Back to Mac ARM64 build report for BioC 3.17 |
|
This page was generated on 2023-10-20 09:38:11 -0400 (Fri, 20 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
kjohnson2 | macOS 12.6.1 Monterey | arm64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4347 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 1844/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
scMerge 1.16.0 (landing page) Yingxin Lin
| kjohnson2 | macOS 12.6.1 Monterey / arm64 | OK | OK | OK | OK | ||||||||
To the developers/maintainers of the scMerge package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: scMerge |
Version: 1.16.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:scMerge.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings scMerge_1.16.0.tar.gz |
StartedAt: 2023-10-18 22:37:09 -0400 (Wed, 18 Oct 2023) |
EndedAt: 2023-10-18 22:50:38 -0400 (Wed, 18 Oct 2023) |
EllapsedTime: 809.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: scMerge.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:scMerge.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings scMerge_1.16.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/scMerge.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: aarch64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.6.7 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘scMerge/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘scMerge’ version ‘1.16.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘scMerge’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed scMerge2h 11.840 0.230 21.467 scSEGIndex 5.635 2.768 11.750 getAdjustedMat 5.336 0.134 9.804 scMerge2 3.987 0.084 7.188 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: OK
scMerge.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL scMerge ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library’ * installing *source* package ‘scMerge’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (scMerge)
scMerge.Rcheck/tests/testthat.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(scMerge) > > test_check("scMerge") Dimension of the replicates mapping matrix: [1] 100 3 Dimension of the replicates mapping matrix: [1] 100 3 Dimension of the replicates mapping matrix: [1] 100 3 Dimension of the replicates mapping matrix: [1] 100 3 Dimension of the replicates mapping matrix: [1] 200 3 Dimension of the replicates mapping matrix: [1] 200 3 Dimension of the replicates mapping matrix: [1] 200 3 Dimension of the replicates mapping matrix: [1] 200 3 Dimension of the replicates mapping matrix: [1] 200 4 Dimension of the replicates mapping matrix: [1] 200 3 Selecting optimal RUVk Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 75 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 3 1 1 2 2 1 2 3 1 1 3 4 3 2 1 5 2 2 2 6 1 2 3 Dimension of the replicates mapping matrix: [1] 200 3 Could not find a batch column in colData(sce_combine)[1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 89 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 86 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 100 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 1, data1" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 89 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 1, data2" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 86 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 2, data1" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 100 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 89 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 117 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 1, data1" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 89 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 2, data1" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 117 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 86 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 101 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 1, data1" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 1, data2" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 1, data3" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 1, data4" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 50 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 2, data1" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 86 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" [1] "Hierarchical merging level 3, data1" [1] "Cluster within batch" [1] "Normalising data" [1] "Constructing pseudo-bulk" Dimension of pseudo-bulk expression: [1] 1047 101 [1] "Identifying MNC using pseudo-bulk:" [1] "Running RUV" Selecting optimal RUVk No cell type info, replicate matrix will be used as cell type info Performing supervised scMerge with: 1. Cell type information 2. No cell type indices 3. No mutual nearest neighbour clustering Performing semi-supervised scMerge with: 1. Cell type information 2. No cell type indices 3. Mutual nearest neighbour clustering 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 75 HVG were found 5. Calculating supervised clustering list 6. Create Mutual Nearest Clusters. Preview cells-to-cell_type matching graph and matrix: group batch cluster 1 3 1 1 2 2 1 2 3 1 1 3 4 3 2 1 5 2 2 2 6 1 2 3 Performing semi-supervised scMerge with: 1. Cell type information 2. No cell type indices 3. Mutual nearest neighbour clustering 4. No supplied marker but supplied marker_list for MNN clustering Taking the union of marker_list as the markers 5. Calculating supervised clustering list 6. Create Mutual Nearest Clusters. Preview cells-to-cell_type matching graph and matrix: group batch cluster 1 2 1 1 2 3 1 2 3 1 1 3 4 4 2 1 5 5 2 2 6 1 2 3 Performing semi-supervised scMerge with: 1. Cell type information 2. No cell type indices 3. Mutual nearest neighbour clustering 5. Calculating supervised clustering list 6. Create Mutual Nearest Clusters. Preview cells-to-cell_type matching graph and matrix: group batch cluster 1 2 1 1 2 3 1 2 3 1 1 3 4 4 2 1 5 5 2 2 6 1 2 3 Performing semi-supervised scMerge with: 1. Cell type information 2. No cell type indices 3. Mutual nearest neighbour clustering 5. Calculating supervised clustering list 6. Create Mutual Nearest Clusters. Preview cells-to-cell_type matching graph and matrix: group batch cluster 1 2 1 1 2 3 1 2 3 1 1 3 4 4 2 1 5 5 2 2 6 1 2 3 Performing semi-supervised scMerge with: 1. Cell type information 2. Cell type indices 3. No mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 75 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 3 1 1 2 2 1 2 3 1 1 3 4 3 2 1 5 2 2 2 6 1 2 3 7. Finishing semi-supervised scMerge with subsets of known cell type Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 75 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 3 1 1 2 1 1 2 3 2 1 3 4 1 2 1 5 3 2 2 6 2 2 3 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker but supplied marker_list for MNN clustering Taking the union of marker_list as the markers 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 1 1 1 2 2 1 2 3 3 1 3 4 1 2 1 5 4 2 2 6 5 2 3 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 1 1 1 2 2 1 2 3 3 1 3 4 4 2 1 5 1 2 2 6 5 2 3 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 75 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 3 1 1 2 1 1 2 3 2 1 3 4 3 2 1 5 2 2 2 6 1 2 3 7. Performing semi-supervised scMerge with wanted variation Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 75 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 3 1 1 2 1 1 2 3 2 1 3 4 3 2 1 5 2 2 2 6 1 2 3 7. Performing semi-supervised scMerge with wanted variation Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 36 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 1 1 1 2 2 1 2 3 3 1 3 4 1 2 1 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 36 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 2 1 1 2 3 1 2 3 1 1 3 4 1 2 1 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 63 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 2 1 1 2 1 1 2 3 3 1 3 4 1 2 1 5 2 2 2 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 63 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 2 1 1 2 1 1 2 3 3 1 3 4 1 2 1 5 2 2 2 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 24 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 1 1 1 2 2 2 1 3 1 3 1 Performing unsupervised scMerge with: 1. No cell type information 2. Cell type indices not relevant here 3. Mutual nearest neighbour matching 4. No supplied marker and no supplied marker_list for MNN clustering Finding Highly Variable Genes for clustering 24 HVG were found 5. PCA and Kmeans clustering will be performed on each batch 6. Create Mutual Nearest Clusters. Preview cells-cell_type matching output matrix: group batch cluster 1 1 1 1 2 2 2 1 3 1 3 1 | | | 0% | |= | 1% | |= | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 6% | |===== | 6% | |===== | 7% | |====== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 16% | |============ | 17% | |============ | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |=============== | 21% | |================ | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |=========================== | 39% | |============================ | 40% | |============================= | 41% | |============================= | 42% | |============================== | 43% | |============================== | 44% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 56% | |======================================== | 57% | |========================================= | 58% | |========================================= | 59% | |========================================== | 60% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================== | 71% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 79% | |======================================================== | 80% | |======================================================== | 81% | |========================================================= | 81% | |========================================================== | 82% | |========================================================== | 83% | |=========================================================== | 84% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 93% | |================================================================= | 94% | |================================================================== | 94% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100% | | | 0% | |= | 1% | |= | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 6% | |===== | 6% | |===== | 7% | |====== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 16% | |============ | 17% | |============ | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |=============== | 21% | |================ | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |=========================== | 39% | |============================ | 40% | |============================= | 41% | |============================= | 42% | |============================== | 43% | |============================== | 44% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 56% | |======================================== | 57% | |========================================= | 58% | |========================================= | 59% | |========================================== | 60% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================== | 71% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 79% | |======================================================== | 80% | |======================================================== | 81% | |========================================================= | 81% | |========================================================== | 82% | |========================================================== | 83% | |=========================================================== | 84% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 93% | |================================================================= | 94% | |================================================================== | 94% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100% [ FAIL 0 | WARN 84 | SKIP 0 | PASS 44 ] [ FAIL 0 | WARN 84 | SKIP 0 | PASS 44 ] > > proc.time() user system elapsed 138.120 3.199 248.819
scMerge.Rcheck/scMerge-Ex.timings
name | user | system | elapsed | |
fastRUVIII | 1.744 | 0.027 | 3.170 | |
getAdjustedMat | 5.336 | 0.134 | 9.804 | |
ruvSimulate | 1.814 | 0.064 | 3.368 | |
scMerge | 2.191 | 0.071 | 4.000 | |
scMerge2 | 3.987 | 0.084 | 7.188 | |
scMerge2h | 11.840 | 0.230 | 21.467 | |
scRUVIII | 1.202 | 0.023 | 2.167 | |
scRUVg | 0.016 | 0.000 | 0.029 | |
scReplicate | 0.452 | 0.012 | 0.825 | |
scSEGIndex | 5.635 | 2.768 | 11.750 | |
sce_cbind | 1.067 | 0.031 | 1.950 | |