Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-04-17 11:37:37 -0400 (Wed, 17 Apr 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4676 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" | 4414 |
merida1 | macOS 12.7.1 Monterey | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4437 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 445/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
COTAN 2.2.4 (landing page) Galfrè Silvia Giulia
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the COTAN package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/COTAN.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: COTAN |
Version: 2.2.4 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:COTAN.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings COTAN_2.2.4.tar.gz |
StartedAt: 2024-04-16 01:16:41 -0400 (Tue, 16 Apr 2024) |
EndedAt: 2024-04-16 01:43:08 -0400 (Tue, 16 Apr 2024) |
EllapsedTime: 1587.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: COTAN.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:COTAN.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings COTAN_2.2.4.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.18-bioc/meat/COTAN.Rcheck’ * using R version 4.3.3 (2024-02-29) * using platform: x86_64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘COTAN/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘COTAN’ version ‘2.2.4’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘COTAN’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... NOTE Unexported object imported by a ':::' call: ‘ggplot2:::ggname’ See the note in ?`:::` about the use of this operator. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE GDIPlot: no visible binding for global variable ‘sum.raw.norm’ GDIPlot: no visible binding for global variable ‘GDI’ UMAPPlot: no visible binding for global variable ‘x’ UMAPPlot: no visible binding for global variable ‘y’ calculateG: no visible binding for global variable ‘observedNN’ calculateG: no visible binding for global variable ‘observedNY’ calculateG: no visible binding for global variable ‘observedYN’ calculateG: no visible binding for global variable ‘observedYY’ calculateG: no visible binding for global variable ‘expectedNN’ calculateG: no visible binding for global variable ‘expectedNY’ calculateG: no visible binding for global variable ‘expectedYN’ calculateG: no visible binding for global variable ‘expectedYY’ cellsUniformClustering: no visible binding for global variable ‘objSeurat’ cellsUniformClustering: no visible binding for global variable ‘usedMaxResolution’ checkClusterUniformity: ... may be used in an incorrect context: ‘c(..., nuPlot, zoomedNuPlot)’ checkClusterUniformity: no visible binding for global variable ‘nuPlot’ checkClusterUniformity: no visible binding for global variable ‘zoomedNuPlot’ cleanPlots: no visible binding for global variable ‘PC1’ cleanPlots: no visible binding for global variable ‘PC2’ cleanPlots: no visible binding for global variable ‘n’ cleanPlots: no visible binding for global variable ‘means’ cleanPlots: no visible binding for global variable ‘nu’ clustersMarkersHeatmapPlot: no visible binding for global variable ‘condName’ clustersMarkersHeatmapPlot: no visible binding for global variable ‘conditions’ clustersSummaryPlot: no visible binding for global variable ‘keys’ clustersSummaryPlot: no visible binding for global variable ‘values’ clustersSummaryPlot: no visible binding for global variable ‘CellNumber’ clustersSummaryPlot: no visible binding for global variable ‘ExpGenes’ clustersSummaryPlot: no visible binding for global variable ‘Cluster’ clustersSummaryPlot: no visible binding for global variable ‘Condition’ clustersTreePlot: no visible binding for global variable ‘clusters’ establishGenesClusters: no visible binding for global variable ‘secondaryMarkers’ establishGenesClusters: no visible binding for global variable ‘GCS’ establishGenesClusters: no visible binding for global variable ‘rankGenes’ expectedContingencyTables: no visible binding for global variable ‘expectedN’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘group’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘y’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘x’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘width’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘violinwidth’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xmax’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xminv’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xmaxv’ heatmapPlot: no visible binding for global variable ‘g2’ mergeUniformCellsClusters : testPairListMerge: no visible binding for global variable ‘cl1’ mergeUniformCellsClusters : testPairListMerge: no visible binding for global variable ‘cl2’ mitochondrialPercentagePlot: no visible binding for global variable ‘mit.percentage’ observedContingencyTables: no visible binding for global variable ‘observedY’ scatterPlot: no visible binding for global variable ‘.x’ calculateCoex,COTAN: no visible binding for global variable ‘expectedNN’ calculateCoex,COTAN: no visible binding for global variable ‘expectedNY’ calculateCoex,COTAN: no visible binding for global variable ‘expectedYN’ calculateCoex,COTAN: no visible binding for global variable ‘expectedYY’ calculateCoex,COTAN: no visible binding for global variable ‘observedYY’ calculateCoex,COTAN: no visible binding for global variable ‘.’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘rawNorm’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘nu’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘lambda’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘a’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘hk’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘clusters’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘clusterData’ Undefined global functions or variables: . .x CellNumber Cluster Condition ExpGenes GCS GDI PC1 PC2 a cl1 cl2 clusterData clusters condName conditions expectedN expectedNN expectedNY expectedYN expectedYY g2 group hk keys lambda means mit.percentage n nu nuPlot objSeurat observedNN observedNY observedY observedYN observedYY rankGenes rawNorm secondaryMarkers sum.raw.norm usedMaxResolution values violinwidth width x xmax xmaxv xminv y zoomedNuPlot * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed UniformClusters 181.256 1.405 186.339 HeatmapPlots 63.557 1.973 69.849 CalculatingCOEX 50.041 0.981 55.772 HandlingClusterizations 33.214 0.634 38.128 ParametersEstimations 29.308 0.790 31.708 GenesCoexSpace 14.383 0.216 15.674 COTANObjectCreation 12.437 0.260 14.099 RawDataCleaning 10.072 0.325 10.697 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘outputTestDatasetCreation.R’ Running ‘spelling.R’ Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.18-bioc/meat/COTAN.Rcheck/00check.log’ for details.
COTAN.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL COTAN ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘COTAN’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading Note: ... may be used in an incorrect context ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (COTAN)
COTAN.Rcheck/tests/outputTestDatasetCreation.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Creates the files to be reloaded by the tests for comparisons > library(zeallot) > > outputTestDatasetCreation <- function(testsDir = file.path("tests", + "testthat")) { + utils::data("test.dataset", package = "COTAN") + options(parallelly.fork.enable = TRUE) + + obj <- COTAN(raw = test.dataset) + obj <- initializeMetaDataset(obj, GEO = " ", + sequencingMethod = "artificial", + sampleCondition = "test") + + obj <- proceedToCoex(obj, cores = 12L, saveObj = FALSE) + #saveRDS(obj, file = file.path(testsDir,"temp.RDS")) + + cell.names.test <- getCells(obj)[c(1L:10L, 591L:610L, 991L:1000L)] + genes.names.test <- getGenes(obj)[c(1L:10L, 291L:310L, 591L: 600L)] + saveRDS(cell.names.test, file.path(testsDir, "cell.names.test.RDS")) + saveRDS(genes.names.test, file.path(testsDir, "genes.names.test.RDS")) + + dispersion.test <- getDispersion(obj)[genes.names.test] + saveRDS(dispersion.test, file.path(testsDir, "dispersion.test.RDS")) + + raw.norm.test <- getNormalizedData(obj)[genes.names.test, cell.names.test] + saveRDS(raw.norm.test, file.path(testsDir, "raw.norm.test.RDS")) + + coex.test <- getGenesCoex(obj, genes = genes.names.test, zeroDiagonal = FALSE) + saveRDS(coex.test, file.path(testsDir, "coex.test.RDS")) + + lambda.test <- getLambda(obj)[genes.names.test] + saveRDS(lambda.test, file.path(testsDir, "lambda.test.RDS")) + + GDI.test <- calculateGDI(obj) + GDI.test <- GDI.test[genes.names.test, ] + saveRDS(GDI.test, file.path(testsDir, "GDI.test.RDS")) + + nu.test <- getNu(obj)[cell.names.test] + saveRDS(nu.test, file.path(testsDir, "nu.test.RDS")) + + pval.test <- calculatePValue(obj, geneSubsetCol = genes.names.test) + saveRDS(pval.test, file.path(testsDir, "pval.test.RDS")) + + GDIThreshold <- 1.5 + initialResolution <- 0.8 + + clusters <- cellsUniformClustering(obj, GDIThreshold = GDIThreshold, + initialResolution = initialResolution, + cores = 12L, saveObj = FALSE)[["clusters"]] + saveRDS(clusters, file.path(testsDir, "clusters1.RDS")) + + coexDF <- DEAOnClusters(obj, clusters = clusters) + obj <- addClusterization(obj, clName = "clusters", + clusters = clusters, coexDF = coexDF) + + saveRDS(coexDF[genes.names.test, ], + file.path(testsDir, "coex.test.cluster1.RDS")) + + pvalDF <- pValueFromDEA(coexDF, getNumCells(obj)) + + saveRDS(pvalDF[genes.names.test, ], + file.path(testsDir, "pval.test.cluster1.RDS")) + + c(mergedClusters, mCoexDF) %<-% + mergeUniformCellsClusters(objCOTAN = obj, + clusters = NULL, + GDIThreshold = GDIThreshold, + cores = 12L, + distance = "cosine", + hclustMethod = "ward.D2", + saveObj = FALSE) + + saveRDS(mergedClusters[genes.names.test], + file.path(testsDir, "cluster_data_merged.RDS")) + } > > proc.time() user system elapsed 0.384 0.115 0.478
COTAN.Rcheck/tests/spelling.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if (requireNamespace('spelling', quietly = TRUE)) + spelling::spell_check_test(vignettes = TRUE, error = FALSE, + skip_on_cran = TRUE) NULL > > proc.time() user system elapsed 0.373 0.113 0.460
COTAN.Rcheck/tests/testthat.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > Sys.setenv(R_TESTS = "") > library(testthat) > library(COTAN) > test_check("COTAN") Setting new log level to 3 Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 4 genes batches from [1:2] to [7:8] Executing 1 genes batches from [9:10] to [9:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 4 cells batches from [1:3] to [10:11] Executing 3 cells batches from [12:14] to [18:20] Estimate nu: DONE nu change (abs) | max: 1.75595238095238 | median: 1.07174634176587 | mean: 1.07174634176587 Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 1.0362548828125 | max: 4.60986328125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0265938895089288 | median: 0.0144680038331048 | mean: 0.0144680038331048 Nu mean: 1.69633192486233 Marginal errors | max: 1.95570586131367 | median 1.32068160171502 | mean: 1.33375826507259 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.058837890625 | max: 3.528076171875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.416683423613994 | median: 0.239880630367975 | mean: 0.239880630367975 Nu mean: 0.823197206753982 Marginal errors | max: 0.836359531101206 | median 0.703684202571891 | mean: 0.645537958989614 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.32879638671875 | max: 4.0302734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.164237872898673 | median: 0.0955985184389135 | mean: 0.0955985184389135 Nu mean: 1.06863935445976 Marginal errors | max: 0.259872988828244 | median 0.213703042752633 | mean: 0.197386407582083 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2294921875 | max: 3.8720703125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.055185575120883 | median: 0.0319991762044448 | mean: 0.0319991762044448 Nu mean: 0.976813601083562 Marginal errors | max: 0.0951586919577032 | median 0.0794297037094669 | mean: 0.0724140148396652 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2637939453125 | max: 3.929443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0196211148938294 | median: 0.01138609597457 | mean: 0.01138609597457 Nu mean: 1.00823501891926 Marginal errors | max: 0.0327747321002274 | median 0.0272104747849529 | mean: 0.0248963830312036 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25177001953125 | max: 3.90966796875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00670099066960717 | median: 0.00388888266671264 | mean: 0.00388888266671264 Nu mean: 0.997187891997105 Marginal errors | max: 0.0114324509186883 | median 0.00942326497706159 | mean: 0.00863113610779536 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25592041015625 | max: 3.91650390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00230093811689414 | median: 0.00132529122122246 | mean: 0.00132529122122246 Nu mean: 1.00097564689567 Marginal errors | max: 0.00387133150664809 | median 0.0031091017608853 | mean: 0.00286071175800213 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2545166015625 | max: 3.914306640625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000837011646904529 | median: 0.000470837393363011 | mean: 0.000470837393363011 Nu mean: 0.999633825746458 Marginal errors | max: 0.00122501723202184 | median 0.00102126435760308 | mean: 0.000943992659051851 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000209227351122054 | median: 0.000122070312500028 | mean: 0.000122070312500028 Nu mean: 1.00008715703862 Marginal errors | max: 0.000364602956583582 | median 0.000313956936819793 | mean: 0.000282899574318485 Estimate dispersion/nu: DONE Estimate 'dispersion'/'nu': START Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY..t().. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Initializing `COTAN` meta-data Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 1.73564890252257 | median 1.37996360874076 | mean: 1.32180348113228 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.0655517578125 | max: 3.5439453125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.402649984216273 | median: 0.231868788425666 | mean: 0.231868788425666 Nu mean: 0.829218804209393 Marginal errors | max: 0.803213159865939 | median 0.677497553540579 | mean: 0.61937543089282 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.3260498046875 | max: 4.026123046875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.158004893526231 | median: 0.0919692884670312 | mean: 0.0919692884670312 Nu mean: 1.0660356050592 Marginal errors | max: 0.250724014302325 | median 0.206232152124435 | mean: 0.190425623677197 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.23040771484375 | max: 3.8736572265625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0532774732102337 | median: 0.0308837890624999 | mean: 0.0308837890624999 Nu mean: 0.977606315852266 Marginal errors | max: 0.0916983669060105 | median 0.0765266929824948 | mean: 0.0697593208689693 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.26348876953125 | max: 3.928955078125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0189966206463044 | median: 0.0110199320575908 | mean: 0.0110199320575908 Nu mean: 1.00797668858871 Marginal errors | max: 0.0317151207459254 | median 0.0262702142278233 | mean: 0.0240886952086955 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2518310546875 | max: 3.9097900390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00670088501353994 | median: 0.00388888101583662 | mean: 0.00388888101583662 Nu mean: 0.997187996002297 Marginal errors | max: 0.011369331635624 | median 0.00939669372836338 | mean: 0.00860715734056949 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2559814453125 | max: 3.9166259765625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00251007446998996 | median: 0.00144735987374958 | mean: 0.00144735987374958 Nu mean: 1.00106271459624 Marginal errors | max: 0.00406746973787264 | median 0.00343393462175801 | mean: 0.00313496757119527 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25445556640625 | max: 3.9140625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000837027590858019 | median: 0.000488281249999889 | mean: 0.000488281249999889 Nu mean: 0.999651253659142 Marginal errors | max: 0.00143433714371355 | median 0.00116636244706836 | mean: 0.00109289166947804 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000209227688885871 | median: 0.0001220703125 | mean: 0.0001220703125 Nu mean: 1.00008715737639 Marginal errors | max: 0.000379524846206181 | median 0.000325685250687435 | mean: 0.000295532844331703 Estimate dispersion/nu: DONE Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY..t().. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Asked to drop 2 genes and 0 cells Asked to drop 0 genes and 4 cells Asked to drop 2 genes and 2 cells Attaching package: 'rlang' The following objects are masked from 'package:testthat': is_false, is_null, is_true Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells calculating YY.. done calculating YY.. done calculating YN..NY..NN..t().. done Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 calculating NN.. done calculating NN.. done calculating NY..YN..YY..t().. done Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells calculating YY.. done calculating YY.. done calculating NY..YN..NN..t().. done Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 4 cells batches from [1:4] to [13:16] Executing 1 cells batches from [17:20] to [17:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 0.255353289373158 | median 0.0807577993228143 | mean: 0.101980750205761 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 4 cells batches from [1:4] to [13:16] Executing 1 cells batches from [17:20] to [17:20] Estimate nu: DONE nu change (abs) | max: 0.0273438105507502 | median: 0.0148852611818011 | mean: 0.0148852611818011 Nu mean: 1.69735147626627 Marginal errors | max: 0.00326864580272002 | median 0.00111524657842832 | mean: 0.00131556083122533 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 4 cells batches from [1:4] to [13:16] Executing 1 cells batches from [17:20] to [17:20] Estimate nu: DONE nu change (abs) | max: 0 | median: 0 | mean: 0 Nu mean: 1.69735147626627 Marginal errors | max: 7.56328383637594e-05 | median 1.72948087246994e-05 | mean: 2.99252342141898e-05 Estimate dispersion/nu: DONE calculating NN.. done calculating NN.. done calculating YN..NY..YY..t().. done Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY..t().. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 4 cells batches from [1:4] to [13:16] Executing 1 cells batches from [17:20] to [17:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 0.255353289373158 | median 0.0807577993228143 | mean: 0.101980750205761 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 4 cells batches from [1:4] to [13:16] Executing 1 cells batches from [17:20] to [17:20] Estimate nu: DONE nu change (abs) | max: 0.0273438105507502 | median: 0.0148852611818011 | mean: 0.0148852611818011 Nu mean: 1.69735147626627 Marginal errors | max: 0.00326864580272002 | median 0.00111524657842832 | mean: 0.00131556083122533 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 4 cells batches from [1:4] to [13:16] Executing 1 cells batches from [17:20] to [17:20] Estimate nu: DONE nu change (abs) | max: 0 | median: 0 | mean: 0 Nu mean: 1.69735147626627 Marginal errors | max: 7.56328383637594e-05 | median 1.72948087246994e-05 | mean: 2.99252342141898e-05 Estimate dispersion/nu: DONE Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculating S: START Calculating S: DONE Calculating G: START calculating YY.. done calculating YN..NY..NN..t().. done calculating NN.. done calculating NY..YN..YY..t().. done Estimating G Calculating G: DONE Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values genome wide on columns and genome wide on rows calculating PValues: DONE Using G Calculating G: START calculating YY.. done calculating YN..NY..NN..t().. done calculating NN.. done calculating NY..YN..YY..t().. done Estimating G Calculating G: DONE calculating PValues: START Get p-values on a set of genes on columns and on a set of genes on rows calculating PValues: DONE Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE Using G Calculating G: START calculating YY.. done calculating YN..NY..NN..t().. done calculating NN.. done calculating NY..YN..YY..t().. done Estimating G Calculating G: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0635301828384399 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.133801118532817 Total time 0.210839017232259 Initializing `COTAN` meta-data Condition test n cells 1200 Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0605359315872192 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.133087917168935 Total time 0.207516614596049 Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells PCA: START PCA: DONE Hierarchical clustering: START Hierarchical clustering: DONE Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Cotan genes' coex estimation not requested Total time 0.170944567521413 Saving elaborated data locally at: /tmp/Rtmpjc0QNr/test.cotan.RDS Creating cells' uniform clustering: START In iteration 0 the number of cells to re-cluster is 1200 cells belonging to 0 clusters Creating Seurat object: START Normalizing layer: counts Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Finding variable features for layer counts Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix | | | 0% | |======================================================================| 100% PC_ 1 Positive: g-000558, g-000570, g-000499, g-000504, g-000546, g-000506, g-000503, g-000517, g-000596, g-000528 g-000527, g-000580, g-000592, g-000578, g-000509, g-000488, g-000555, g-000577, g-000534, g-000583 g-000598, g-000535, g-000512, g-000554, g-000519, g-000525, g-000548, g-000544, g-000502, g-000541 Negative: g-000133, g-000007, g-000074, g-000141, g-000057, g-000235, g-000170, g-000019, g-000195, g-000140 g-000183, g-000031, g-000046, g-000178, g-000177, g-000161, g-000157, g-000139, g-000011, g-000135 g-000125, g-000208, g-000061, g-000085, g-000204, g-000104, g-000237, g-000004, g-000038, g-000128 PC_ 2 Positive: g-000039, g-000050, g-000175, g-000078, g-000116, g-000189, g-000135, g-000047, g-000072, g-000087 g-000063, g-000235, g-000066, g-000109, g-000018, g-000074, g-000231, g-000136, g-000034, g-000207 g-000128, g-000167, g-000171, g-000049, g-000182, g-000013, g-000054, g-000062, g-000240, g-000158 Negative: g-000584, g-000583, g-000544, g-000519, g-000575, g-000516, g-000585, g-000486, g-000489, g-000539 g-000484, g-000502, g-000523, g-000595, g-000305, g-000574, g-000599, g-000589, g-000509, g-000538 g-000526, g-000551, g-000579, g-000590, g-000445, g-000556, g-000543, g-000501, g-000504, g-000570 PC_ 3 Positive: g-000015, g-000575, g-000483, g-000316, g-000025, g-000364, g-000050, g-000278, g-000443, g-000360 g-000332, g-000124, g-000212, g-000387, g-000536, g-000252, g-000251, g-000321, g-000501, g-000470 g-000582, g-000106, g-000455, g-000368, g-000081, g-000104, g-000437, g-000288, g-000386, g-000317 Negative: g-000211, g-000337, g-000129, g-000185, g-000397, g-000403, g-000253, g-000098, g-000390, g-000303 g-000052, g-000088, g-000463, g-000468, g-000236, g-000209, g-000005, g-000375, g-000342, g-000262 g-000388, g-000091, g-000413, g-000285, g-000003, g-000095, g-000142, g-000205, g-000432, g-000241 PC_ 4 Positive: g-000379, g-000193, g-000212, g-000434, g-000593, g-000513, g-000177, g-000223, g-000069, g-000131 g-000162, g-000345, g-000462, g-000484, g-000448, g-000229, g-000365, g-000302, g-000010, g-000366 g-000051, g-000535, g-000269, g-000270, g-000155, g-000529, g-000373, g-000008, g-000393, g-000306 Negative: g-000334, g-000398, g-000292, g-000095, g-000097, g-000202, g-000382, g-000195, g-000007, g-000079 g-000086, g-000240, g-000263, g-000317, g-000576, g-000557, g-000160, g-000154, g-000214, g-000228 g-000313, g-000053, g-000524, g-000374, g-000568, g-000188, g-000358, g-000528, g-000362, g-000150 PC_ 5 Positive: g-000451, g-000339, g-000295, g-000328, g-000544, g-000061, g-000227, g-000391, g-000556, g-000237 g-000067, g-000165, g-000449, g-000591, g-000087, g-000129, g-000197, g-000203, g-000487, g-000505 g-000333, g-000029, g-000271, g-000064, g-000583, g-000156, g-000448, g-000153, g-000526, g-000393 Negative: g-000518, g-000108, g-000186, g-000170, g-000401, g-000337, g-000047, g-000599, g-000432, g-000578 g-000042, g-000065, g-000493, g-000261, g-000533, g-000256, g-000560, g-000596, g-000368, g-000381 g-000535, g-000338, g-000215, g-000159, g-000365, g-000234, g-000173, g-000387, g-000225, g-000272 Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 1200 Number of edges: 55489 Running Louvain algorithm with multilevel refinement... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5973 Number of communities: 4 Elapsed time: 0 seconds Used resolution for Seurat clusterization is: 0.8 01:36:20 UMAP embedding parameters a = 0.9922 b = 1.112 01:36:20 Read 1200 rows and found 50 numeric columns 01:36:20 Using Annoy for neighbor search, n_neighbors = 30 01:36:20 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:36:20 Writing NN index file to temp file /tmp/Rtmpjc0QNr/file5c41ab05cf 01:36:20 Searching Annoy index using 1 thread, search_k = 3000 01:36:20 Annoy recall = 100% 01:36:21 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 01:36:23 Initializing from normalized Laplacian + noise (using RSpectra) 01:36:23 Commencing optimization for 500 epochs, with 42270 positive edges Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:36:27 Optimization finished Creating PDF UMAP in file:/tmp/Rtmpjc0QNr/test/reclustering_0/pdf_umap.pdf Creating Seurat object: DONE * checking uniformity of cluster '0' of 4 clusters Asked to drop 0 genes and 847 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [353] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5 Only analysis time 0.0468901515007019 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000521353300055463 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.130152865250905 Total time 0.191020449002584 Checking uniformity for the cluster '0' with 353 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 0 is uniform 0.17% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.4439 cluster 0 is uniform * checking uniformity of cluster '1' of 4 clusters Asked to drop 0 genes and 879 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [321] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0501708984375 | max: 14.515625 | % negative: 8.5 Only analysis time 0.0481665333112081 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.00168053244592346 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.129802751541138 Total time 0.192027219136556 Checking uniformity for the cluster '1' with 321 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 1 is uniform 0.17% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.4305 cluster 1 is uniform * checking uniformity of cluster '2' of 4 clusters Asked to drop 0 genes and 905 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [295] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.054443359375 | max: 104 | % negative: 36.5 Only analysis time 0.0447579860687256 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.35504159733777 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.127845696608226 Total time 0.185930613676707 Checking uniformity for the cluster '2' with 295 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 2 is uniform 0% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.3925 cluster 2 is uniform * checking uniformity of cluster '3' of 4 clusters Asked to drop 0 genes and 969 cells Cotan analysis functions started Asked to drop 1 genes and 0 cells Genes/cells selection done: dropped [1] genes and [0] cells Working on [599] genes and [231] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:599] to [1:599] Estimate dispersion: DONE dispersion | min: -0.0662841796875 | max: 82.5 | % negative: 33.889816360601 Only analysis time 0.0449333985646566 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.318091263216472 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.128290915489197 Total time 0.187580215930939 Checking uniformity for the cluster '3' with 231 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 3 is uniform 0% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.373 cluster 3 is uniform Found 4 uniform and 0 non-uniform clusters NO new possible uniform clusters! Unclustered cell left: 0 The final raw clusterization contains [ 4 ] different clusters: 00_0000, 00_0001, 00_0002, 00_0003 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE Applied reordering to clusterization is: 1 -> 3, 2 -> 1, 3 -> 2, 4 -> 4 Cluster, UMAP and Saving the Seurat dataset Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 1200 Number of edges: 55489 Running Louvain algorithm with multilevel refinement... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.6846 Number of communities: 4 Elapsed time: 0 seconds 01:37:53 UMAP embedding parameters a = 0.9922 b = 1.112 01:37:53 Read 1200 rows and found 25 numeric columns 01:37:53 Using Annoy for neighbor search, n_neighbors = 30 01:37:53 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:37:53 Writing NN index file to temp file /tmp/Rtmpjc0QNr/file5c415346a062 01:37:53 Searching Annoy index using 1 thread, search_k = 3000 01:37:54 Annoy recall = 100% 01:37:54 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 01:37:56 Initializing from normalized Laplacian + noise (using RSpectra) 01:37:56 Commencing optimization for 500 epochs, with 43428 positive edges Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:38:00 Optimization finished Creating cells' uniform clustering: DONE Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE Applied reordering to clusterization is: 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4 Asked to drop 0 genes and 905 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [295] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.054443359375 | max: 104 | % negative: 36.5 Only analysis time 0.0457813660303752 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.35504159733777 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.127514282862345 Total time 0.186874763170878 Checking uniformity for the cluster 'Cluster_2' with 295 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster Cluster_2 is uniform 0% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.3925 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE * analysis of cluster: '-1' - START * analysis of cluster: '-1' - DONE Differential Expression Analysis - DONE Applied reordering to clusterization is: 1 -> 2, 2 -> 1, 3 -> 4, 4 -> 3, -1 -> -1 Applied reordering to clusterization is: 1 -> 3, 2 -> 4, 3 -> 1, 4 -> 2, -1 -> -1 Creating cells' uniform clustering: START In iteration 0 the number of cells to re-cluster is 1200 cells belonging to 0 clusters Creating Seurat object: START Normalizing layer: counts Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Finding variable features for layer counts Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix | | | 0% | |======================================================================| 100% PC_ 1 Positive: g-000558, g-000570, g-000499, g-000504, g-000546, g-000506, g-000503, g-000517, g-000596, g-000528 g-000527, g-000580, g-000592, g-000578, g-000509, g-000488, g-000555, g-000577, g-000534, g-000583 g-000598, g-000535, g-000512, g-000554, g-000519, g-000525, g-000548, g-000544, g-000502, g-000541 Negative: g-000133, g-000007, g-000074, g-000141, g-000057, g-000235, g-000170, g-000019, g-000195, g-000140 g-000183, g-000031, g-000046, g-000178, g-000177, g-000161, g-000157, g-000139, g-000011, g-000135 g-000125, g-000208, g-000061, g-000085, g-000204, g-000104, g-000237, g-000004, g-000038, g-000128 PC_ 2 Positive: g-000039, g-000050, g-000175, g-000078, g-000116, g-000189, g-000135, g-000047, g-000072, g-000087 g-000063, g-000235, g-000066, g-000109, g-000018, g-000074, g-000231, g-000136, g-000034, g-000207 g-000128, g-000167, g-000171, g-000049, g-000182, g-000013, g-000054, g-000062, g-000240, g-000158 Negative: g-000584, g-000583, g-000544, g-000519, g-000575, g-000516, g-000585, g-000486, g-000489, g-000539 g-000484, g-000502, g-000523, g-000595, g-000305, g-000574, g-000599, g-000589, g-000509, g-000538 g-000526, g-000551, g-000579, g-000590, g-000445, g-000556, g-000543, g-000501, g-000504, g-000570 PC_ 3 Positive: g-000015, g-000575, g-000483, g-000316, g-000025, g-000364, g-000050, g-000278, g-000443, g-000360 g-000332, g-000124, g-000212, g-000387, g-000536, g-000252, g-000251, g-000321, g-000501, g-000470 g-000582, g-000106, g-000455, g-000368, g-000081, g-000104, g-000437, g-000288, g-000386, g-000317 Negative: g-000211, g-000337, g-000129, g-000185, g-000397, g-000403, g-000253, g-000098, g-000390, g-000303 g-000052, g-000088, g-000463, g-000468, g-000236, g-000209, g-000005, g-000375, g-000342, g-000262 g-000388, g-000091, g-000413, g-000285, g-000003, g-000095, g-000142, g-000205, g-000432, g-000241 PC_ 4 Positive: g-000379, g-000193, g-000212, g-000434, g-000593, g-000513, g-000177, g-000223, g-000069, g-000131 g-000162, g-000345, g-000462, g-000484, g-000448, g-000229, g-000365, g-000302, g-000010, g-000366 g-000051, g-000535, g-000269, g-000270, g-000155, g-000529, g-000373, g-000008, g-000393, g-000306 Negative: g-000334, g-000398, g-000292, g-000095, g-000097, g-000202, g-000382, g-000195, g-000007, g-000079 g-000086, g-000240, g-000263, g-000317, g-000576, g-000557, g-000160, g-000154, g-000214, g-000228 g-000313, g-000053, g-000524, g-000374, g-000568, g-000188, g-000358, g-000528, g-000362, g-000150 PC_ 5 Positive: g-000451, g-000339, g-000295, g-000328, g-000544, g-000061, g-000227, g-000391, g-000556, g-000237 g-000067, g-000165, g-000449, g-000591, g-000087, g-000129, g-000197, g-000203, g-000487, g-000505 g-000333, g-000029, g-000271, g-000064, g-000583, g-000156, g-000448, g-000153, g-000526, g-000393 Negative: g-000518, g-000108, g-000186, g-000170, g-000401, g-000337, g-000047, g-000599, g-000432, g-000578 g-000042, g-000065, g-000493, g-000261, g-000533, g-000256, g-000560, g-000596, g-000368, g-000381 g-000535, g-000338, g-000215, g-000159, g-000365, g-000234, g-000173, g-000387, g-000225, g-000272 Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 1200 Number of edges: 55489 Running Louvain algorithm with multilevel refinement... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5973 Number of communities: 4 Elapsed time: 0 seconds Used resolution for Seurat clusterization is: 0.8 01:38:39 UMAP embedding parameters a = 0.9922 b = 1.112 01:38:39 Read 1200 rows and found 50 numeric columns 01:38:39 Using Annoy for neighbor search, n_neighbors = 30 01:38:39 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:38:39 Writing NN index file to temp file /tmp/Rtmpjc0QNr/file5c415e21f8b5 01:38:39 Searching Annoy index using 1 thread, search_k = 3000 01:38:39 Annoy recall = 100% 01:38:40 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 01:38:42 Initializing from normalized Laplacian + noise (using RSpectra) 01:38:42 Commencing optimization for 500 epochs, with 42270 positive edges Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:38:46 Optimization finished Creating PDF UMAP in file:/tmp/Rtmpjc0QNr/test/reclustering_0/pdf_umap.pdf Creating Seurat object: DONE Using passed in clusterization * checking uniformity of cluster '1' of 2 clusters Asked to drop 0 genes and 600 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [600] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0386962890625 | max: 19.40625 | % negative: 6.5 Only analysis time 0.0517337163289388 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000110926234054354 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.129986385504405 Total time 0.19566658337911 Checking uniformity for the cluster '1' with 600 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 1 is uniform 0.67% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.4534 cluster 1 is uniform * checking uniformity of cluster '2' of 2 clusters Asked to drop 0 genes and 600 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [600] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.032958984375 | max: 10.0859375 | % negative: 3.66666666666667 Only analysis time 0.0527212500572205 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 6.10094287298946e-05 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.129938669999441 Total time 0.195376853148142 Checking uniformity for the cluster '2' with 600 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 2 is uniform 0.33% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.4378 cluster 2 is uniform Found 2 uniform and 0 non-uniform clusters NO new possible uniform clusters! Unclustered cell left: 0 The final raw clusterization contains [ 2 ] different clusters: 00_0001, 00_0002 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE Differential Expression Analysis - DONE Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE Differential Expression Analysis - DONE Applied reordering to clusterization is: 1 -> 1, 2 -> 2 Cluster, UMAP and Saving the Seurat dataset Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 1200 Number of edges: 55489 Running Louvain algorithm with multilevel refinement... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.6846 Number of communities: 4 Elapsed time: 0 seconds 01:39:31 UMAP embedding parameters a = 0.9922 b = 1.112 01:39:31 Read 1200 rows and found 25 numeric columns 01:39:31 Using Annoy for neighbor search, n_neighbors = 30 01:39:31 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:39:31 Writing NN index file to temp file /tmp/Rtmpjc0QNr/file5c4114dfcb9 01:39:31 Searching Annoy index using 1 thread, search_k = 3000 01:39:32 Annoy recall = 100% 01:39:32 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 01:39:34 Initializing from normalized Laplacian + noise (using RSpectra) 01:39:34 Commencing optimization for 500 epochs, with 43428 positive edges Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 01:39:38 Optimization finished Creating cells' uniform clustering: DONE findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.20998115359079 Handling cluster '2' with mean UDE 0.538244816501366 Handling cluster '3' with mean UDE 1.43530796540674 Handling cluster '4' with mean UDE 0.632684489354434 clustersDeltaExpression - DONE findClustersMarkers - DONE findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.20998115359079 Handling cluster '2' with mean UDE 0.538244816501366 Handling cluster '3' with mean UDE 1.43530796540674 Handling cluster '4' with mean UDE 0.632684489354434 clustersDeltaExpression - DONE findClustersMarkers - DONE findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.20998115359079 Handling cluster '2' with mean UDE 0.538244816501366 Handling cluster '3' with mean UDE 1.43530796540674 Handling cluster '4' with mean UDE 0.632684489354434 clustersDeltaExpression - DONE findClustersMarkers - DONE [1] "1" Asked to drop 0 genes and 879 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [321] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0501708984375 | max: 14.515625 | % negative: 8.5 Only analysis time 0.0479015310605367 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.00168053244592346 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.130172801017761 Total time 0.19245990117391 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE [1] "3" Asked to drop 0 genes and 847 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [353] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5 Only analysis time 0.0485140323638916 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000521353300055463 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.125167349974314 Total time 0.187372998396556 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.06192973057429 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.137441901365916 Total time 0.213046316305796 Calculating gene co-expression space - START Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Number of selected secondary markers: 109 Calculating S: START Calculating S: DONE Number of columns (V set - secondary markers): 109 Number of rows (U set): 60 Calculating gene co-expression space - DONE Establishing gene clusters - START Calculating gene co-expression space - START Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Number of selected secondary markers: 109 Calculating S: START Calculating S: DONE Number of columns (V set - secondary markers): 109 Number of rows (U set): 60 Calculating gene co-expression space - DONE Establishing gene clusters - DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Cotan genes' coex estimation not requested Total time 0.092523733774821 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.640931107489519 Handling cluster '3' with mean UDE 0.546546914955575 Handling cluster '4' with mean UDE 1.22034802329657 clustersDeltaExpression - DONE In group G1 there are 3 detected over 3 genes In group G2 there are 2 detected over 2 genes In group G3 there are 5 detected over 5 genes Merging cells' uniform clustering: START Start merging nearest clusters: iteration 1 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE Clusters pairs for merging: c("1", "2") c("3", "4") c("2", "3") c("2", "4") c("1", "3") c("1", "4") *1_2-merge Asked to drop 0 genes and 626 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [574] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333 Only analysis time 0.0531931002934774 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000105379922351636 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.134948551654816 Total time 0.201811301708221 Checking uniformity for the cluster '1_2-merge' with 574 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 1_2-merge is uniform 0.33% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.4297 Clusters 1 and 2 can be merged *3_4-merge Asked to drop 0 genes and 574 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [626] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667 Only analysis time 0.0525437513987223 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 5.54631170271769e-05 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.136028599739075 Total time 0.203072301546733 Checking uniformity for the cluster '3_4-merge' with 626 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 3_4-merge is uniform 0.83% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.4544 Clusters 3 and 4 can be merged *Clusters 2 or 3 is now missing due to previous merges: skip. *Clusters 2 or 4 is now missing due to previous merges: skip. *Clusters 1 or 3 is now missing due to previous merges: skip. *Clusters 1 or 4 is now missing due to previous merges: skip. Executed 2 merges out of 6 Start merging nearest clusters: iteration 2 Differential Expression Analysis - START * analysis of cluster: '1_2-merge' - START * analysis of cluster: '1_2-merge' - DONE * analysis of cluster: '3_4-merge' - START * analysis of cluster: '3_4-merge' - DONE Differential Expression Analysis - DONE Clusters pairs for merging: c("1_2-merge", "3_4-merge") *1_2-merge_3_4-merge-merge Asked to drop no genes or cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0618014176686605 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.144202947616577 Total time 0.219700447718302 Checking uniformity for the cluster '1_2-merge_3_4-merge-merge' with 1200 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot Cluster 1_2-merge_3_4-merge-merge is not uniform 15% of the genes is above the given GDI threshold 1.5 GDI 99% quantile is at 1.6405 Merging clusters 1_2-merge and 3_4-merge results in a too high GDI None of the 1 nearest cluster pairs could be merged The final merged clusterization contains [2] different clusters: 1_2-merge, 3_4-merge Applied reordering to clusterization is: 1 -> 1, 2 -> 2 Merging cells' uniform clustering: DONE Applied reordering to clusterization is: 1 -> 1, 2 -> 2 Asked to drop 0 genes and 626 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [574] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333 Only analysis time 0.0515458305676778 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000105379922351636 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.134751935799917 Total time 0.200575951735179 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE Asked to drop 0 genes and 574 cells Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [626] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667 Only analysis time 0.052958349386851 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY..t().. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 5.54631170271769e-05 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Only genes' coex time 0.133217716217041 Total time 0.201563266913096 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START S matrix sorted Calculate GDI dataframe: DONE [ FAIL 0 | WARN 0 | SKIP 0 | PASS 366 ] > > proc.time() user system elapsed 639.604 6.923 686.400
COTAN.Rcheck/COTAN-Ex.timings
name | user | system | elapsed | |
COTAN | 0.302 | 0.017 | 0.343 | |
COTANObjectCreation | 12.437 | 0.260 | 14.099 | |
CalculatingCOEX | 50.041 | 0.981 | 55.772 | |
ClustersList | 0.013 | 0.004 | 0.018 | |
GenesCoexSpace | 14.383 | 0.216 | 15.674 | |
HandleMetaData | 0.136 | 0.015 | 0.158 | |
HandlingClusterizations | 33.214 | 0.634 | 38.128 | |
HandlingConditions | 0.194 | 0.009 | 0.219 | |
HeatmapPlots | 63.557 | 1.973 | 69.849 | |
LegacyFastSymmMatrix | 0.003 | 0.002 | 0.005 | |
LoggingFunctions | 0.006 | 0.003 | 0.009 | |
ParametersEstimations | 29.308 | 0.790 | 31.708 | |
RawDataCleaning | 10.072 | 0.325 | 10.697 | |
RawDataGetters | 0.134 | 0.010 | 0.143 | |
UniformClusters | 181.256 | 1.405 | 186.339 | |
getColorsVector | 0.002 | 0.001 | 0.003 | |