| Back to Mac ARM64 build report for BioC 3.17 |
|
This page was generated on 2023-10-20 09:38:12 -0400 (Fri, 20 Oct 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| kjohnson2 | macOS 12.6.1 Monterey | arm64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4347 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 1934/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| singleCellTK 2.10.0 (landing page) Yichen Wang
| kjohnson2 | macOS 12.6.1 Monterey / arm64 | OK | OK | OK | OK | ||||||||
|
To the developers/maintainers of the singleCellTK package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: singleCellTK |
| Version: 2.10.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.10.0.tar.gz |
| StartedAt: 2023-10-19 01:45:21 -0400 (Thu, 19 Oct 2023) |
| EndedAt: 2023-10-19 02:13:36 -0400 (Thu, 19 Oct 2023) |
| EllapsedTime: 1695.9 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: singleCellTK.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.10.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/singleCellTK.Rcheck’
* using R version 4.3.1 (2023-06-16)
* using platform: aarch64-apple-darwin20 (64-bit)
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.6.7
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.10.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
installed size is 6.7Mb
sub-directories of 1Mb or more:
extdata 1.5Mb
shiny 2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
plotScDblFinderResults 33.723 0.716 62.224
importExampleData 22.052 2.566 45.813
runScDblFinder 24.172 0.354 43.776
plotDoubletFinderResults 23.572 0.287 40.632
runDoubletFinder 17.794 0.147 31.846
plotBatchCorrCompare 10.330 0.195 19.593
plotScdsHybridResults 8.881 0.197 16.654
plotBcdsResults 7.848 0.175 14.551
plotDecontXResults 7.894 0.080 13.986
plotTSCANClusterDEG 6.843 0.116 12.416
plotEmptyDropsResults 6.636 0.050 11.263
plotEmptyDropsScatter 6.620 0.049 11.966
runDecontX 6.398 0.071 11.454
runEmptyDrops 6.221 0.044 11.128
plotCxdsResults 6.163 0.092 11.572
plotUMAP 5.991 0.093 10.643
runUMAP 5.880 0.080 11.175
plotFindMarkerHeatmap 5.885 0.062 10.572
detectCellOutlier 5.520 0.160 10.124
plotDEGViolin 5.369 0.123 9.840
plotDEGRegression 4.580 0.083 8.305
runSeuratSCTransform 4.400 0.086 8.026
importGeneSetsFromMSigDB 4.028 0.230 7.669
runFindMarker 4.151 0.081 7.398
getFindMarkerTopTable 4.048 0.077 7.433
plotDEGHeatmap 3.529 0.129 6.602
convertSCEToSeurat 3.440 0.192 6.501
plotTSCANPseudotimeHeatmap 2.955 0.049 5.052
plotTSCANClusterPseudo 2.871 0.054 5.195
plotTSCANDimReduceFeatures 2.840 0.046 5.194
plotRunPerCellQCResults 2.775 0.041 5.029
plotTSCANPseudotimeGenes 2.766 0.043 5.031
getEnrichRResult 0.391 0.045 9.759
runEnrichR 0.355 0.035 9.483
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘spelling.R’
Running ‘testthat.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/singleCellTK.Rcheck/00check.log’
for details.
singleCellTK.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library’ * installing *source* package ‘singleCellTK’ ... ** using staged installation ** R ** data ** exec ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (singleCellTK)
singleCellTK.Rcheck/tests/spelling.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> if (requireNamespace('spelling', quietly = TRUE))
+ spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
>
> proc.time()
user system elapsed
0.212 0.063 0.514
singleCellTK.Rcheck/tests/testthat.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
colWeightedMeans, colWeightedMedians, colWeightedSds,
colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
rowWeightedSds, rowWeightedVars
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':
findMatches
The following objects are masked from 'package:base':
I, expand.grid, unname
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
rowMedians
The following objects are masked from 'package:matrixStats':
anyMissing, rowMedians
Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix
Attaching package: 'Matrix'
The following object is masked from 'package:S4Vectors':
expand
Loading required package: S4Arrays
Loading required package: abind
Attaching package: 'S4Arrays'
The following object is masked from 'package:abind':
abind
The following object is masked from 'package:base':
rowsum
Attaching package: 'DelayedArray'
The following objects are masked from 'package:base':
apply, scale, sweep
Attaching package: 'singleCellTK'
The following object is masked from 'package:BiocGenerics':
plotPCA
>
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
|
| | 0%
|
|======================================================================| 100%
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels
|
| | 0%
|
|== | 3%
|
|==== | 6%
|
|====== | 9%
|
|======== | 12%
|
|========== | 15%
|
|============ | 18%
|
|============== | 21%
|
|================ | 24%
|
|=================== | 26%
|
|===================== | 29%
|
|======================= | 32%
|
|========================= | 35%
|
|=========================== | 38%
|
|============================= | 41%
|
|=============================== | 44%
|
|================================= | 47%
|
|=================================== | 50%
|
|===================================== | 53%
|
|======================================= | 56%
|
|========================================= | 59%
|
|=========================================== | 62%
|
|============================================= | 65%
|
|=============================================== | 68%
|
|================================================= | 71%
|
|=================================================== | 74%
|
|====================================================== | 76%
|
|======================================================== | 79%
|
|========================================================== | 82%
|
|============================================================ | 85%
|
|============================================================== | 88%
|
|================================================================ | 91%
|
|================================================================== | 94%
|
|==================================================================== | 97%
|
|======================================================================| 100%
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels
|
| | 0%
|
|=================================== | 50%
|
|======================================================================| 100%
Performing log-normalization
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
|
| | 0%
|
|======================================================================| 100%
Performing log-normalization
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
|
| | 0%
|
|======================================================================| 100%
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
Number of nodes: 390
Number of edges: 9590
Running Louvain algorithm...
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
|
| | 0%
|
|======================================================================| 100%
Performing log-normalization
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ]
[ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ]
>
> proc.time()
user system elapsed
268.941 7.027 503.790
singleCellTK.Rcheck/singleCellTK-Ex.timings
| name | user | system | elapsed | |
| MitoGenes | 0.003 | 0.002 | 0.008 | |
| SEG | 0.003 | 0.001 | 0.008 | |
| calcEffectSizes | 0.220 | 0.023 | 0.429 | |
| combineSCE | 1.864 | 0.055 | 3.446 | |
| computeZScore | 0.407 | 0.015 | 0.764 | |
| convertSCEToSeurat | 3.440 | 0.192 | 6.501 | |
| convertSeuratToSCE | 0.565 | 0.011 | 1.035 | |
| dedupRowNames | 0.078 | 0.002 | 0.141 | |
| detectCellOutlier | 5.520 | 0.160 | 10.124 | |
| diffAbundanceFET | 0.053 | 0.007 | 0.109 | |
| discreteColorPalette | 0.009 | 0.001 | 0.014 | |
| distinctColors | 0.003 | 0.000 | 0.008 | |
| downSampleCells | 0.803 | 0.085 | 1.604 | |
| downSampleDepth | 0.601 | 0.024 | 1.122 | |
| expData-ANY-character-method | 0.385 | 0.009 | 0.706 | |
| expData-set-ANY-character-CharacterOrNullOrMissing-logical-method | 0.429 | 0.011 | 0.783 | |
| expData-set | 0.421 | 0.021 | 0.801 | |
| expData | 0.429 | 0.038 | 0.835 | |
| expDataNames-ANY-method | 0.384 | 0.009 | 0.712 | |
| expDataNames | 0.383 | 0.009 | 0.699 | |
| expDeleteDataTag | 0.044 | 0.003 | 0.079 | |
| expSetDataTag | 0.030 | 0.003 | 0.058 | |
| expTaggedData | 0.031 | 0.002 | 0.059 | |
| exportSCE | 0.030 | 0.003 | 0.057 | |
| exportSCEtoAnnData | 0.100 | 0.007 | 0.188 | |
| exportSCEtoFlatFile | 0.101 | 0.007 | 0.191 | |
| featureIndex | 0.041 | 0.003 | 0.077 | |
| generateSimulatedData | 0.048 | 0.005 | 0.089 | |
| getBiomarker | 0.059 | 0.006 | 0.107 | |
| getDEGTopTable | 1.075 | 0.045 | 1.944 | |
| getDiffAbundanceResults | 0.045 | 0.004 | 0.090 | |
| getEnrichRResult | 0.391 | 0.045 | 9.759 | |
| getFindMarkerTopTable | 4.048 | 0.077 | 7.433 | |
| getMSigDBTable | 0.005 | 0.003 | 0.012 | |
| getPathwayResultNames | 0.026 | 0.003 | 0.052 | |
| getSampleSummaryStatsTable | 0.412 | 0.007 | 0.762 | |
| getSoupX | 0 | 0 | 0 | |
| getTSCANResults | 2.373 | 0.061 | 4.406 | |
| getTopHVG | 1.009 | 0.019 | 1.956 | |
| importAnnData | 0.002 | 0.001 | 0.007 | |
| importBUStools | 0.504 | 0.010 | 0.963 | |
| importCellRanger | 1.346 | 0.050 | 2.482 | |
| importCellRangerV2Sample | 0.330 | 0.005 | 0.594 | |
| importCellRangerV3Sample | 0.495 | 0.021 | 0.927 | |
| importDropEst | 0.413 | 0.007 | 0.752 | |
| importExampleData | 22.052 | 2.566 | 45.813 | |
| importGeneSetsFromCollection | 0.938 | 0.106 | 1.940 | |
| importGeneSetsFromGMT | 0.091 | 0.005 | 0.168 | |
| importGeneSetsFromList | 0.174 | 0.006 | 0.329 | |
| importGeneSetsFromMSigDB | 4.028 | 0.230 | 7.669 | |
| importMitoGeneSet | 0.067 | 0.007 | 0.107 | |
| importOptimus | 0.002 | 0.001 | 0.003 | |
| importSEQC | 0.36 | 0.02 | 0.59 | |
| importSTARsolo | 0.360 | 0.035 | 0.640 | |
| iterateSimulations | 0.492 | 0.033 | 0.904 | |
| listSampleSummaryStatsTables | 0.504 | 0.010 | 0.787 | |
| mergeSCEColData | 0.588 | 0.029 | 0.972 | |
| mouseBrainSubsetSCE | 0.031 | 0.005 | 0.055 | |
| msigdb_table | 0.001 | 0.002 | 0.004 | |
| plotBarcodeRankDropsResults | 1.114 | 0.057 | 1.918 | |
| plotBarcodeRankScatter | 0.844 | 0.018 | 1.576 | |
| plotBatchCorrCompare | 10.330 | 0.195 | 19.593 | |
| plotBatchVariance | 0.392 | 0.012 | 0.654 | |
| plotBcdsResults | 7.848 | 0.175 | 14.551 | |
| plotClusterAbundance | 1.388 | 0.028 | 2.349 | |
| plotCxdsResults | 6.163 | 0.092 | 11.572 | |
| plotDEGHeatmap | 3.529 | 0.129 | 6.602 | |
| plotDEGRegression | 4.580 | 0.083 | 8.305 | |
| plotDEGViolin | 5.369 | 0.123 | 9.840 | |
| plotDEGVolcano | 1.335 | 0.024 | 2.442 | |
| plotDecontXResults | 7.894 | 0.080 | 13.986 | |
| plotDimRed | 0.328 | 0.008 | 0.538 | |
| plotDoubletFinderResults | 23.572 | 0.287 | 40.632 | |
| plotEmptyDropsResults | 6.636 | 0.050 | 11.263 | |
| plotEmptyDropsScatter | 6.620 | 0.049 | 11.966 | |
| plotFindMarkerHeatmap | 5.885 | 0.062 | 10.572 | |
| plotMASTThresholdGenes | 1.895 | 0.038 | 3.452 | |
| plotPCA | 0.608 | 0.014 | 1.124 | |
| plotPathway | 1.111 | 0.021 | 2.014 | |
| plotRunPerCellQCResults | 2.775 | 0.041 | 5.029 | |
| plotSCEBarAssayData | 0.220 | 0.008 | 0.406 | |
| plotSCEBarColData | 0.165 | 0.006 | 0.289 | |
| plotSCEBatchFeatureMean | 0.269 | 0.005 | 0.471 | |
| plotSCEDensity | 0.340 | 0.009 | 0.610 | |
| plotSCEDensityAssayData | 0.201 | 0.007 | 0.355 | |
| plotSCEDensityColData | 0.251 | 0.008 | 0.436 | |
| plotSCEDimReduceColData | 1.163 | 0.021 | 2.071 | |
| plotSCEDimReduceFeatures | 0.476 | 0.012 | 0.870 | |
| plotSCEHeatmap | 0.946 | 0.015 | 1.700 | |
| plotSCEScatter | 0.549 | 0.012 | 0.996 | |
| plotSCEViolin | 0.277 | 0.008 | 0.502 | |
| plotSCEViolinAssayData | 0.304 | 0.008 | 0.564 | |
| plotSCEViolinColData | 0.294 | 0.008 | 0.535 | |
| plotScDblFinderResults | 33.723 | 0.716 | 62.224 | |
| plotScanpyDotPlot | 0.029 | 0.004 | 0.060 | |
| plotScanpyEmbedding | 0.030 | 0.002 | 0.053 | |
| plotScanpyHVG | 0.053 | 0.003 | 0.095 | |
| plotScanpyHeatmap | 0.029 | 0.002 | 0.057 | |
| plotScanpyMarkerGenes | 0.033 | 0.002 | 0.061 | |
| plotScanpyMarkerGenesDotPlot | 0.027 | 0.001 | 0.051 | |
| plotScanpyMarkerGenesHeatmap | 0.027 | 0.001 | 0.049 | |
| plotScanpyMarkerGenesMatrixPlot | 0.029 | 0.002 | 0.056 | |
| plotScanpyMarkerGenesViolin | 0.027 | 0.002 | 0.050 | |
| plotScanpyMatrixPlot | 0.030 | 0.003 | 0.053 | |
| plotScanpyPCA | 0.031 | 0.003 | 0.062 | |
| plotScanpyPCAGeneRanking | 0.027 | 0.001 | 0.050 | |
| plotScanpyPCAVariance | 0.028 | 0.002 | 0.051 | |
| plotScanpyViolin | 0.027 | 0.001 | 0.046 | |
| plotScdsHybridResults | 8.881 | 0.197 | 16.654 | |
| plotScrubletResults | 0.028 | 0.005 | 0.055 | |
| plotSeuratElbow | 0.027 | 0.003 | 0.044 | |
| plotSeuratHVG | 0.027 | 0.003 | 0.053 | |
| plotSeuratJackStraw | 0.028 | 0.001 | 0.061 | |
| plotSeuratReduction | 0.029 | 0.002 | 0.059 | |
| plotSoupXResults | 0 | 0 | 0 | |
| plotTSCANClusterDEG | 6.843 | 0.116 | 12.416 | |
| plotTSCANClusterPseudo | 2.871 | 0.054 | 5.195 | |
| plotTSCANDimReduceFeatures | 2.840 | 0.046 | 5.194 | |
| plotTSCANPseudotimeGenes | 2.766 | 0.043 | 5.031 | |
| plotTSCANPseudotimeHeatmap | 2.955 | 0.049 | 5.052 | |
| plotTSCANResults | 2.684 | 0.043 | 4.732 | |
| plotTSNE | 0.687 | 0.013 | 1.244 | |
| plotTopHVG | 0.451 | 0.012 | 0.824 | |
| plotUMAP | 5.991 | 0.093 | 10.643 | |
| readSingleCellMatrix | 0.005 | 0.001 | 0.011 | |
| reportCellQC | 0.225 | 0.007 | 0.354 | |
| reportDropletQC | 0.027 | 0.004 | 0.041 | |
| reportQCTool | 0.222 | 0.007 | 0.340 | |
| retrieveSCEIndex | 0.034 | 0.004 | 0.058 | |
| runBBKNN | 0.000 | 0.001 | 0.000 | |
| runBarcodeRankDrops | 0.538 | 0.013 | 0.847 | |
| runBcds | 2.031 | 0.057 | 3.188 | |
| runCellQC | 0.231 | 0.008 | 0.380 | |
| runComBatSeq | 0.597 | 0.020 | 0.954 | |
| runCxds | 0.757 | 0.022 | 1.391 | |
| runCxdsBcdsHybrid | 2.150 | 0.060 | 3.843 | |
| runDEAnalysis | 0.888 | 0.017 | 1.621 | |
| runDecontX | 6.398 | 0.071 | 11.454 | |
| runDimReduce | 0.577 | 0.010 | 1.040 | |
| runDoubletFinder | 17.794 | 0.147 | 31.846 | |
| runDropletQC | 0.031 | 0.002 | 0.064 | |
| runEmptyDrops | 6.221 | 0.044 | 11.128 | |
| runEnrichR | 0.355 | 0.035 | 9.483 | |
| runFastMNN | 2.110 | 0.050 | 3.744 | |
| runFeatureSelection | 0.254 | 0.006 | 0.462 | |
| runFindMarker | 4.151 | 0.081 | 7.398 | |
| runGSVA | 0.902 | 0.022 | 1.664 | |
| runHarmony | 0.042 | 0.002 | 0.081 | |
| runKMeans | 0.502 | 0.013 | 0.922 | |
| runLimmaBC | 0.097 | 0.002 | 0.176 | |
| runMNNCorrect | 0.631 | 0.011 | 1.151 | |
| runModelGeneVar | 0.579 | 0.013 | 1.066 | |
| runNormalization | 0.775 | 0.020 | 1.440 | |
| runPerCellQC | 0.695 | 0.016 | 1.276 | |
| runSCANORAMA | 0 | 0 | 0 | |
| runSCMerge | 0.005 | 0.001 | 0.010 | |
| runScDblFinder | 24.172 | 0.354 | 43.776 | |
| runScanpyFindClusters | 0.028 | 0.002 | 0.055 | |
| runScanpyFindHVG | 0.028 | 0.002 | 0.056 | |
| runScanpyFindMarkers | 0.027 | 0.003 | 0.054 | |
| runScanpyNormalizeData | 0.312 | 0.035 | 0.616 | |
| runScanpyPCA | 0.030 | 0.003 | 0.062 | |
| runScanpyScaleData | 0.028 | 0.002 | 0.052 | |
| runScanpyTSNE | 0.033 | 0.002 | 0.062 | |
| runScanpyUMAP | 0.030 | 0.002 | 0.057 | |
| runScranSNN | 0.888 | 0.019 | 1.638 | |
| runScrublet | 0.029 | 0.003 | 0.056 | |
| runSeuratFindClusters | 0.029 | 0.003 | 0.057 | |
| runSeuratFindHVG | 0.810 | 0.015 | 1.478 | |
| runSeuratHeatmap | 0.029 | 0.002 | 0.056 | |
| runSeuratICA | 0.027 | 0.002 | 0.056 | |
| runSeuratJackStraw | 0.031 | 0.002 | 0.059 | |
| runSeuratNormalizeData | 0.032 | 0.003 | 0.062 | |
| runSeuratPCA | 0.028 | 0.002 | 0.053 | |
| runSeuratSCTransform | 4.400 | 0.086 | 8.026 | |
| runSeuratScaleData | 0.029 | 0.002 | 0.056 | |
| runSeuratUMAP | 0.031 | 0.002 | 0.057 | |
| runSingleR | 0.046 | 0.002 | 0.085 | |
| runSoupX | 0 | 0 | 0 | |
| runTSCAN | 1.799 | 0.032 | 3.261 | |
| runTSCANClusterDEAnalysis | 1.986 | 0.035 | 3.640 | |
| runTSCANDEG | 1.873 | 0.031 | 3.384 | |
| runTSNE | 0.981 | 0.025 | 1.806 | |
| runUMAP | 5.880 | 0.080 | 11.175 | |
| runVAM | 0.696 | 0.015 | 1.252 | |
| runZINBWaVE | 0.005 | 0.002 | 0.011 | |
| sampleSummaryStats | 0.384 | 0.007 | 0.685 | |
| scaterCPM | 0.155 | 0.007 | 0.294 | |
| scaterPCA | 0.552 | 0.010 | 1.010 | |
| scaterlogNormCounts | 0.296 | 0.010 | 0.551 | |
| sce | 0.028 | 0.008 | 0.063 | |
| sctkListGeneSetCollections | 0.097 | 0.005 | 0.185 | |
| sctkPythonInstallConda | 0.001 | 0.000 | 0.001 | |
| sctkPythonInstallVirtualEnv | 0.001 | 0.000 | 0.001 | |
| selectSCTKConda | 0.001 | 0.000 | 0.000 | |
| selectSCTKVirtualEnvironment | 0 | 0 | 0 | |
| setRowNames | 0.113 | 0.007 | 0.213 | |
| setSCTKDisplayRow | 0.587 | 0.021 | 1.077 | |
| singleCellTK | 0.000 | 0.001 | 0.001 | |
| subDiffEx | 0.607 | 0.023 | 1.138 | |
| subsetSCECols | 0.221 | 0.006 | 0.404 | |
| subsetSCERows | 0.521 | 0.013 | 0.957 | |
| summarizeSCE | 0.069 | 0.005 | 0.130 | |
| trimCounts | 0.314 | 0.015 | 0.583 | |