimilarity. 'getTable', 'getPvalue', 'getUpper', 'getSE',
'getNboot' and 'getEffNboot' for accessing specific fields in the
result of these testing functions. 'update' for updating the
result of these testing functions with alternative equivalence
limits, confidence levels or to convert a normal result in a
bootstrap result or the reverse.
_E_x_a_m_p_l_e_s:
# Gene lists 'atlas' and 'sanger' in 'allOncoGeneLists' dataset. Table of joint enrichment
# of GO items in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
tab_atlas.sanger_BP3
equivTestSorensen(tab_atlas.sanger_BP3)
# Bootstrap test:
equivTestSorensen(tab_atlas.sanger_BP3, boot = TRUE)
# Equivalence tests from scratch, directly from gene lists:
# (These examples may be considerably time consuming due to many enrichment
# tests to build the contingency tables of mutual enrichment)
# ?pbtGeneLists
# Gene universe:
# data(humanEntrezIDs)
# equivTestSorensen(pbtGeneLists[["IRITD3"]], pbtGeneLists[["IRITD5"]],
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
# onto = "CC", GOLevel = 5)
# Bootstrap instead of normal approximation test:
# equivTestSorensen(pbtGeneLists[["IRITD3"]], pbtGeneLists[["IRITD5"]],
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
# onto = "CC", GOLevel = 5,
# boot = TRUE)
# Essentially, the above code makes:
# IRITD3vs5.CC5 <- buildEnrichTable(pbtGeneLists[["IRITD3"]], pbtGeneLists[["IRITD5"]],
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
# onto = "CC", GOLevel = 5)
# IRITD3vs5.CC5
# equivTestSorensen(IRITD3vs5.CC5)
# equivTestSorensen(IRITD3vs5.CC5, boot = TRUE)
# (Note that building first the contingency table may be advantageous to save time!)
# All pairwise equivalence tests:
# equivTestSorensen(pbtGeneLists,
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
# onto = "CC", GOLevel = 5)
# Equivalence test on a contingency table represented as a numeric vector:
equivTestSorensen(c(56, 1, 30, 47))
equivTestSorensen(c(56, 1, 30, 47), boot = TRUE)
equivTestSorensen(c(56, 1, 30))
# Error: all frequencies are needed for bootstrap:
try(equivTestSorensen(c(56, 1, 30), boot = TRUE), TRUE)
> equiv.atlas.sanger <- equivTestSorensen(tab_atlas.sanger_BP3)
> equiv.atlas.sanger
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab_atlas.sanger_BP3
(d - d0) / se = -2.801, p-value = 0.002547
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3859598
sample estimates:
Sorensen dissimilarity
0.3027523
attr(,"se")
standard error
0.05058655
> getTable(equiv.atlas.sanger)
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 38 31
FALSE 2 452
> getPvalue(equiv.atlas.sanger)
p-value
0.002547349
>
> tryCatch(equivTestSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(equivTestSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> equivTestSorensen(contiAsVector)
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: contiAsVector
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
> equivTestSorensen(contiAsVector.mat)
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: contiAsVector.mat
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
> set.seed(123)
> equivTestSorensen(contiAsVector.mat, boot = TRUE)
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: contiAsVector.mat
(d - d0) / se = 3.5287, p-value = 0.9996
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6922658
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
> equivTestSorensen(contiAsVectorLen3)
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: contiAsVectorLen3
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
>
> tryCatch(equivTestSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)})
<simpleError in equivTestSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies>
>
> equivTestSorensen(c(0,0,0,45))
No test performed due non finite (d - d0) / se statistic
data: c(0, 0, 0, 45)
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
>
> # Sorensen-Dice computations from scratch, directly from gene lists
> data(allOncoGeneLists)
> ?allOncoGeneLists
allOncoGeneLists package:goSorensen R Documentation
_7 _g_e_n_e _l_i_s_t_s _p_o_s_s_i_b_l_y _r_e_l_a_t_e_d _w_i_t_h _c_a_n_c_e_r
_D_e_s_c_r_i_p_t_i_o_n:
An object of class "list" of length 7. Each one of its elements is
a "character" vector of gene identifiers. Only gene lists of
length almost 100 were taken from their source web. Take these
lists just as an illustrative example, they are not automatically
updated.
_U_s_a_g_e:
data(allOncoGeneLists)
_F_o_r_m_a_t:
An object of class "list" of length 7. Each one of its elements is
a "character" vector of gene identifiers.
_S_o_u_r_c_e:
<http://www.bushmanlab.org/links/genelists>
> data(humanEntrezIDs)
> # First, the mutual GO node enrichment tables are built, then computations
> # proceed from these contingency tables.
> # Building the contingency tables is a slow process (many enrichment tests)
> normTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
+ listNames = c("atlas", "sanger"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> normTest
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -7.3786, p-value = 8e-14
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3641617
sample estimates:
Sorensen dissimilarity
0.3411306
attr(,"se")
standard error
0.01400189
>
> # To perform a bootstrap test from scratch would be even slower:
> # set.seed(123)
> # bootTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # boot = TRUE,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # bootTest
>
> # It is much faster to upgrade 'normTest' to be a bootstrap test:
> set.seed(123)
> bootTest <- upgrade(normTest, boot = TRUE)
> bootTest
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -7.3786, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3642245
sample estimates:
Sorensen dissimilarity
0.3411306
attr(,"se")
standard error
0.01400189
> # To know the number of planned bootstrap replicates:
> getNboot(bootTest)
[1] 10000
> # To know the number of valid bootstrap replicates:
> getEffNboot(bootTest)
[1] 10000
>
> # There are similar methods for dSorensen, seSorensen, duppSorensen, etc. to
> # compute directly from a pair of gene lists.
> # They are quite slow for the same reason as before (many enrichment tests).
> # dSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # seSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # set.seed(123)
> # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # boot = TRUE,
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # etc.
>
> # To build the contingency table first and then compute from it, may be a more flexible
> # and saving time strategy, in general:
> ?buildEnrichTable
buildEnrichTable package:goSorensen R Documentation
_C_r_e_a_t_e_s _a _2_x_2 _e_n_r_i_c_h_m_e_n_t _c_o_n_t_i_n_g_e_n_c_y _t_a_b_l_e _f_r_o_m _t_w_o _g_e_n_e _l_i_s_t_s, _o_r _a_l_l
_p_a_i_r_w_i_s_e _c_o_n_t_i_n_g_e_n_c_y _t_a_b_l_e_s _f_o_r _a "_l_i_s_t" _o_f _g_e_n_e _l_i_s_t_s.
_D_e_s_c_r_i_p_t_i_o_n:
Creates a 2x2 enrichment contingency table from two gene lists, or
all pairwise contingency tables for a "list" of gene lists.
_U_s_a_g_e:
buildEnrichTable(x, ...)
## Default S3 method:
buildEnrichTable(
x,
y,
listNames = c("gene.list1", "gene.list2"),
check.table = TRUE,
geneUniverse,
orgPackg,
onto,
GOLevel,
restricted = FALSE,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
...
)
## S3 method for class 'character'
buildEnrichTable(
x,
y,
listNames = c("gene.list1", "gene.list2"),
check.table = TRUE,
geneUniverse,
orgPackg,
onto,
GOLevel,
restricted = FALSE,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
...
)
## S3 method for class 'list'
buildEnrichTable(
x,
check.table = TRUE,
geneUniverse,
orgPackg,
onto,
GOLevel,
restricted = FALSE,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
parallel = FALSE,
nOfCores = min(detectCores() - 1, length(x) - 1),
...
)
_A_r_g_u_m_e_n_t_s:
x: either an object of class "character" (or coerzable to
"character") representing a vector of gene identifiers or an
object of class "list". In this second case, each element of
the list must be a "character" vector of gene identifiers.
Then, all pairwise contingency tables between these gene
lists are built.
...: Additional parameters for internal use (not used for the
moment)
y: an object of class "character" (or coerzable to "character")
representing a vector of gene identifiers.
listNames: a character(2) with the gene lists names originating the
cross-tabulated enrichment frequencies.
check.table: Logical The resulting table must be checked. Defaults to
TRUE.
geneUniverse: character vector containing all genes from where
geneLists have been extracted.
orgPackg: A string with the name of the annotation package.
onto: string describing the ontology. Either "BP", "MF" or "CC".
GOLevel: An integer, the GO ontology level.
restricted: Logical variable to decide how tabulation of GOIDs is
performed. Defaults to FALSE. See the details section.
pAdjustMeth: string describing the adjust method, either "BH", "BY" or
"Bonf", defaults to 'BH'.
pvalCutoff: A numeric value. Defaults to 0.01.
qvalCutoff: A numeric value. Defaults to 0.05.
parallel: Logical. Defaults to FALSE but put it at TRUE for parallel
computation.
nOfCores: Number of cores for parallel computations. Only in "list"
interface.
_D_e_t_a_i_l_s:
Unrestricted tabulation crosses _all_ GO Terms located at the
level indicated by `GOLev` with the two GOIDs lists. Restricted
tabulation crosses only terms from the selected GO level that are
_common to ancestor terms of either list_. That is, if one term in
the selected GO level is not an ancestor of at least one of the
gene list most specific GO terms it is excluded from the GO
Level's terms because it is impossible that it appears as being
enriched.
_V_a_l_u_e:
in the "character" interface, an object of class "table" is
returned. It represents a 2x2 contingency table interpretable as
the cross-tabulation of the enriched GO items in two gene lists:
"Number of enriched items in list 1 (TRUE, FALSE)" x "Number of
enriched items in list 2 (TRUE, FALSE)". In the "list" interface,
the result is an object of class "tableList" with all pairwise
tables. Class "tableList" corresponds to objects representing all
mutual enrichment contingency tables generated in a pairwise
fashion: Given gene lists (i.e. "character" vectors of gene
identifiers) l1, l2, ..., lk, an object of class "tableList" is a
list of lists of contingency tables t(i,j) generated from each
pair of gene lists i and j, with the following structure:
$l2
$l2$l1$t(2,1)
$l3
$l3$l1$t(3,1), $l3$l2$t(3,2)
...
$lk
$lk$l1$t(k,1), $lk$l2$t(k,2), ..., $lk$l(k-1)t(K,k-1)
_M_e_t_h_o_d_s (_b_y _c_l_a_s_s):
• 'buildEnrichTable(default)': S3 default method
• 'buildEnrichTable(character)': S3 method for class
"character"
• 'buildEnrichTable(list)': S3 method for class "list"
_E_x_a_m_p_l_e_s:
# Gene universe:
data(humanEntrezIDs)
# Gene lists to be explored for enrichment:
data(allOncoGeneLists)
?allOncoGeneLists
# Table of mutual GO node enrichment between gene lists Vogelstein and sanger,
# for ontology MF at GO level 6 (only first 50 genes, to improve speed).
vog.VS.sang <- buildEnrichTable(allOncoGeneLists[["Vogelstein"]][seq_len(50)],
allOncoGeneLists[["sanger"]][seq_len(50)],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "MF", GOLevel = 6, listNames = c("Vogelstein", "sanger"))
vog.VS.sang
# This is an inadequate table for Sorensen-Dice computations:
equivTestSorensen(vog.VS.sang)
# This sometimes happens, due too small gene lists or due to poor incidence
# of enrichment.
#
# In fact, the complete gene lists generate a much interesting contingency table:
# vog.VS.sang <- buildEnrichTable(allOncoGeneLists[["Vogelstein"]],
# allOncoGeneLists[["sanger"]],
# geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
# onto = "MF", GOLevel = 6, listNames = c("Vogelstein", "sanger"))
# vog.VS.sang
# equivTestSorensen(vog.VS.sang)
> tab <- buildEnrichTable(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
+ listNames = c("atlas", "sanger"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
>
> tab
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 507 480
FALSE 45 9116
>
> # (Here, an obvious faster possibility would be to recover the enrichment contingency
> # table from the previous normal test result:)
> tab <- getTable(normTest)
> tab
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 507 480
FALSE 45 9116
>
> tst <- equivTestSorensen(tab)
> tst
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -7.3786, p-value = 8e-14
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3641617
sample estimates:
Sorensen dissimilarity
0.3411306
attr(,"se")
standard error
0.01400189
> set.seed(123)
> bootTst <- equivTestSorensen(tab, boot = TRUE)
> bootTst
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -7.3786, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3642245
sample estimates:
Sorensen dissimilarity
0.3411306
attr(,"se")
standard error
0.01400189
>
> dSorensen(tab)
[1] 0.3411306
> seSorensen(tab)
[1] 0.01400189
> # or:
> getDissimilarity(tst)
Sorensen dissimilarity
0.3411306
attr(,"se")
standard error
0.01400189
>
> duppSorensen(tab)
[1] 0.3641617
> getUpper(tst)
dUpper
0.3641617
>
> set.seed(123)
> duppSorensen(tab, boot = TRUE)
[1] 0.3642245
attr(,"eff.nboot")
[1] 10000
> getUpper(bootTst)
dUpper
0.3642245
>
> # To perform from scratch all pairwise tests (or other Sorensen-Dice computations)
> # is even much slower. For example, all pairwise...
> # Dissimilarities:
> # # allPairDiss <- dSorensen(allOncoGeneLists,
> # # onto = "BP", GOLevel = 5,
> # # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # # allPairDiss
> #
> # # Still time consuming but faster: build all tables computing in parallel:
> # allPairDiss <- dSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
> # parallel = TRUE)
> # allPairDiss
>
> # Standard errors:
> # seSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # Upper confidence interval limits:
> # duppSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # All pairwise asymptotic normal tests:
> # allTests <- equivTestSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # getPvalue(allTests, simplify = FALSE)
> # getPvalue(allTests)
> # p.adjust(getPvalue(allTests), method = "holm")
> # To perform all pairwise bootstrap tests from scratch is (slightly)
> # even more time consuming:
> # set.seed(123)
> # allBootTests <- equivTestSorensen(allOncoGeneLists,
> # boot = TRUE,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # Not all bootstrap replicates may conduct to finite statistics:
> # getNboot(allBootTests)
>
> # Given the normal tests (object 'allTests'), it is much faster to upgrade
> # it to have the bootstrap tests:
> # set.seed(123)
> # allBootTests <- upgrade(allTests, boot = TRUE)
> # getPvalue(allBootTests, simplify = FALSE)
>
> # Again, the faster and more flexible possibility may be:
> # 1) First, build all pairwise enrichment contingency tables (slow first step):
> # allTabsBP.4 <- buildEnrichTable(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # allTabsBP.4
>
> # Better, directly use the dataset available at this package, goSorensen:
> data(allTabsBP.4)
> allTabsBP.4
$cangenes
$cangenes$atlas
Enriched in atlas
Enriched in cangenes TRUE FALSE
TRUE 0 0
FALSE 420 3383
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
$cis
$cis$atlas
Enriched in atlas
Enriched in cis TRUE FALSE
TRUE 80 3
FALSE 340 3380
$cis$cangenes
Enriched in cangenes
Enriched in cis TRUE FALSE
TRUE 0 83
FALSE 0 3720
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
$miscellaneous
$miscellaneous$atlas
Enriched in atlas
Enriched in miscellaneous TRUE FALSE
TRUE 198 21
FALSE 222 3362
$miscellaneous$cangenes
Enriched in cangenes
Enriched in miscellaneous TRUE FALSE
TRUE 0 219
FALSE 0 3584
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
$miscellaneous$cis
Enriched in cis
Enriched in miscellaneous TRUE FALSE
TRUE 70 149
FALSE 13 3571
$sanger
$sanger$atlas
Enriched in atlas
Enriched in sanger TRUE FALSE
TRUE 209 24
FALSE 211 3359
$sanger$cangenes
Enriched in cangenes
Enriched in sanger TRUE FALSE
TRUE 0 233
FALSE 0 3570
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
$sanger$cis
Enriched in cis
Enriched in sanger TRUE FALSE
TRUE 68 165
FALSE 15 3555
$sanger$miscellaneous
Enriched in miscellaneous
Enriched in sanger TRUE FALSE
TRUE 151 82
FALSE 68 3502
$Vogelstein
$Vogelstein$atlas
Enriched in atlas
Enriched in Vogelstein TRUE FALSE
TRUE 220 32
FALSE 200 3351
$Vogelstein$cangenes
Enriched in cangenes
Enriched in Vogelstein TRUE FALSE
TRUE 0 252
FALSE 0 3551
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
$Vogelstein$cis
Enriched in cis
Enriched in Vogelstein TRUE FALSE
TRUE 68 184
FALSE 15 3536
$Vogelstein$miscellaneous
Enriched in miscellaneous
Enriched in Vogelstein TRUE FALSE
TRUE 156 96
FALSE 63 3488
$Vogelstein$sanger
Enriched in sanger
Enriched in Vogelstein TRUE FALSE
TRUE 217 35
FALSE 16 3535
$waldman
$waldman$atlas
Enriched in atlas
Enriched in waldman TRUE FALSE
TRUE 264 39
FALSE 156 3344
$waldman$cangenes
Enriched in cangenes
Enriched in waldman TRUE FALSE
TRUE 0 303
FALSE 0 3500
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
$waldman$cis
Enriched in cis
Enriched in waldman TRUE FALSE
TRUE 77 226
FALSE 6 3494
$waldman$miscellaneous
Enriched in miscellaneous
Enriched in waldman TRUE FALSE
TRUE 203 100
FALSE 16 3484
$waldman$sanger
Enriched in sanger
Enriched in waldman TRUE FALSE
TRUE 181 122
FALSE 52 3448
$waldman$Vogelstein
Enriched in Vogelstein
Enriched in waldman TRUE FALSE
TRUE 192 111
FALSE 60 3440
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 4
attr(,"class")
[1] "tableList" "list"
> class(allTabsBP.4)
[1] "tableList" "list"
> # 2) Then perform all required computatios from these enrichment contingency tables...
> # All pairwise tests:
> allTests <- equivTestSorensen(allTabsBP.4)
> allTests
$cangenes
$cangenes$atlas
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$cis
$cis$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 8.807, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.7262589
sample estimates:
Sorensen dissimilarity
0.6819085
attr(,"se")
standard error
0.02696312
$cis$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$miscellaneous
$miscellaneous$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -2.8406, p-value = 0.002252
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.4174355
sample estimates:
Sorensen dissimilarity
0.3802817
attr(,"se")
standard error
0.02258792
$miscellaneous$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$miscellaneous$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 2.5804, p-value = 0.9951
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.5950555
sample estimates:
Sorensen dissimilarity
0.5364238
attr(,"se")
standard error
0.03564549
$sanger
$sanger$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -3.8566, p-value = 5.748e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3959452
sample estimates:
Sorensen dissimilarity
0.3598775
attr(,"se")
standard error
0.02192764
$sanger$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$sanger$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 3.5799, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6271347
sample estimates:
Sorensen dissimilarity
0.5696203
attr(,"se")
standard error
0.03496631
$sanger$miscellaneous
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -4.3974, p-value = 5.479e-06
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3739718
sample estimates:
Sorensen dissimilarity
0.3318584
attr(,"se")
standard error
0.02560313
$Vogelstein
$Vogelstein$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -4.6585, p-value = 1.593e-06
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3802668
sample estimates:
Sorensen dissimilarity
0.3452381
attr(,"se")
standard error
0.02129595
$Vogelstein$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$Vogelstein$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 4.4076, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6498536
sample estimates:
Sorensen dissimilarity
0.5940299
attr(,"se")
standard error
0.03393844
$Vogelstein$miscellaneous
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -4.2339, p-value = 1.148e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3790962
sample estimates:
Sorensen dissimilarity
0.3375796
attr(,"se")
standard error
0.02524032
$Vogelstein$sanger
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -23.128, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.1292852
sample estimates:
Sorensen dissimilarity
0.1051546
attr(,"se")
standard error
0.01467036
$waldman
$waldman$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -9.3848, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3003348
sample estimates:
Sorensen dissimilarity
0.2697095
attr(,"se")
standard error
0.01861884
$waldman$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$waldman$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 4.9573, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6529946
sample estimates:
Sorensen dissimilarity
0.6010363
attr(,"se")
standard error
0.03158842
$waldman$miscellaneous
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -11.029, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.2553636
sample estimates:
Sorensen dissimilarity
0.2222222
attr(,"se")
standard error
0.02014852
$waldman$sanger
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -5.1402, p-value = 1.372e-07
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3629683
sample estimates:
Sorensen dissimilarity
0.3246269
attr(,"se")
standard error
0.02330993
$waldman$Vogelstein
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -6.0739, p-value = 6.243e-10
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.345029
sample estimates:
Sorensen dissimilarity
0.3081081
attr(,"se")
standard error
0.02244631
attr(,"class")
[1] "equivSDhtestList" "list"
> class(allTests)
[1] "equivSDhtestList" "list"
> set.seed(123)
> allBootTests <- equivTestSorensen(allTabsBP.4, boot = TRUE)
> allBootTests
$cangenes
$cangenes$atlas
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$cis
$cis$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 8.807, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.725535
sample estimates:
Sorensen dissimilarity
0.6819085
attr(,"se")
standard error
0.02696312
$cis$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$miscellaneous
$miscellaneous$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -2.8406, p-value = 0.004
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.418077
sample estimates:
Sorensen dissimilarity
0.3802817
attr(,"se")
standard error
0.02258792
$miscellaneous$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$miscellaneous$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 2.5804, p-value = 0.9933
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.595412
sample estimates:
Sorensen dissimilarity
0.5364238
attr(,"se")
standard error
0.03564549
$sanger
$sanger$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -3.8566, p-value = 3e-04
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3960626
sample estimates:
Sorensen dissimilarity
0.3598775
attr(,"se")
standard error
0.02192764
$sanger$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$sanger$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 3.5799, p-value = 0.9996
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6278561
sample estimates:
Sorensen dissimilarity
0.5696203
attr(,"se")
standard error
0.03496631
$sanger$miscellaneous
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -4.3974, p-value = 2e-04
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3765829
sample estimates:
Sorensen dissimilarity
0.3318584
attr(,"se")
standard error
0.02560313
$Vogelstein
$Vogelstein$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -4.6585, p-value = 2e-04
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3809169
sample estimates:
Sorensen dissimilarity
0.3452381
attr(,"se")
standard error
0.02129595
$Vogelstein$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$Vogelstein$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 4.4076, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6489965
sample estimates:
Sorensen dissimilarity
0.5940299
attr(,"se")
standard error
0.03393844
$Vogelstein$miscellaneous
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -4.2339, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3796934
sample estimates:
Sorensen dissimilarity
0.3375796
attr(,"se")
standard error
0.02524032
$Vogelstein$sanger
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -23.128, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.1312585
sample estimates:
Sorensen dissimilarity
0.1051546
attr(,"se")
standard error
0.01467036
$waldman
$waldman$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -9.3848, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3006583
sample estimates:
Sorensen dissimilarity
0.2697095
attr(,"se")
standard error
0.01861884
$waldman$cangenes
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = Inf, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
1
attr(,"se")
standard error
0
$waldman$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 4.9573, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6525683
sample estimates:
Sorensen dissimilarity
0.6010363
attr(,"se")
standard error
0.03158842
$waldman$miscellaneous
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -11.029, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.2577849
sample estimates:
Sorensen dissimilarity
0.2222222
attr(,"se")
standard error
0.02014852
$waldman$sanger
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -5.1402, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3639666
sample estimates:
Sorensen dissimilarity
0.3246269
attr(,"se")
standard error
0.02330993
$waldman$Vogelstein
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -6.0739, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3470915
sample estimates:
Sorensen dissimilarity
0.3081081
attr(,"se")
standard error
0.02244631
attr(,"class")
[1] "equivSDhtestList" "list"
> class(allBootTests)
[1] "equivSDhtestList" "list"
> getPvalue(allBootTests, simplify = FALSE)
atlas cangenes cis miscellaneous sanger Vogelstein
atlas 0.00000000 NaN 1.0000000 0.00399960 0.00029997 0.00019998
cangenes NaN 0 NaN NaN NaN NaN
cis 1.00000000 NaN 0.0000000 0.99330067 0.99960004 1.00000000
miscellaneous 0.00399960 NaN 0.9933007 0.00000000 0.00019998 0.00009999
sanger 0.00029997 NaN 0.9996000 0.00019998 0.00000000 0.00009999
Vogelstein 0.00019998 NaN 1.0000000 0.00009999 0.00009999 0.00000000
waldman 0.00009999 NaN 1.0000000 0.00009999 0.00009999 0.00009999
waldman
atlas 9.999e-05
cangenes NaN
cis 1.000e+00
miscellaneous 9.999e-05
sanger 9.999e-05
Vogelstein 9.999e-05
waldman 0.000e+00
> getEffNboot(allBootTests)
cangenes.atlas cis.atlas cis.cangenes
NaN 10000 NaN
miscellaneous.atlas miscellaneous.cangenes miscellaneous.cis
10000 NaN 10000
sanger.atlas sanger.cangenes sanger.cis
10000 NaN 10000
sanger.miscellaneous Vogelstein.atlas Vogelstein.cangenes
10000 10000 NaN
Vogelstein.cis Vogelstein.miscellaneous Vogelstein.sanger
10000 10000 10000
waldman.atlas waldman.cangenes waldman.cis
10000 NaN 10000
waldman.miscellaneous waldman.sanger waldman.Vogelstein
10000 10000 10000
>
> # To adjust for testing multiplicity:
> p.adjust(getPvalue(allBootTests), method = "holm")
cangenes.atlas.p-value cis.atlas.p-value
NaN 1.00000000
cis.cangenes.p-value miscellaneous.atlas.p-value
NaN 0.02399760
miscellaneous.cangenes.p-value miscellaneous.cis.p-value
NaN 1.00000000
sanger.atlas.p-value sanger.cangenes.p-value
0.00209979 NaN
sanger.cis.p-value sanger.miscellaneous.p-value
1.00000000 0.00179982
Vogelstein.atlas.p-value Vogelstein.cangenes.p-value
0.00179982 NaN
Vogelstein.cis.p-value Vogelstein.miscellaneous.p-value
1.00000000 0.00149985
Vogelstein.sanger.p-value waldman.atlas.p-value
0.00149985 0.00149985
waldman.cangenes.p-value waldman.cis.p-value
NaN 1.00000000
waldman.miscellaneous.p-value waldman.sanger.p-value
0.00149985 0.00149985
waldman.Vogelstein.p-value
0.00149985
>
> # If only partial statistics are desired:
> dSorensen(allTabsBP.4)
atlas cangenes cis miscellaneous sanger Vogelstein
atlas 0.0000000 1 0.6819085 0.3802817 0.3598775 0.3452381
cangenes 1.0000000 0 1.0000000 1.0000000 1.0000000 1.0000000
cis 0.6819085 1 0.0000000 0.5364238 0.5696203 0.5940299
miscellaneous 0.3802817 1 0.5364238 0.0000000 0.3318584 0.3375796
sanger 0.3598775 1 0.5696203 0.3318584 0.0000000 0.1051546
Vogelstein 0.3452381 1 0.5940299 0.3375796 0.1051546 0.0000000
waldman 0.2697095 1 0.6010363 0.2222222 0.3246269 0.3081081
waldman
atlas 0.2697095
cangenes 1.0000000
cis 0.6010363
miscellaneous 0.2222222
sanger 0.3246269
Vogelstein 0.3081081
waldman 0.0000000
> duppSorensen(allTabsBP.4)
atlas cangenes cis miscellaneous sanger Vogelstein
atlas 0.0000000 NaN 0.7262589 0.4174355 0.3959452 0.3802668
cangenes NaN 0 NaN NaN NaN NaN
cis 0.7262589 NaN 0.0000000 0.5950555 0.6271347 0.6498536
miscellaneous 0.4174355 NaN 0.5950555 0.0000000 0.3739718 0.3790962
sanger 0.3959452 NaN 0.6271347 0.3739718 0.0000000 0.1292852
Vogelstein 0.3802668 NaN 0.6498536 0.3790962 0.1292852 0.0000000
waldman 0.3003348 NaN 0.6529946 0.2553636 0.3629683 0.3450290
waldman
atlas 0.3003348
cangenes NaN
cis 0.6529946
miscellaneous 0.2553636
sanger 0.3629683
Vogelstein 0.3450290
waldman 0.0000000
> seSorensen(allTabsBP.4)
atlas cangenes cis miscellaneous sanger
atlas 0.00000000 0 0.02696312 0.02258792 0.02192764
cangenes 0.00000000 0 0.00000000 0.00000000 0.00000000
cis 0.02696312 0 0.00000000 0.03564549 0.03496631
miscellaneous 0.02258792 0 0.03564549 0.00000000 0.02560313
sanger 0.02192764 0 0.03496631 0.02560313 0.00000000
Vogelstein 0.02129595 0 0.03393844 0.02524032 0.01467036
waldman 0.01861884 0 0.03158842 0.02014852 0.02330993
Vogelstein waldman
atlas 0.02129595 0.01861884
cangenes 0.00000000 0.00000000
cis 0.03393844 0.03158842
miscellaneous 0.02524032 0.02014852
sanger 0.01467036 0.02330993
Vogelstein 0.00000000 0.02244631
waldman 0.02244631 0.00000000
>
>
> # Tipically, in a real study it would be interesting to scan tests
> # along some ontologies and levels inside these ontologies:
> # (which obviously will be a quite slow process)
> # gc()
> # set.seed(123)
> # allBootTests_BP_MF_lev4to8 <- allEquivTestSorensen(allOncoGeneLists,
> # boot = TRUE,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
> # ontos = c("BP", "MF"), GOLevels = 4:8)
> # getPvalue(allBootTests_BP_MF_lev4to8)
> # getEffNboot(allBootTests_BP_MF_lev4to8)
>
> proc.time()
user system elapsed
116.065 4.542 120.723
goSorensen.Rcheck/tests/test_nonsense_genes.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(goSorensen)
Attaching package: 'goSorensen'
The following object is masked from 'package:utils':
upgrade
>
> testError <- function(e) {return(e)}
>
> tryCatch(dSorensen("Sec1", onto = "BP"), error = testError)
<simpleError in buildEnrichTable.character(x, y, check.table = check.table, ...): Argument 'y' is missing, 'x' and 'y' must be 'character' vectors of valid gene identifiers>
>
> data(allOncoGeneLists)
> ?allOncoGeneLists
allOncoGeneLists package:goSorensen R Documentation
_7 _g_e_n_e _l_i_s_t_s _p_o_s_s_i_b_l_y _r_e_l_a_t_e_d _w_i_t_h _c_a_n_c_e_r
_D_e_s_c_r_i_p_t_i_o_n:
An object of class "list" of length 7. Each one of its elements is
a "character" vector of gene identifiers. Only gene lists of
length almost 100 were taken from their source web. Take these
lists just as an illustrative example, they are not automatically
updated.
_U_s_a_g_e:
data(allOncoGeneLists)
_F_o_r_m_a_t:
An object of class "list" of length 7. Each one of its elements is
a "character" vector of gene identifiers.
_S_o_u_r_c_e:
<http://www.bushmanlab.org/links/genelists>
> data(humanEntrezIDs)
>
> # Non-sense random gene lists. Generating Entrez-like gene identifiers, but random:
> set.seed(1234567)
> genList1 <- unique(as.character(sample.int(99999, size = 100)))
> genList2 <- unique(as.character(sample.int(99999, size = 100)))
> # Gene identifiers are numbers like Entrez identifiers at 'humanEntrezIDs', but random.
> dSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
[1] NaN
> duppSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
[1] NaN
> seSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
[1] NaN
> nonSenseTst <- equivTestSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> nonSenseTst
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
> tab <- getTable(nonSenseTst)
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 5
> # Or, alternatively:
> tab <- buildEnrichTable(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 5
> dSorensen(tab)
[1] NaN
> duppSorensen(tab)
[1] NaN
> seSorensen(tab)
[1] NaN
> equivTestSorensen(tab)
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
>
> # Even more non-sense, letters non numeric-style like those at 'humanEntrezIDs':
> set.seed(1234567)
> genList1 <- unique(vapply(seq_len(100), function(i) {
+ paste0(sample(c(letters, LETTERS), 6, replace = TRUE), collapse = "")
+ }, FUN.VALUE = character(1)))
> genList2 <- unique(vapply(seq_len(100), function(i) {
+ paste0(sample(c(letters, LETTERS), 6, replace = TRUE), collapse = "")
+ }, FUN.VALUE = character(1)))
>
> # Gene identifiers incompatible with those at 'humanEntrezIDs':
> dSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 3480,8626,200162,2707,253943,56339
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 54937,124783,3485,285588,84221,9232
--> return NULL...
[1] NaN
> duppSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 100506013,11144,171484,836,51207,338773
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 84132,9918,51804,5892,85376,83700
--> return NULL...
[1] NaN
> seSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 642636,146845,23626,5932,5016,6152
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 120935,1364,378807,50487,57082,91746
--> return NULL...
[1] NaN
> nonSenseTst <- equivTestSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 6790,2295,4487,25,2182,8743
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 226,51087,5887,23542,30009,140894
--> return NULL...
> nonSenseTst
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
> tab <- getTable(nonSenseTst)
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 5
> # Or, alternatively:
> tab <- buildEnrichTable(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 7356,596,84168,23236,23627,91
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 480,285643,49,124912,375341,92667
--> return NULL...
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
attr(,"onto")
[1] "BP"
attr(,"GOLevel")
[1] 5
> dSorensen(tab)
[1] NaN
> duppSorensen(tab)
[1] NaN
> seSorensen(tab)
[1] NaN
> equivTestSorensen(tab)
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
>
> proc.time()
user system elapsed
239.142 9.894 251.431
goSorensen.Rcheck/goSorensen-Ex.timings
| name | user | system | elapsed | |
| allBuildEnrichTable | 0 | 0 | 0 | |
| allEquivTestSorensen | 0.064 | 0.000 | 0.064 | |
| allHclustThreshold | 0.055 | 0.000 | 0.055 | |
| allSorenThreshold | 0.055 | 0.000 | 0.055 | |
| buildEnrichTable | 16.173 | 0.836 | 17.016 | |
| dSorensen | 0.089 | 0.000 | 0.090 | |
| duppSorensen | 0.120 | 0.002 | 0.123 | |
| equivTestSorensen | 0.117 | 0.000 | 0.117 | |
| getDissimilarity | 0.200 | 0.026 | 0.227 | |
| getEffNboot | 1.128 | 0.014 | 1.141 | |
| getNboot | 1.044 | 0.010 | 1.055 | |
| getPvalue | 0.212 | 0.014 | 0.224 | |
| getSE | 0.217 | 0.017 | 0.235 | |
| getTable | 0.230 | 0.022 | 0.252 | |
| getUpper | 0.248 | 0.031 | 0.280 | |
| hclustThreshold | 805.813 | 7.011 | 829.732 | |
| nice2x2Table | 0.002 | 0.000 | 0.002 | |
| seSorensen | 0.001 | 0.000 | 0.001 | |
| sorenThreshold | 0.04 | 0.00 | 0.04 | |
| upgrade | 0.560 | 0.036 | 0.596 | |