Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-04-17 11:35:56 -0400 (Wed, 17 Apr 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4676 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" | 4414 |
merida1 | macOS 12.7.1 Monterey | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4437 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 672/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
evaluomeR 1.18.0 (landing page) José Antonio Bernabé-Díaz
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the evaluomeR package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/evaluomeR.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: evaluomeR |
Version: 1.18.0 |
Command: /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:evaluomeR.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings evaluomeR_1.18.0.tar.gz |
StartedAt: 2024-04-15 22:38:55 -0400 (Mon, 15 Apr 2024) |
EndedAt: 2024-04-15 22:43:27 -0400 (Mon, 15 Apr 2024) |
EllapsedTime: 272.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: evaluomeR.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:evaluomeR.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings evaluomeR_1.18.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/evaluomeR.Rcheck’ * using R version 4.3.3 (2024-02-29) * using platform: x86_64-pc-linux-gnu (64-bit) * R was compiled by gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 * running under: Ubuntu 22.04.4 LTS * using session charset: UTF-8 * checking for file ‘evaluomeR/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘evaluomeR’ version ‘1.18.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... NOTE Depends: includes the non-default packages: 'SummarizedExperiment', 'MultiAssayExperiment', 'cluster', 'fpc', 'randomForest', 'flexmix' Adding so many packages to the search path is excessive and importing selectively is preferable. * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘evaluomeR’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... NOTE File LICENSE is not mentioned in the DESCRIPTION file. * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... NOTE Namespace in Imports field not imported from: ‘kableExtra’ All declared Imports should be used. Packages in Depends field not imported from: ‘flexmix’ ‘randomForest’ These packages need to be imported from (in the NAMESPACE file) for when this namespace is loaded but not attached. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE flemixModel: no visible global function definition for ‘FLXMRglm’ flemixModel: no visible global function definition for ‘stepFlexmix’ flemixModel: no visible global function definition for ‘getModel’ globalMetric: no visible global function definition for ‘prior’ metrics_pca: no visible global function definition for ‘prcomp’ metrics_randomforest: no visible global function definition for ‘randomForest’ metrics_randomforest: no visible global function definition for ‘head’ speccCBI: no visible global function definition for ‘specc’ Undefined global functions or variables: FLXMRglm getModel head prcomp prior randomForest specc stepFlexmix Consider adding importFrom("stats", "prcomp") importFrom("utils", "head") to your NAMESPACE file. * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking LazyData ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘testAll.R’ Running ‘testAnalysis.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... ‘manual.Rmd’ using ‘UTF-8’... OK OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 4 NOTEs See ‘/home/biocbuild/bbs-3.18-bioc/meat/evaluomeR.Rcheck/00check.log’ for details.
evaluomeR.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD INSTALL evaluomeR ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.18-bioc/R/site-library’ * installing *source* package ‘evaluomeR’ ... ** using staged installation ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading ** help Loading required namespace: evaluomeR *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (evaluomeR)
evaluomeR.Rcheck/tests/testAll.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(evaluomeR) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following object is masked from 'package:utils': findMatches The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: MultiAssayExperiment Loading required package: cluster Loading required package: fpc Loading required package: randomForest randomForest 4.7-1.1 Type rfNews() to see new features/changes/bug fixes. Attaching package: 'randomForest' The following object is masked from 'package:Biobase': combine The following object is masked from 'package:BiocGenerics': combine Loading required package: flexmix Loading required package: lattice > > data("rnaMetrics") > > dataFrame <- stability(data=rnaMetrics, k=4, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 4 > dataFrame <- stabilityRange(data=rnaMetrics, k.range=c(2,4), bs=20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > assay(dataFrame) Metric Mean_stability_k_2 Mean_stability_k_3 Mean_stability_k_4 [1,] "RIN" "0.825833333333333" "0.778412698412698" "0.69625" [2,] "DegFact" "0.955595238095238" "0.977777777777778" "0.820833333333333" > # Metric Mean_stability_k_2 Mean_stability_k_3 Mean_stability_k_4 > # [1,] "RIN" "0.825833333333333" "0.778412698412698" "0.69625" > # [2,] "DegFact" "0.955595238095238" "0.977777777777778" "0.820833333333333" > dataFrame <- stabilitySet(data=rnaMetrics, k.set=c(2,3,4), bs=20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > > dataFrame <- quality(data=rnaMetrics, cbi="kmeans", k=3, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Processing metric: DegFact(2) Calculation of k = 3 > assay(dataFrame) Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore [1,] "RIN" "0.420502645502646" "0.724044583696066" "0.68338517747747" [2,] "DegFact" "0.876516605981734" "0.643613928123002" "0.521618857725795" Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size [1,] "0.627829396038413" "4" "4" "8" [2,] "0.737191191352892" "8" "5" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore > # [1,] "RIN" "0.420502645502646" "0.724044583696066" "0.68338517747747" > # [2,] "DegFact" "0.876516605981734" "0.643613928123002" "0.521618857725795" > # Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size > # [1,] "0.627829396038413" "4" "4" "8" > # [2,] "0.737191191352892" "8" "5" "3" > dataFrame <- qualityRange(data=rnaMetrics, k.range=c(2,4), seed = 20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > assay(getDataQualityRange(dataFrame, 2)) Metric Cluster_1_SilScore Cluster_2_SilScore Avg_Silhouette_Width 1 "RIN" "0.583166775069983" "0.619872562681118" "0.608402004052639" 2 "DegFact" "0.664573423022171" "0.675315791048653" "0.666587617027136" Cluster_1_Size Cluster_2_Size 1 "5" "11" 2 "13" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Avg_Silhouette_Width Cluster_1_Size > # 1 "RIN" "0.583166775069983" "0.619872562681118" "0.608402004052639" "5" > # 2 "DegFact" "0.664573423022171" "0.675315791048653" "0.666587617027136" "13" > # Cluster_2_Size > # 1 "11" > # 2 "3" > assay(getDataQualityRange(dataFrame, 4)) Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore 1 "RIN" "0.420502645502646" "0.674226581940152" "0.433333333333333" 2 "DegFact" "0.759196481622952" "0.59496499852177" "0.600198799385732" Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size 1 "0.348714574898785" "0.463905611516569" "4" "4" 2 "0.521618857725795" "0.634170498361632" "5" "3" Cluster_3_Size Cluster_4_Size 1 "3" "5" 2 "5" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore > # 1 "RIN" "0.420502645502646" "0.674226581940152" "0.433333333333333" > # 2 "DegFact" "0.759196481622952" "0.59496499852177" "0.600198799385732" > # Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size > # 1 "0.348714574898785" "0.463905611516569" "4" "4" "3" > # 2 "0.521618857725795" "0.634170498361632" "5" "3" "5" > # Cluster_4_Size > # 1 "5" > # 2 "3" > dataFrame1 <- qualitySet(data=rnaMetrics, k.set=c(2,3,4), getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > > > dataFrame <- metricsCorrelations(data=rnaMetrics, getImages = FALSE, margins = c(4,4,11,10)) Data loaded. Number of rows: 16 Number of columns: 3 > assay(dataFrame, 1) RIN DegFact RIN 1.0000000 -0.9744685 DegFact -0.9744685 1.0000000 > > > dataFrame <- stability(data=rnaMetrics, cbi="kmeans", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="clara", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="clara_pam", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="hclust", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="pamk", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="pamk_pam", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > > # Supported CBIs: > evaluomeRSupportedCBI() [1] "kmeans" "clara" "clara_pam" "hclust" "pamk" "pamk_pam" > > dataFrame <- qualityRange(data=rnaMetrics, k.range=c(2,10), getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Calculation of k = 5 Calculation of k = 6 Calculation of k = 7 Calculation of k = 8 Calculation of k = 9 Calculation of k = 10 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Calculation of k = 5 Calculation of k = 6 Calculation of k = 7 Calculation of k = 8 Calculation of k = 9 Calculation of k = 10 > dataFrame ExperimentList class object of length 9: [1] k_2: SummarizedExperiment with 2 rows and 6 columns [2] k_3: SummarizedExperiment with 2 rows and 8 columns [3] k_4: SummarizedExperiment with 2 rows and 10 columns [4] k_5: SummarizedExperiment with 2 rows and 12 columns [5] k_6: SummarizedExperiment with 2 rows and 14 columns [6] k_7: SummarizedExperiment with 2 rows and 16 columns [7] k_8: SummarizedExperiment with 2 rows and 18 columns [8] k_9: SummarizedExperiment with 2 rows and 20 columns [9] k_10: SummarizedExperiment with 2 rows and 22 columns > > #dataFrame <- stabilityRange(data=rnaMetrics, k.range=c(2,8), bs=20, getImages = FALSE) > #assay(dataFrame) > > proc.time() user system elapsed 11.988 0.603 12.580
evaluomeR.Rcheck/tests/testAnalysis.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(evaluomeR) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following object is masked from 'package:utils': findMatches The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: MultiAssayExperiment Loading required package: cluster Loading required package: fpc Loading required package: randomForest randomForest 4.7-1.1 Type rfNews() to see new features/changes/bug fixes. Attaching package: 'randomForest' The following object is masked from 'package:Biobase': combine The following object is masked from 'package:BiocGenerics': combine Loading required package: flexmix Loading required package: lattice > > data("rnaMetrics") > plotMetricsMinMax(rnaMetrics) There were 17 warnings (use warnings() to see them) > plotMetricsBoxplot(rnaMetrics) Warning messages: 1: Use of `data.melt$variable` is discouraged. ℹ Use `variable` instead. 2: Use of `data.melt$value` is discouraged. ℹ Use `value` instead. > cluster = plotMetricsCluster(ontMetrics, scale = TRUE) > plotMetricsViolin(rnaMetrics) Warning messages: 1: Use of `data.melt$variable` is discouraged. ℹ Use `variable` instead. 2: Use of `data.melt$value` is discouraged. ℹ Use `value` instead. 3: Use of `data.melt$variable` is discouraged. ℹ Use `variable` instead. 4: Use of `data.melt$value` is discouraged. ℹ Use `value` instead. > > stabilityData <- stabilityRange(data=rnaMetrics, k.range=c(3,4), bs=20, getImages = FALSE, seed=100) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 3 Calculation of k = 4 > qualityData <- qualityRange(data=rnaMetrics, k.range=c(3,4), getImages = FALSE, seed=100) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 3 Calculation of k = 4 > > kOptTable <- getOptimalKValue(stabilityData, qualityData, k.range=c(3,4)) Processing metric: RIN Maximum stability and quality values matches the same K value: '3' Processing metric: DegFact Maximum stability and quality values matches the same K value: '3' > kOptTable Metric Stability_max_k Stability_max_k_stab Stability_max_k_qual 1 RIN 3 0.8901389 0.6278294 2 DegFact 3 1.0000000 0.7371912 Quality_max_k Quality_max_k_stab Quality_max_k_qual Global_optimal_k 1 3 0.8901389 0.6278294 3 2 3 1.0000000 0.7371912 3 > > > df = assay(rnaMetrics) > k.vector1=rep(5,length(colnames(df))-1) > k.vector2=rep(2,length(colnames(df))-1) > > plotMetricsClusterComparison(rnaMetrics, k.vector1=k.vector1, k.vector2=k.vector2) > plotMetricsClusterComparison(rnaMetrics, k.vector1=3, k.vector2=c(2,5)) > > > proc.time() user system elapsed 11.039 0.506 11.535
evaluomeR.Rcheck/evaluomeR-Ex.timings
name | user | system | elapsed | |
evaluomeRSupportedCBI | 0.001 | 0.000 | 0.000 | |
getDataQualityRange | 0.416 | 0.008 | 0.425 | |
getOptimalKValue | 0.310 | 0.015 | 0.326 | |
globalMetric | 1.825 | 0.101 | 1.924 | |
metricsCorrelations | 0.036 | 0.004 | 0.040 | |
plotMetricsBoxplot | 0.503 | 0.032 | 0.536 | |
plotMetricsCluster | 0.247 | 0.008 | 0.255 | |
plotMetricsClusterComparison | 0.287 | 0.016 | 0.302 | |
plotMetricsMinMax | 0.552 | 0.027 | 0.579 | |
plotMetricsViolin | 0.735 | 0.008 | 0.743 | |
quality | 0.288 | 0.012 | 0.300 | |
qualityRange | 0.200 | 0.004 | 0.205 | |
qualitySet | 0.047 | 0.000 | 0.047 | |
stability | 1.979 | 0.011 | 1.991 | |
stabilityRange | 2.453 | 0.036 | 2.490 | |
stabilitySet | 0.356 | 0.004 | 0.359 | |