This page was generated on 2023-01-02 09:00:49 -0500 (Mon, 02 Jan 2023).
R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("SAIGEgds")
Chromosome 1, # of units: 100
Chromosome 2, # of units: 3
# of units in total: 103
SAIGE ACAT-O analysis (combining burden & ACAT-V):
# of samples: 1,000
# of variants in total: 10,000
# of units: 103
avg. # of variants per unit: 193.2136
min # of variants in a unit: 1
max # of variants in a unit: 200
sd # of variants in a unit: 34.06529
p-value threshold for SPA adjustment: 0.05
variance ratio for approximation: 0.9410507
variant weights: beta(1,1), beta(1,25)
mac threshold for burden test: 10
# of processes: 1
Calculating minor allele frequencies (MAF):
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
MAF: avg (0.08934), min (0.00200), max (0.50000), sd (0.12705)
Calculating p-values:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 2s
Done.
SAIGE ACAT-V analysis:
# of samples: 1,000
# of variants in total: 10,000
# of units: 103
avg. # of variants per unit: 193.2136
min # of variants in a unit: 1
max # of variants in a unit: 200
sd # of variants in a unit: 34.06529
p-value threshold for SPA adjustment: 0.05
variance ratio for approximation: 0.9410507
variant weights: beta(1,1), beta(1,25)
mac threshold for burden test: 10
# of processes: 1
Calculating minor allele frequencies (MAF):
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
MAF: avg (0.08934), min (0.00200), max (0.50000), sd (0.12705)
Calculating p-values:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 2s
Done.
SAIGE burden analysis:
# of samples: 1,000
# of variants in total: 10,000
# of units: 103
avg. # of variants per unit: 193.2136
min # of variants in a unit: 1
max # of variants in a unit: 200
sd # of variants in a unit: 34.06529
p-value threshold for SPA adjustment: 0.05
variance ratio for approximation: 0.9410507
variant weights: beta(1,1), beta(1,25)
# of processes: 1
Calculating minor allele frequencies (MAF):
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
MAF: avg (0.08934), min (0.00200), max (0.50000), sd (0.12705)
Calculating p-values:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
Done.
SAIGE association analysis:
Thu Dec 29 03:11:47 2022
Filtering variants:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
# of selected variants: 9,976
Fit the null model: y ~ x1 + x2 + var(GRM)
# of samples: 1,000
# of variants: 9,976
using 1 thread
Transform on the design matrix with QR decomposition:
new formula: y ~ x_0 + x_1 + x_2 - 1
Start loading SNP genotypes:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
using 6.6M (sparse matrix)
Binary outcome: y
y Number Proportion
0 902 0.902
1 98 0.098
Initial fixed-effect coefficients:
x_0 x_1 x_2
2.520514 -0.7666948 -0.4557928
Initial variance component estimates, tau:
Sigma_E: 1, Sigma_G: 0.5
Iteration 1:
tau: (1, 0.4994116)
fixed coeff: (2.520514, -0.7666948, -0.4557928)
Iteration 2:
tau: (1, 0.3287896)
fixed coeff: (2.521231, -0.776603, -0.4592503)
Iteration 3:
tau: (1, 0.2817812)
fixed coeff: (2.525954, -0.7738757, -0.4579659)
Iteration 4:
tau: (1, 0.3211452)
fixed coeff: (2.525719, -0.7730823, -0.4577413)
Iteration 5:
tau: (1, 0.3361534)
fixed coeff: (2.527166, -0.7739766, -0.4579633)
Final tau: (1, 0.3322063)
fixed coeff: (2.527666, -0.774237, -0.4580237)
Calculate the average ratio of variances:
Thu Dec 29 03:11:49 2022
1, maf: 0.0775, mac: 155, ratio: 0.9387 (var1: 0.0736, var2: 0.0785)
2, maf: 0.0355, mac: 71, ratio: 0.9362 (var1: 0.0671, var2: 0.0716)
3, maf: 0.0730, mac: 146, ratio: 0.9323 (var1: 0.0799, var2: 0.0857)
4, maf: 0.0160, mac: 32, ratio: 0.9481 (var1: 0.0653, var2: 0.0689)
5, maf: 0.0585, mac: 117, ratio: 0.9382 (var1: 0.0743, var2: 0.0791)
6, maf: 0.0155, mac: 31, ratio: 0.9388 (var1: 0.0754, var2: 0.0803)
7, maf: 0.3075, mac: 615, ratio: 0.9400 (var1: 0.0521, var2: 0.0554)
8, maf: 0.0715, mac: 143, ratio: 0.9416 (var1: 0.0714, var2: 0.0759)
9, maf: 0.0115, mac: 23, ratio: 0.9375 (var1: 0.0844, var2: 0.09)
10, maf: 0.0470, mac: 94, ratio: 0.9466 (var1: 0.0719, var2: 0.0759)
11, maf: 0.0310, mac: 62, ratio: 0.9335 (var1: 0.073, var2: 0.0782)
12, maf: 0.1340, mac: 268, ratio: 0.9381 (var1: 0.0633, var2: 0.0675)
13, maf: 0.0855, mac: 171, ratio: 0.9412 (var1: 0.0746, var2: 0.0792)
14, maf: 0.1610, mac: 322, ratio: 0.9379 (var1: 0.0647, var2: 0.069)
15, maf: 0.0340, mac: 68, ratio: 0.9471 (var1: 0.0685, var2: 0.0724)
16, maf: 0.0215, mac: 43, ratio: 0.9353 (var1: 0.0805, var2: 0.086)
17, maf: 0.0600, mac: 120, ratio: 0.9489 (var1: 0.0707, var2: 0.0745)
18, maf: 0.0285, mac: 57, ratio: 0.9455 (var1: 0.0732, var2: 0.0774)
19, maf: 0.0145, mac: 29, ratio: 0.9436 (var1: 0.0705, var2: 0.0747)
20, maf: 0.0130, mac: 26, ratio: 0.9454 (var1: 0.0688, var2: 0.0728)
21, maf: 0.1350, mac: 270, ratio: 0.9422 (var1: 0.0624, var2: 0.0663)
22, maf: 0.0315, mac: 63, ratio: 0.9342 (var1: 0.0699, var2: 0.0748)
23, maf: 0.0475, mac: 95, ratio: 0.9348 (var1: 0.0737, var2: 0.0788)
24, maf: 0.2475, mac: 495, ratio: 0.9360 (var1: 0.06, var2: 0.0641)
25, maf: 0.0135, mac: 27, ratio: 0.9523 (var1: 0.0622, var2: 0.0654)
26, maf: 0.4915, mac: 983, ratio: 0.9433 (var1: 0.0362, var2: 0.0383)
27, maf: 0.0525, mac: 105, ratio: 0.9366 (var1: 0.0734, var2: 0.0783)
28, maf: 0.0195, mac: 39, ratio: 0.9421 (var1: 0.0741, var2: 0.0787)
29, maf: 0.0270, mac: 54, ratio: 0.9502 (var1: 0.0718, var2: 0.0756)
30, maf: 0.0380, mac: 76, ratio: 0.9453 (var1: 0.0733, var2: 0.0776)
ratio avg. is 0.9410507, sd: 0.005353982
Thu Dec 29 03:11:50 2022
Done.
SAIGE association analysis:
Thu Dec 29 03:11:50 2022
Filtering variants:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
# of selected variants: 9,976
Fit the null model: yy ~ x1 + x2 + var(GRM)
# of samples: 1,000
# of variants: 9,976
using 1 thread
Transform on the design matrix with QR decomposition:
new formula: y ~ x_0 + x_1 + x_2 - 1
Start loading SNP genotypes:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
using 6.6M (sparse matrix)
Quantitative outcome: yy
mean sd min max
4.987525 0.9817471 1.6383 7.6701
Inverse normal transformation on residuals with standard deviation: 0.981695
Initial fixed-effect coefficients:
x_0 x_1 x_2
-6.847765e-17 -0.003167949 0.001143224
Initial variance component estimates, tau:
Sigma_E: 0.481718, Sigma_G: 0.481718
Iteration 1:
tau: (0.5780754, 0.4791097)
fixed coeff: (-6.847765e-17, -0.003167949, 0.001143224)
Iteration 2:
tau: (0.7700948, 0.1571539)
fixed coeff: (7.969752e-07, -0.01596609, -0.004398386)
Iteration 3:
tau: (0.8649753, 0.0670912)
fixed coeff: (3.558187e-07, -0.01030783, 3.137729e-05)
Iteration 4:
tau: (0.9159832, 0.02884355)
fixed coeff: (2.850052e-07, -0.006806145, 0.00088392)
Iteration 5:
tau: (0.942882, 0)
fixed coeff: (1.393627e-06, -0.004853796, 0.001081237)
Final tau: (0.9701727, 0)
fixed coeff: (-7.396172e-17, -0.003167949, 0.001143224)
Calculate the average ratio of variances:
Thu Dec 29 03:11:53 2022
1, maf: 0.0775, mac: 155, ratio: 1.0307 (var1: 1.02, var2: 0.985)
2, maf: 0.0355, mac: 71, ratio: 1.0307 (var1: 0.955, var2: 0.927)
3, maf: 0.0730, mac: 146, ratio: 1.0307 (var1: 1, var2: 0.975)
4, maf: 0.0160, mac: 32, ratio: 1.0307 (var1: 0.994, var2: 0.964)
5, maf: 0.0585, mac: 117, ratio: 1.0307 (var1: 1.01, var2: 0.984)
6, maf: 0.0155, mac: 31, ratio: 1.0307 (var1: 0.998, var2: 0.968)
7, maf: 0.3075, mac: 615, ratio: 1.0307 (var1: 0.707, var2: 0.686)
8, maf: 0.0715, mac: 143, ratio: 1.0307 (var1: 0.969, var2: 0.94)
9, maf: 0.0115, mac: 23, ratio: 1.0307 (var1: 1, var2: 0.974)
10, maf: 0.0470, mac: 94, ratio: 1.0307 (var1: 0.999, var2: 0.969)
11, maf: 0.0310, mac: 62, ratio: 1.0307 (var1: 0.997, var2: 0.967)
12, maf: 0.1340, mac: 268, ratio: 1.0307 (var1: 0.882, var2: 0.855)
13, maf: 0.0855, mac: 171, ratio: 1.0307 (var1: 0.975, var2: 0.946)
14, maf: 0.1610, mac: 322, ratio: 1.0307 (var1: 0.878, var2: 0.851)
15, maf: 0.0340, mac: 68, ratio: 1.0307 (var1: 0.99, var2: 0.96)
16, maf: 0.0215, mac: 43, ratio: 1.0307 (var1: 0.986, var2: 0.957)
17, maf: 0.0600, mac: 120, ratio: 1.0307 (var1: 0.987, var2: 0.958)
18, maf: 0.0285, mac: 57, ratio: 1.0307 (var1: 0.972, var2: 0.943)
19, maf: 0.0145, mac: 29, ratio: 1.0307 (var1: 1, var2: 0.97)
20, maf: 0.0130, mac: 26, ratio: 1.0307 (var1: 1, var2: 0.973)
21, maf: 0.1350, mac: 270, ratio: 1.0307 (var1: 0.866, var2: 0.84)
22, maf: 0.0315, mac: 63, ratio: 1.0307 (var1: 1.03, var2: 0.998)
23, maf: 0.0475, mac: 95, ratio: 1.0307 (var1: 0.954, var2: 0.925)
24, maf: 0.2475, mac: 495, ratio: 1.0307 (var1: 0.791, var2: 0.767)
25, maf: 0.0135, mac: 27, ratio: 1.0307 (var1: 0.999, var2: 0.969)
26, maf: 0.4915, mac: 983, ratio: 1.0307 (var1: 0.491, var2: 0.476)
27, maf: 0.0525, mac: 105, ratio: 1.0307 (var1: 0.98, var2: 0.951)
28, maf: 0.0195, mac: 39, ratio: 1.0307 (var1: 0.99, var2: 0.961)
29, maf: 0.0270, mac: 54, ratio: 1.0307 (var1: 0.972, var2: 0.943)
30, maf: 0.0380, mac: 76, ratio: 1.0307 (var1: 1.01, var2: 0.976)
ratio avg. is 1.030744, sd: 9.528222e-16
Thu Dec 29 03:11:53 2022
Done.
SAIGE association analysis:
# of samples: 1,000
# of variants: 10,000
MAF threshold: NaN
MAC threshold: 4
missing threshold for variants: 0.1
p-value threshold for SPA adjustment: 0.05
variance ratio for approximation: 0.9410507
# of processes: 1
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
# of variants after filtering by MAF, MAC and missing thresholds: 10,000
Done.
SAIGE association analysis:
# of samples: 1,000
# of variants: 10,000
MAF threshold: NaN
MAC threshold: 4
missing threshold for variants: 0.1
p-value threshold for SPA adjustment: 0.05
variance ratio for approximation: 1.030744
# of processes: 1
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
# of variants after filtering by MAF, MAC and missing thresholds: 10,000
Done.
RUNIT TEST PROTOCOL -- Thu Dec 29 03:11:53 2022
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
SAIGEgds RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
>
> proc.time()
user system elapsed
14.45 0.37 14.84