Back to Mac ARM64 build report for BioC 3.17 |
|
This page was generated on 2023-10-20 09:38:00 -0400 (Fri, 20 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
kjohnson2 | macOS 12.6.1 Monterey | arm64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4347 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 441/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
COTAN 2.0.5 (landing page) Galfrè Silvia Giulia
| kjohnson2 | macOS 12.6.1 Monterey / arm64 | OK | OK | OK | OK | ![]() | |||||||
To the developers/maintainers of the COTAN package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: COTAN |
Version: 2.0.5 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:COTAN.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings COTAN_2.0.5.tar.gz |
StartedAt: 2023-10-17 12:09:55 -0400 (Tue, 17 Oct 2023) |
EndedAt: 2023-10-17 12:38:57 -0400 (Tue, 17 Oct 2023) |
EllapsedTime: 1741.8 seconds |
RetCode: 0 |
Status: OK |
CheckDir: COTAN.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:COTAN.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings COTAN_2.0.5.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/COTAN.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: aarch64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.6.7 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘COTAN/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘COTAN’ version ‘2.0.5’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘COTAN’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... NOTE Unexported object imported by a ':::' call: ‘ggplot2:::ggname’ See the note in ?`:::` about the use of this operator. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE GDIPlot: no visible binding for global variable ‘sum.raw.norm’ GDIPlot: no visible binding for global variable ‘GDI’ UMAPPlot: no visible binding for global variable ‘x’ UMAPPlot: no visible binding for global variable ‘y’ calculateG: no visible binding for global variable ‘observedNN’ calculateG: no visible binding for global variable ‘observedNY’ calculateG: no visible binding for global variable ‘observedYN’ calculateG: no visible binding for global variable ‘observedYY’ calculateG: no visible binding for global variable ‘expectedNN’ calculateG: no visible binding for global variable ‘expectedNY’ calculateG: no visible binding for global variable ‘expectedYN’ calculateG: no visible binding for global variable ‘expectedYY’ cellsUniformClustering: no visible binding for global variable ‘objSeurat’ cellsUniformClustering: no visible binding for global variable ‘usedMaxResolution’ cleanPlots: no visible binding for global variable ‘PC1’ cleanPlots: no visible binding for global variable ‘PC2’ cleanPlots: no visible binding for global variable ‘n’ cleanPlots: no visible binding for global variable ‘means’ cleanPlots: no visible binding for global variable ‘nu’ clustersSummaryPlot: no visible binding for global variable ‘keys’ clustersSummaryPlot: no visible binding for global variable ‘values’ clustersSummaryPlot: no visible binding for global variable ‘CellNumber’ clustersSummaryPlot: no visible binding for global variable ‘MeanUDE’ clustersSummaryPlot: no visible binding for global variable ‘CellPercentage’ clustersSummaryPlot: no visible binding for global variable ‘Cluster’ clustersTreePlot: no visible binding for global variable ‘clusters’ establishGenesClusters: no visible binding for global variable ‘secondaryMarkers’ establishGenesClusters: no visible binding for global variable ‘GCS’ establishGenesClusters: no visible binding for global variable ‘rankGenes’ expectedContingencyTables: no visible binding for global variable ‘expectedN’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘group’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘y’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘x’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘width’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘violinwidth’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xmax’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xminv’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xmaxv’ heatmapPlot: no visible binding for global variable ‘g2’ mitochondrialPercentagePlot: no visible binding for global variable ‘mit.percentage’ observedContingencyTables: no visible binding for global variable ‘observedY’ scatterPlot: no visible binding for global variable ‘.x’ calculateCoex,COTAN: no visible binding for global variable ‘expectedNN’ calculateCoex,COTAN: no visible binding for global variable ‘expectedNY’ calculateCoex,COTAN: no visible binding for global variable ‘expectedYN’ calculateCoex,COTAN: no visible binding for global variable ‘expectedYY’ calculateCoex,COTAN: no visible binding for global variable ‘observedYY’ calculateCoex,COTAN: no visible binding for global variable ‘.’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘rawNorm’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘nu’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘lambda’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘a’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘hk’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘clusters’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘clusterData’ Undefined global functions or variables: . .x CellNumber CellPercentage Cluster GCS GDI MeanUDE PC1 PC2 a clusterData clusters expectedN expectedNN expectedNY expectedYN expectedYY g2 group hk keys lambda means mit.percentage n nu objSeurat observedNN observedNY observedY observedYN observedYY rankGenes rawNorm secondaryMarkers sum.raw.norm usedMaxResolution values violinwidth width x xmax xmaxv xminv y * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed UniformClusters 410.510 26.691 713.429 CalculatingCOEX 30.664 1.551 49.232 HeatmapPlots 27.566 1.834 47.867 ParametersEstimations 16.434 0.856 26.978 HandlingClusterizations 11.707 0.645 20.358 GenesCoexSpace 8.146 0.487 14.151 COTANObjectCreation 7.634 0.387 13.299 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘outputTestDatasetCreation.R’ Running ‘spelling.R’ Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/COTAN.Rcheck/00check.log’ for details.
COTAN.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL COTAN ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library’ * installing *source* package ‘COTAN’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (COTAN)
COTAN.Rcheck/tests/outputTestDatasetCreation.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Creates the files to be reloaded by the tests for comparisons > > outputTestDatasetCreation <- function(testsDir = "tests/testthat"){ + utils::data("test.dataset", package = "COTAN") + options(parallelly.fork.enable = TRUE) + + obj <- COTAN(raw = test.dataset) + obj <- initializeMetaDataset(obj, GEO = " ", + sequencingMethod = "artificial", + sampleCondition = "test") + + obj <- proceedToCoex(obj, cores = 12, saveObj = FALSE) + #saveRDS(obj, file = file.path(testsDir,"temp.RDS")) + + cell.names.test <- getCells(obj)[c(1:10,591:610,991:1000)] + genes.names.test <- getGenes(obj)[c(1:10,291:310,591:600)] + saveRDS(cell.names.test, file.path(testsDir, "cell.names.test.RDS")) + saveRDS(genes.names.test, file.path(testsDir, "genes.names.test.RDS")) + + dispersion.test <- getDispersion(obj)[genes.names.test] + saveRDS(dispersion.test, file.path(testsDir, "dispersion.test.RDS")) + + raw.norm.test <- getNormalizedData(obj)[genes.names.test, cell.names.test] + saveRDS(raw.norm.test, file.path(testsDir, "raw.norm.test.RDS")) + + coex.test <- getGenesCoex(obj, genes = genes.names.test, zeroDiagonal = FALSE) + saveRDS(coex.test, file.path(testsDir, "coex.test.RDS")) + + lambda.test <- getLambda(obj)[genes.names.test] + saveRDS(lambda.test, file.path(testsDir, "lambda.test.RDS")) + + GDI.test <- calculateGDI(obj) + GDI.test <- GDI.test[genes.names.test, ] + saveRDS(GDI.test, file.path(testsDir, "GDI.test.RDS")) + + nu.test <- getNu(obj)[cell.names.test] + saveRDS(nu.test, file.path(testsDir, "nu.test.RDS")) + + pval.test <- calculatePValue(obj, geneSubsetCol = genes.names.test) + saveRDS(pval.test, file.path(testsDir, "pval.test.RDS")) + + GDIThreshold <- 1.5 + + clusters <- cellsUniformClustering(obj, GDIThreshold = GDIThreshold, + cores = 12, saveObj = FALSE) + saveRDS(clusters, file.path(testsDir, "clusters1.RDS")) + + c(coexDF, pvalDF) %<-% DEAOnClusters(obj, clusters = clusters) + obj <- addClusterization(obj, clName = "clusters", + clusters = clusters, coexDF = coexDF) + + saveRDS(coexDF[genes.names.test, ], + file.path(testsDir, "coex.test.cluster1.RDS")) + saveRDS(pvalDF[genes.names.test, ], + file.path(testsDir, "pval.test.cluster1.RDS")) + + c(mergedClusters, mCoexDF, mPValueDf) %<-% + mergeUniformCellsClusters(objCOTAN = obj, + clusters = NULL, + GDIThreshold = GDIThreshold, + cores = 12, + distance = "cosine", + hclustMethod = "ward.D2", + saveObj = FALSE) + + saveRDS(mergedClusters[genes.names.test], + file.path(testsDir, "cluster_data_merged.RDS")) + } > > proc.time() user system elapsed 0.220 0.066 0.572
COTAN.Rcheck/tests/spelling.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(requireNamespace('spelling', quietly = TRUE)) + spelling::spell_check_test(vignettes = TRUE, error = FALSE, + skip_on_cran = TRUE) NULL > > proc.time() user system elapsed 0.211 0.070 0.512
COTAN.Rcheck/tests/testthat.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > Sys.setenv(R_TESTS = "") > library(testthat) > library(COTAN) The legacy packages maptools, rgdal, and rgeos, underpinning the sp package, which was just loaded, will retire in October 2023. Please refer to R-spatial evolution reports for details, especially https://r-spatial.org/r/2023/05/15/evolution4.html. It may be desirable to make the sf package available; package maintainers should consider adding sf to Suggests:. The sp package is now running under evolution status 2 (status 2 uses the sf package in place of rgdal) > test_check("COTAN") Setting new log level to 3 Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 5 genes batches from [1:2] to [9:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 7 cells batches from [1:3] to [18:20] Estimate nu: DONE nu change (abs) | max: 1.75595238095238 | median: 1.07174634176587 | mean: 1.07174634176587 Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 1.0362548828125 | max: 4.60986328125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0265938895089288 | median: 0.0144680038331048 | mean: 0.0144680038331048 Nu mean: 1.69633192486233 Marginal errors | max: 1.95570586131367 | median 1.32068160171502 | mean: 1.33375826507259 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.058837890625 | max: 3.528076171875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.416683423613994 | median: 0.239880630367975 | mean: 0.239880630367975 Nu mean: 0.823197206753982 Marginal errors | max: 0.836359531101204 | median 0.703684202571891 | mean: 0.645537958989613 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.32879638671875 | max: 4.0302734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.164237872898673 | median: 0.0955985184389135 | mean: 0.0955985184389135 Nu mean: 1.06863935445976 Marginal errors | max: 0.259872988828244 | median 0.213703042752633 | mean: 0.197386407582083 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2294921875 | max: 3.8720703125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.055185575120883 | median: 0.0319991762044448 | mean: 0.0319991762044448 Nu mean: 0.976813601083562 Marginal errors | max: 0.0951586919577014 | median 0.0794297037094678 | mean: 0.0724140148396648 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2637939453125 | max: 3.929443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0196211148938294 | median: 0.01138609597457 | mean: 0.01138609597457 Nu mean: 1.00823501891926 Marginal errors | max: 0.0327747321002274 | median 0.0272104747849538 | mean: 0.0248963830312045 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25177001953125 | max: 3.90966796875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00670099066960717 | median: 0.00388888266671264 | mean: 0.00388888266671264 Nu mean: 0.997187891997105 Marginal errors | max: 0.0114324509186883 | median 0.00942326497706159 | mean: 0.00863113610779553 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25592041015625 | max: 3.91650390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00230093811689414 | median: 0.00132529122122246 | mean: 0.00132529122122246 Nu mean: 1.00097564689567 Marginal errors | max: 0.00387133150664809 | median 0.00310910176088619 | mean: 0.00286071175800213 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2545166015625 | max: 3.914306640625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000837011646904529 | median: 0.000470837393363011 | mean: 0.000470837393363011 Nu mean: 0.999633825746458 Marginal errors | max: 0.00122501723202006 | median 0.00102126435760308 | mean: 0.000943992659051496 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000209227351122054 | median: 0.000122070312500028 | mean: 0.000122070312500028 Nu mean: 1.00008715703862 Marginal errors | max: 0.000364602956585358 | median 0.000313956936820681 | mean: 0.00028289957431813 Estimate dispersion/nu: DONE Estimate 'dispersion'/'nu': START Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY.. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Initializing `COTAN` meta-data Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 1.73564890252257 | median 1.37996360874076 | mean: 1.32180348113228 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.0655517578125 | max: 3.5439453125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.402649984216273 | median: 0.231868788425666 | mean: 0.231868788425666 Nu mean: 0.829218804209393 Marginal errors | max: 0.803213159865939 | median 0.677497553540581 | mean: 0.61937543089282 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.3260498046875 | max: 4.026123046875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.158004893526231 | median: 0.0919692884670312 | mean: 0.0919692884670312 Nu mean: 1.0660356050592 Marginal errors | max: 0.250724014302326 | median 0.206232152124437 | mean: 0.190425623677198 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.23040771484375 | max: 3.8736572265625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0532774732102337 | median: 0.0308837890624999 | mean: 0.0308837890624999 Nu mean: 0.977606315852266 Marginal errors | max: 0.0916983669060105 | median 0.0765266929824957 | mean: 0.0697593208689694 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.26348876953125 | max: 3.928955078125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0189966206463044 | median: 0.0110199320575908 | mean: 0.0110199320575908 Nu mean: 1.00797668858871 Marginal errors | max: 0.0317151207459219 | median 0.0262702142278242 | mean: 0.0240886952086946 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2518310546875 | max: 3.9097900390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00670088501353994 | median: 0.00388888101583662 | mean: 0.00388888101583662 Nu mean: 0.997187996002297 Marginal errors | max: 0.011369331635624 | median 0.00939669372836338 | mean: 0.00860715734056932 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2559814453125 | max: 3.9166259765625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00251007446998996 | median: 0.00144735987374958 | mean: 0.00144735987374958 Nu mean: 1.00106271459624 Marginal errors | max: 0.00406746973787442 | median 0.00343393462175712 | mean: 0.00313496757119474 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25445556640625 | max: 3.9140625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000837027590858019 | median: 0.000488281249999889 | mean: 0.000488281249999889 Nu mean: 0.999651253659142 Marginal errors | max: 0.00143433714371355 | median 0.00116636244706836 | mean: 0.00109289166947821 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000209227688885871 | median: 0.0001220703125 | mean: 0.0001220703125 Nu mean: 1.00008715737639 Marginal errors | max: 0.000379524846206181 | median 0.000325685250688323 | mean: 0.000295532844331703 Estimate dispersion/nu: DONE Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY.. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells calculating YY.. done calculating YY.. done calculating YN..NY..NN.. done Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 calculating NN.. done calculating NN.. done calculating NY..YN..YY.. done Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells calculating YY.. done calculating YY.. done calculating NY..YN..NN.. done Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 0.255353289373156 | median 0.0807577993228152 | mean: 0.101980750205761 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0.0273438105507502 | median: 0.0148852611818011 | mean: 0.0148852611818011 Nu mean: 1.69735147626627 Marginal errors | max: 0.00326864580272179 | median 0.00111524657842743 | mean: 0.00131556083122621 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0 | median: 0 | mean: 0 Nu mean: 1.69735147626627 Marginal errors | max: 7.56328383619831e-05 | median 1.7294808722923e-05 | mean: 2.99252342140122e-05 Estimate dispersion/nu: DONE calculating NN.. done calculating NN.. done calculating YN..NY..YY.. done Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY.. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 0.255353289373156 | median 0.0807577993228152 | mean: 0.101980750205761 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0.0273438105507502 | median: 0.0148852611818011 | mean: 0.0148852611818011 Nu mean: 1.69735147626627 Marginal errors | max: 0.00326864580272179 | median 0.00111524657842743 | mean: 0.00131556083122621 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0 | median: 0 | mean: 0 Nu mean: 1.69735147626627 Marginal errors | max: 7.56328383619831e-05 | median 1.7294808722923e-05 | mean: 2.99252342140122e-05 Estimate dispersion/nu: DONE Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculating S: START Calculating S: DONE Calculating G: START calculating YY.. done calculating YN..NY..NN.. done calculating NN.. done calculating NY..YN..YY.. done Estimating G Calculating G: DONE Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values genome wide on columns and genome wide on rows calculating PValues: DONE Using G Calculating G: START calculating YY.. done calculating YN..NY..NN.. done calculating NN.. done calculating NY..YN..YY.. done Estimating G Calculating G: DONE calculating PValues: START Get p-values on a set of genes on columns and on a set of genes on rows calculating PValues: DONE Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Using G Calculating G: START calculating YY.. done calculating YN..NY..NN.. done calculating NN.. done calculating NY..YN..YY.. done Estimating G Calculating G: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0694396336873372 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.223666230837504 Only genes' coex time 0.142269531885783 Initializing `COTAN` meta-data Condition test n cells 1200 Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0601891994476318 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.204962086677551 Only genes' coex time 0.13197615146637 Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0586105505625407 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.206682233015696 Only genes' coex time 0.135425301392873 Creating cells' uniform clustering: START In iteration 0 the number of cells to re-cluster is 1200 cells belonging to 0 clusters Creating Seurat object: START Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix | | | 0% | |======================================================================| 100% PC_ 1 Positive: g-000558, g-000570, g-000499, g-000504, g-000546, g-000506, g-000503, g-000517, g-000596, g-000528 g-000527, g-000580, g-000592, g-000578, g-000509, g-000488, g-000555, g-000577, g-000534, g-000583 g-000598, g-000535, g-000512, g-000554, g-000519, g-000525, g-000548, g-000544, g-000502, g-000541 Negative: g-000133, g-000007, g-000074, g-000141, g-000057, g-000235, g-000170, g-000019, g-000195, g-000140 g-000183, g-000031, g-000046, g-000178, g-000177, g-000161, g-000157, g-000139, g-000011, g-000135 g-000125, g-000208, g-000061, g-000085, g-000204, g-000104, g-000237, g-000004, g-000038, g-000128 PC_ 2 Positive: g-000039, g-000050, g-000175, g-000078, g-000116, g-000189, g-000135, g-000047, g-000072, g-000087 g-000063, g-000235, g-000066, g-000109, g-000018, g-000074, g-000231, g-000136, g-000034, g-000207 g-000128, g-000167, g-000171, g-000049, g-000182, g-000013, g-000054, g-000062, g-000240, g-000158 Negative: g-000584, g-000583, g-000544, g-000519, g-000575, g-000516, g-000585, g-000486, g-000489, g-000539 g-000484, g-000502, g-000523, g-000595, g-000305, g-000574, g-000599, g-000589, g-000509, g-000538 g-000526, g-000551, g-000579, g-000590, g-000445, g-000556, g-000543, g-000501, g-000504, g-000570 PC_ 3 Positive: g-000015, g-000575, g-000483, g-000316, g-000025, g-000364, g-000050, g-000278, g-000443, g-000360 g-000332, g-000124, g-000212, g-000387, g-000536, g-000252, g-000251, g-000321, g-000501, g-000470 g-000582, g-000106, g-000455, g-000368, g-000081, g-000104, g-000437, g-000288, g-000386, g-000317 Negative: g-000211, g-000337, g-000129, g-000185, g-000397, g-000403, g-000253, g-000098, g-000390, g-000303 g-000052, g-000088, g-000463, g-000468, g-000236, g-000209, g-000005, g-000375, g-000342, g-000262 g-000388, g-000091, g-000413, g-000285, g-000003, g-000095, g-000142, g-000205, g-000432, g-000241 PC_ 4 Positive: g-000379, g-000193, g-000212, g-000434, g-000593, g-000513, g-000177, g-000223, g-000069, g-000131 g-000162, g-000345, g-000462, g-000484, g-000448, g-000229, g-000365, g-000302, g-000010, g-000366 g-000051, g-000535, g-000269, g-000270, g-000155, g-000529, g-000373, g-000008, g-000393, g-000306 Negative: g-000334, g-000398, g-000292, g-000095, g-000097, g-000202, g-000382, g-000195, g-000007, g-000079 g-000086, g-000240, g-000263, g-000317, g-000576, g-000557, g-000160, g-000154, g-000214, g-000228 g-000313, g-000053, g-000524, g-000374, g-000568, g-000188, g-000358, g-000528, g-000362, g-000150 PC_ 5 Positive: g-000518, g-000108, g-000186, g-000170, g-000401, g-000337, g-000047, g-000599, g-000432, g-000578 g-000042, g-000065, g-000493, g-000261, g-000533, g-000256, g-000560, g-000596, g-000368, g-000381 g-000535, g-000338, g-000215, g-000159, g-000365, g-000234, g-000173, g-000387, g-000225, g-000272 Negative: g-000451, g-000339, g-000295, g-000328, g-000544, g-000061, g-000227, g-000391, g-000556, g-000237 g-000067, g-000165, g-000449, g-000591, g-000087, g-000129, g-000197, g-000203, g-000487, g-000505 g-000333, g-000029, g-000271, g-000064, g-000583, g-000156, g-000448, g-000153, g-000526, g-000393 Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 1200 Number of edges: 55489 Running Louvain algorithm with multilevel refinement... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.6846 Number of communities: 4 Elapsed time: 0 seconds Used resolution for Seurat clusterization is: 0.5 12:34:24 UMAP embedding parameters a = 0.9922 b = 1.112 12:34:24 Read 1200 rows and found 50 numeric columns 12:34:24 Using Annoy for neighbor search, n_neighbors = 30 12:34:24 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 12:34:24 Writing NN index file to temp file /tmp/RtmpPLvu5n/file151b01db763e6 12:34:24 Searching Annoy index using 1 thread, search_k = 3000 12:34:25 Annoy recall = 100% 12:34:26 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 12:34:27 Initializing from normalized Laplacian + noise (using RSpectra) 12:34:27 Commencing optimization for 500 epochs, with 42274 positive edges Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 12:34:32 Optimization finished Creating Seurat object: DONE * checking uniformity of cluster '0' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [353] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5 Only analysis time 0.044982651869456 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000521353300055463 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.178301084041595 Only genes' coex time 0.120728198687236 Checking uniformity for the cluster '0' with 353 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 0 is uniform * checking uniformity of cluster '1' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [315] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.05303955078125 | max: 52.125 | % negative: 32.6666666666667 Only analysis time 0.0374057491620382 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.288990571270105 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.153956548372904 Only genes' coex time 0.105433650811513 Checking uniformity for the cluster '1' with 315 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 1 is uniform * checking uniformity of cluster '2' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [311] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0517578125 | max: 17.296875 | % negative: 8.66666666666667 Only analysis time 0.0379516323407491 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.00206322795341098 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.157682565848033 Only genes' coex time 0.108476332823435 Checking uniformity for the cluster '2' with 311 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 2 is uniform * checking uniformity of cluster '3' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [1] genes and [0] cells Working on [599] genes and [221] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:599] to [1:599] Estimate dispersion: DONE dispersion | min: -0.06640625 | max: 79 | % negative: 35.0584307178631 Only analysis time 0.0365047812461853 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.333583750695604 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.149807286262512 Only genes' coex time 0.103024085362752 Checking uniformity for the cluster '3' with 221 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 3 is uniform Found 4 uniform and 0 non-uniform clusters NO new possible uniform clusters! Unclustered cell left: 0 The final raw clusterization contains [ 4 ] different clusters: 00_0000, 00_0001, 00_0002, 00_0003 Creating cells' uniform clustering: DONE Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [315] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.05303955078125 | max: 52.125 | % negative: 32.6666666666667 Only analysis time 0.0353126645088196 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.288990571270105 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.136324266592662 Only genes' coex time 0.0907705346743266 Checking uniformity for the cluster 'Cluster_2' with 315 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329656 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE findClustersMarkers - DONE findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329656 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE findClustersMarkers - DONE findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329656 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE findClustersMarkers - DONE [1] "3" Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [311] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0517578125 | max: 17.296875 | % negative: 8.66666666666667 Only analysis time 0.0392889181772868 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.00206322795341098 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.160636981328328 Only genes' coex time 0.109557481606801 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE [1] "1" Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [353] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5 Only analysis time 0.040378999710083 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000521353300055463 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.165013897418976 Only genes' coex time 0.1128311475118 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0535291155179342 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.195999566713969 Only genes' coex time 0.130500634511312 Calculating gene coexpression space - START Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Number of selected secondary markers: 109 Calculating S: START Calculating S: DONE Number of columns (V set - secondary markers): 109 Number of rows (U set): 60 Calculating gene coexpression space - DONE Establishing gene clusters - START Calculating gene coexpression space - START Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Number of selected secondary markers: 109 Calculating S: START Calculating S: DONE Number of columns (V set - secondary markers): 109 Number of rows (U set): 60 Calculating gene coexpression space - DONE Establishing gene clusters - DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0535464684168498 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.217551016807556 Only genes' coex time 0.151596264044444 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329656 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE In group G1 there are 3 detected over 3 genes In group G2 there are 2 detected over 2 genes In group G3 there are 5 detected over 5 genes Merging cells' uniform clustering: START Start merging smallest clusters: iteration 1 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE Clusters pairs for merging: c("1", "4") c("2", "3") *1_4-merge Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [574] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333 Only analysis time 0.0507126490275065 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000105379922351636 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.202407666047414 Only genes' coex time 0.13771831591924 Checking uniformity for the cluster '1_4-merge' with 574 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Clusters 1 and 4 can be merged *2_3-merge Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [626] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667 Only analysis time 0.0518063147862752 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 5.54631170271769e-05 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.204697151978811 Only genes' coex time 0.139468403657277 Checking uniformity for the cluster '2_3-merge' with 626 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Clusters 2 and 3 can be merged Start merging smallest clusters: iteration 2 Differential Expression Analysis - START * analysis of cluster: '1_4-merge' - START * analysis of cluster: '1_4-merge' - DONE * analysis of cluster: '2_3-merge' - START * analysis of cluster: '2_3-merge' - DONE Differential Expression Analysis - DONE Clusters pairs for merging: c("1_4-merge", "2_3-merge") *1_4-merge_2_3-merge-merge No genes/cells where dropped Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0649086833000183 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.225621167818705 Only genes' coex time 0.146289869149526 Checking uniformity for the cluster '1_4-merge_2_3-merge-merge' with 1200 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Merging clusters 1_4-merge and 2_3-merge results in a too high GDI No clusters leaf-pairs could be merged. Retrying with all neightbooring pairs Clusters pairs for merging: c("1_4-merge", "2_3-merge") *1_4-merge_2_3-merge-merge Clusters 1_4-merge and 2_3-merge already analyzed and not mergeable: skip. The final merged clusterization contains [2] different clusters: 1_4-merge, 2_3-merge Merging cells' uniform clustering: DONE Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [626] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667 Only analysis time 0.0497625827789307 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 5.54631170271769e-05 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.194314499696096 Only genes' coex time 0.130493299166361 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [574] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333 Only analysis time 0.0364075342814128 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000105379922351636 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.160990866025289 Only genes' coex time 0.114390933513641 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE [ FAIL 0 | WARN 0 | SKIP 0 | PASS 312 ] > > proc.time() user system elapsed 312.822 5.278 532.915
COTAN.Rcheck/COTAN-Ex.timings
name | user | system | elapsed | |
COTAN | 0.142 | 0.015 | 0.289 | |
COTANObjectCreation | 7.634 | 0.387 | 13.299 | |
CalculatingCOEX | 30.664 | 1.551 | 49.232 | |
ClustersList | 0.005 | 0.002 | 0.010 | |
GenesCoexSpace | 8.146 | 0.487 | 14.151 | |
HandleMetaData | 0.085 | 0.008 | 0.148 | |
HandlingClusterizations | 11.707 | 0.645 | 20.358 | |
HeatmapPlots | 27.566 | 1.834 | 47.867 | |
LegacyFastSymmMatrix | 0.002 | 0.001 | 0.006 | |
LoggingFunctions | 0.002 | 0.001 | 0.007 | |
ParametersEstimations | 16.434 | 0.856 | 26.978 | |
RawDataCleaning | 2.056 | 0.098 | 3.367 | |
RawDataGetters | 0.084 | 0.005 | 0.145 | |
UniformClusters | 410.510 | 26.691 | 713.429 | |
cosineDissimilarity | 0.001 | 0.000 | 0.009 | |
getColorsVector | 0.001 | 0.000 | 0.007 | |