Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:35:17 -0400 (Mon, 16 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 441/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
COTAN 2.0.5 (landing page) Galfrè Silvia Giulia
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the COTAN package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/COTAN.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: COTAN |
Version: 2.0.5 |
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:COTAN.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings COTAN_2.0.5.tar.gz |
StartedAt: 2023-10-15 20:24:01 -0400 (Sun, 15 Oct 2023) |
EndedAt: 2023-10-15 20:50:03 -0400 (Sun, 15 Oct 2023) |
EllapsedTime: 1561.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: COTAN.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:COTAN.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings COTAN_2.0.5.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/COTAN.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: x86_64-pc-linux-gnu (64-bit) * R was compiled by gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 * running under: Ubuntu 22.04.3 LTS * using session charset: UTF-8 * checking for file ‘COTAN/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘COTAN’ version ‘2.0.5’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘COTAN’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... NOTE Unexported object imported by a ':::' call: ‘ggplot2:::ggname’ See the note in ?`:::` about the use of this operator. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE GDIPlot: no visible binding for global variable ‘sum.raw.norm’ GDIPlot: no visible binding for global variable ‘GDI’ UMAPPlot: no visible binding for global variable ‘x’ UMAPPlot: no visible binding for global variable ‘y’ calculateG: no visible binding for global variable ‘observedNN’ calculateG: no visible binding for global variable ‘observedNY’ calculateG: no visible binding for global variable ‘observedYN’ calculateG: no visible binding for global variable ‘observedYY’ calculateG: no visible binding for global variable ‘expectedNN’ calculateG: no visible binding for global variable ‘expectedNY’ calculateG: no visible binding for global variable ‘expectedYN’ calculateG: no visible binding for global variable ‘expectedYY’ cellsUniformClustering: no visible binding for global variable ‘objSeurat’ cellsUniformClustering: no visible binding for global variable ‘usedMaxResolution’ cleanPlots: no visible binding for global variable ‘PC1’ cleanPlots: no visible binding for global variable ‘PC2’ cleanPlots: no visible binding for global variable ‘n’ cleanPlots: no visible binding for global variable ‘means’ cleanPlots: no visible binding for global variable ‘nu’ clustersSummaryPlot: no visible binding for global variable ‘keys’ clustersSummaryPlot: no visible binding for global variable ‘values’ clustersSummaryPlot: no visible binding for global variable ‘CellNumber’ clustersSummaryPlot: no visible binding for global variable ‘MeanUDE’ clustersSummaryPlot: no visible binding for global variable ‘CellPercentage’ clustersSummaryPlot: no visible binding for global variable ‘Cluster’ clustersTreePlot: no visible binding for global variable ‘clusters’ establishGenesClusters: no visible binding for global variable ‘secondaryMarkers’ establishGenesClusters: no visible binding for global variable ‘GCS’ establishGenesClusters: no visible binding for global variable ‘rankGenes’ expectedContingencyTables: no visible binding for global variable ‘expectedN’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘group’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘y’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘x’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘width’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘violinwidth’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xmax’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xminv’ geom_flat_violin : <anonymous>: no visible binding for global variable ‘xmaxv’ heatmapPlot: no visible binding for global variable ‘g2’ mitochondrialPercentagePlot: no visible binding for global variable ‘mit.percentage’ observedContingencyTables: no visible binding for global variable ‘observedY’ scatterPlot: no visible binding for global variable ‘.x’ calculateCoex,COTAN: no visible binding for global variable ‘expectedNN’ calculateCoex,COTAN: no visible binding for global variable ‘expectedNY’ calculateCoex,COTAN: no visible binding for global variable ‘expectedYN’ calculateCoex,COTAN: no visible binding for global variable ‘expectedYY’ calculateCoex,COTAN: no visible binding for global variable ‘observedYY’ calculateCoex,COTAN: no visible binding for global variable ‘.’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘rawNorm’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘nu’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘lambda’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘a’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘hk’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘clusters’ coerce,COTAN-scCOTAN: no visible binding for global variable ‘clusterData’ Undefined global functions or variables: . .x CellNumber CellPercentage Cluster GCS GDI MeanUDE PC1 PC2 a clusterData clusters expectedN expectedNN expectedNY expectedYN expectedYY g2 group hk keys lambda means mit.percentage n nu objSeurat observedNN observedNY observedY observedYN observedYY rankGenes rawNorm secondaryMarkers sum.raw.norm usedMaxResolution values violinwidth width x xmax xmaxv xminv y * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed UniformClusters 435.313 1.227 434.114 CalculatingCOEX 31.166 1.155 30.988 HeatmapPlots 27.069 1.014 27.085 ParametersEstimations 17.342 0.406 17.750 HandlingClusterizations 11.628 0.304 11.933 GenesCoexSpace 8.015 0.224 7.904 COTANObjectCreation 7.462 0.353 7.498 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘outputTestDatasetCreation.R’ Running ‘spelling.R’ Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... ‘Guided_tutorial_v2.Rmd’ using ‘UTF-8’... OK NONE * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.17-bioc/meat/COTAN.Rcheck/00check.log’ for details.
COTAN.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL COTAN ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’ * installing *source* package ‘COTAN’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (COTAN)
COTAN.Rcheck/tests/outputTestDatasetCreation.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Creates the files to be reloaded by the tests for comparisons > > outputTestDatasetCreation <- function(testsDir = "tests/testthat"){ + utils::data("test.dataset", package = "COTAN") + options(parallelly.fork.enable = TRUE) + + obj <- COTAN(raw = test.dataset) + obj <- initializeMetaDataset(obj, GEO = " ", + sequencingMethod = "artificial", + sampleCondition = "test") + + obj <- proceedToCoex(obj, cores = 12, saveObj = FALSE) + #saveRDS(obj, file = file.path(testsDir,"temp.RDS")) + + cell.names.test <- getCells(obj)[c(1:10,591:610,991:1000)] + genes.names.test <- getGenes(obj)[c(1:10,291:310,591:600)] + saveRDS(cell.names.test, file.path(testsDir, "cell.names.test.RDS")) + saveRDS(genes.names.test, file.path(testsDir, "genes.names.test.RDS")) + + dispersion.test <- getDispersion(obj)[genes.names.test] + saveRDS(dispersion.test, file.path(testsDir, "dispersion.test.RDS")) + + raw.norm.test <- getNormalizedData(obj)[genes.names.test, cell.names.test] + saveRDS(raw.norm.test, file.path(testsDir, "raw.norm.test.RDS")) + + coex.test <- getGenesCoex(obj, genes = genes.names.test, zeroDiagonal = FALSE) + saveRDS(coex.test, file.path(testsDir, "coex.test.RDS")) + + lambda.test <- getLambda(obj)[genes.names.test] + saveRDS(lambda.test, file.path(testsDir, "lambda.test.RDS")) + + GDI.test <- calculateGDI(obj) + GDI.test <- GDI.test[genes.names.test, ] + saveRDS(GDI.test, file.path(testsDir, "GDI.test.RDS")) + + nu.test <- getNu(obj)[cell.names.test] + saveRDS(nu.test, file.path(testsDir, "nu.test.RDS")) + + pval.test <- calculatePValue(obj, geneSubsetCol = genes.names.test) + saveRDS(pval.test, file.path(testsDir, "pval.test.RDS")) + + GDIThreshold <- 1.5 + + clusters <- cellsUniformClustering(obj, GDIThreshold = GDIThreshold, + cores = 12, saveObj = FALSE) + saveRDS(clusters, file.path(testsDir, "clusters1.RDS")) + + c(coexDF, pvalDF) %<-% DEAOnClusters(obj, clusters = clusters) + obj <- addClusterization(obj, clName = "clusters", + clusters = clusters, coexDF = coexDF) + + saveRDS(coexDF[genes.names.test, ], + file.path(testsDir, "coex.test.cluster1.RDS")) + saveRDS(pvalDF[genes.names.test, ], + file.path(testsDir, "pval.test.cluster1.RDS")) + + c(mergedClusters, mCoexDF, mPValueDf) %<-% + mergeUniformCellsClusters(objCOTAN = obj, + clusters = NULL, + GDIThreshold = GDIThreshold, + cores = 12, + distance = "cosine", + hclustMethod = "ward.D2", + saveObj = FALSE) + + saveRDS(mergedClusters[genes.names.test], + file.path(testsDir, "cluster_data_merged.RDS")) + } > > proc.time() user system elapsed 0.166 0.021 0.176
COTAN.Rcheck/tests/spelling.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if(requireNamespace('spelling', quietly = TRUE)) + spelling::spell_check_test(vignettes = TRUE, error = FALSE, + skip_on_cran = TRUE) NULL > > proc.time() user system elapsed 0.153 0.029 0.171
COTAN.Rcheck/tests/testthat.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > Sys.setenv(R_TESTS = "") > library(testthat) > library(COTAN) The legacy packages maptools, rgdal, and rgeos, underpinning the sp package, which was just loaded, were retired in October 2023. Please refer to R-spatial evolution reports for details, especially https://r-spatial.org/r/2023/05/15/evolution4.html. It may be desirable to make the sf package available; package maintainers should consider adding sf to Suggests:. > test_check("COTAN") Setting new log level to 3 Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 5 genes batches from [1:2] to [9:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 7 cells batches from [1:3] to [18:20] Estimate nu: DONE nu change (abs) | max: 1.75595238095238 | median: 1.07174634176587 | mean: 1.07174634176587 Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 1.0362548828125 | max: 4.60986328125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0265938895089288 | median: 0.0144680038331048 | mean: 0.0144680038331048 Nu mean: 1.69633192486233 Marginal errors | max: 1.95570586131367 | median 1.32068160171502 | mean: 1.33375826507259 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.058837890625 | max: 3.528076171875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.416683423613994 | median: 0.239880630367975 | mean: 0.239880630367975 Nu mean: 0.823197206753982 Marginal errors | max: 0.836359531101206 | median 0.703684202571891 | mean: 0.645537958989614 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.32879638671875 | max: 4.0302734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.164237872898673 | median: 0.0955985184389135 | mean: 0.0955985184389135 Nu mean: 1.06863935445976 Marginal errors | max: 0.259872988828244 | median 0.213703042752633 | mean: 0.197386407582083 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2294921875 | max: 3.8720703125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.055185575120883 | median: 0.0319991762044448 | mean: 0.0319991762044448 Nu mean: 0.976813601083562 Marginal errors | max: 0.0951586919577032 | median 0.0794297037094669 | mean: 0.0724140148396652 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2637939453125 | max: 3.929443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0196211148938294 | median: 0.01138609597457 | mean: 0.01138609597457 Nu mean: 1.00823501891926 Marginal errors | max: 0.0327747321002274 | median 0.0272104747849529 | mean: 0.0248963830312036 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25177001953125 | max: 3.90966796875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00670099066960717 | median: 0.00388888266671264 | mean: 0.00388888266671264 Nu mean: 0.997187891997105 Marginal errors | max: 0.0114324509186883 | median 0.00942326497706159 | mean: 0.00863113610779536 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25592041015625 | max: 3.91650390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00230093811689414 | median: 0.00132529122122246 | mean: 0.00132529122122246 Nu mean: 1.00097564689567 Marginal errors | max: 0.00387133150664809 | median 0.0031091017608853 | mean: 0.00286071175800213 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2545166015625 | max: 3.914306640625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000837011646904529 | median: 0.000470837393363011 | mean: 0.000470837393363011 Nu mean: 0.999633825746458 Marginal errors | max: 0.00122501723202184 | median 0.00102126435760308 | mean: 0.000943992659051851 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000209227351122054 | median: 0.000122070312500028 | mean: 0.000122070312500028 Nu mean: 1.00008715703862 Marginal errors | max: 0.000364602956583582 | median 0.000313956936819793 | mean: 0.000282899574318485 Estimate dispersion/nu: DONE Estimate 'dispersion'/'nu': START Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY.. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Initializing `COTAN` meta-data Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 1.73564890252257 | median 1.37996360874076 | mean: 1.32180348113228 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.0655517578125 | max: 3.5439453125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.402649984216273 | median: 0.231868788425666 | mean: 0.231868788425666 Nu mean: 0.829218804209393 Marginal errors | max: 0.803213159865939 | median 0.677497553540579 | mean: 0.61937543089282 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.3260498046875 | max: 4.026123046875 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.158004893526231 | median: 0.0919692884670312 | mean: 0.0919692884670312 Nu mean: 1.0660356050592 Marginal errors | max: 0.250724014302325 | median 0.206232152124435 | mean: 0.190425623677197 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.23040771484375 | max: 3.8736572265625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0532774732102337 | median: 0.0308837890624999 | mean: 0.0308837890624999 Nu mean: 0.977606315852266 Marginal errors | max: 0.0916983669060105 | median 0.0765266929824948 | mean: 0.0697593208689693 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.26348876953125 | max: 3.928955078125 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.0189966206463044 | median: 0.0110199320575908 | mean: 0.0110199320575908 Nu mean: 1.00797668858871 Marginal errors | max: 0.0317151207459254 | median 0.0262702142278233 | mean: 0.0240886952086955 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2518310546875 | max: 3.9097900390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00670088501353994 | median: 0.00388888101583662 | mean: 0.00388888101583662 Nu mean: 0.997187996002297 Marginal errors | max: 0.011369331635624 | median 0.00939669372836338 | mean: 0.00860715734056949 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2559814453125 | max: 3.9166259765625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.00251007446998996 | median: 0.00144735987374958 | mean: 0.00144735987374958 Nu mean: 1.00106271459624 Marginal errors | max: 0.00406746973787264 | median 0.00343393462175801 | mean: 0.00313496757119527 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.25445556640625 | max: 3.9140625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000837027590858019 | median: 0.000488281249999889 | mean: 0.000488281249999889 Nu mean: 0.999651253659142 Marginal errors | max: 0.00143433714371355 | median 0.00116636244706836 | mean: 0.00109289166947804 Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:10] to [1:10] Estimate dispersion: DONE dispersion | min: 0.2550048828125 | max: 3.9150390625 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 1 cells batches from [1:20] to [1:20] Estimate nu: DONE nu change (abs) | max: 0.000209227688885871 | median: 0.0001220703125 | mean: 0.0001220703125 Nu mean: 1.00008715737639 Marginal errors | max: 0.000379524846206181 | median 0.000325685250687435 | mean: 0.000295532844331703 Estimate dispersion/nu: DONE Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY.. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells calculating YY.. done calculating YY.. done calculating YN..NY..NN.. done Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.9033203125 | max: 4.6796875 | % negative: 10 calculating NN.. done calculating NN.. done calculating NY..YN..YY.. done Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells calculating YY.. done calculating YY.. done calculating NY..YN..NN.. done Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 0.255353289373158 | median 0.0807577993228143 | mean: 0.101980750205761 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0.0273438105507502 | median: 0.0148852611818011 | mean: 0.0148852611818011 Nu mean: 1.69735147626627 Marginal errors | max: 0.00326864580272002 | median 0.00111524657842832 | mean: 0.00131556083122533 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0 | median: 0 | mean: 0 Nu mean: 1.69735147626627 Marginal errors | max: 7.56328383637594e-05 | median 1.72948087246994e-05 | mean: 2.99252342141898e-05 Estimate dispersion/nu: DONE calculating NN.. done calculating NN.. done calculating YN..NY..YY.. done Calculate cells' coex: START Retrieving expected cells' contingency table calculating NN.. done calculating YN..NY..YY.. done Calculating cells' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed cells' yes/yes contingency table calculating YY.. done Estimating cells' coex Calculate cells' coex: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Estimate 'dispersion'/'nu': START Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 0.903564453125 | max: 4.679443359375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 1.75719246031746 | median: 1.07229953342014 | mean: 1.07229953342014 Nu mean: 1.68489292689732 Marginal errors | max: 0.255353289373158 | median 0.0807577993228143 | mean: 0.101980750205761 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.037109375 | max: 4.6107177734375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0.0273438105507502 | median: 0.0148852611818011 | mean: 0.0148852611818011 Nu mean: 1.69735147626627 Marginal errors | max: 0.00326864580272002 | median 0.00111524657842832 | mean: 0.00131556083122533 Estimate dispersion: START Effective number of cores used: 1 Executing 3 genes batches from [1:3] to [8:10] Estimate dispersion: DONE dispersion | min: 1.03887939453125 | max: 4.6097412109375 | % negative: 10 Estimate nu: START Effective number of cores used: 1 Executing 5 cells batches from [1:4] to [17:20] Estimate nu: DONE nu change (abs) | max: 0 | median: 0 | mean: 0 Nu mean: 1.69735147626627 Marginal errors | max: 7.56328383637594e-05 | median 1.72948087246994e-05 | mean: 2.99252342141898e-05 Estimate dispersion/nu: DONE Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.181818181818182 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Calculating S: START Calculating S: DONE Calculating G: START calculating YY.. done calculating YN..NY..NN.. done calculating NN.. done calculating NY..YN..YY.. done Estimating G Calculating G: DONE Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values genome wide on columns and genome wide on rows calculating PValues: DONE Using G Calculating G: START calculating YY.. done calculating YN..NY..NN.. done calculating NN.. done calculating NY..YN..YY.. done Estimating G Calculating G: DONE calculating PValues: START Get p-values on a set of genes on columns and on a set of genes on rows calculating PValues: DONE Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Using G Calculating G: START calculating YY.. done calculating YN..NY..NN.. done calculating NN.. done calculating NY..YN..YY.. done Estimating G Calculating G: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0336120088895162 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.123184327284495 Only genes' coex time 0.0810099999109904 Initializing `COTAN` meta-data Condition test n cells 1200 Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.032676096757253 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.114140951633453 Only genes' coex time 0.073949400583903 Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.031531290213267 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.118709472815196 Only genes' coex time 0.0792362332344055 Creating cells' uniform clustering: START In iteration 0 the number of cells to re-cluster is 1200 cells belonging to 0 clusters Creating Seurat object: START Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Centering and scaling data matrix | | | 0% | |======================================================================| 100% PC_ 1 Positive: g-000558, g-000570, g-000499, g-000504, g-000546, g-000506, g-000503, g-000517, g-000596, g-000528 g-000527, g-000580, g-000592, g-000578, g-000509, g-000488, g-000555, g-000577, g-000534, g-000583 g-000598, g-000535, g-000512, g-000554, g-000519, g-000525, g-000548, g-000544, g-000502, g-000541 Negative: g-000133, g-000007, g-000074, g-000141, g-000057, g-000235, g-000170, g-000019, g-000195, g-000140 g-000183, g-000031, g-000046, g-000178, g-000177, g-000161, g-000157, g-000139, g-000011, g-000135 g-000125, g-000208, g-000061, g-000085, g-000204, g-000104, g-000237, g-000004, g-000038, g-000128 PC_ 2 Positive: g-000039, g-000050, g-000175, g-000078, g-000116, g-000189, g-000135, g-000047, g-000072, g-000087 g-000063, g-000235, g-000066, g-000109, g-000018, g-000074, g-000231, g-000136, g-000034, g-000207 g-000128, g-000167, g-000171, g-000049, g-000182, g-000013, g-000054, g-000062, g-000240, g-000158 Negative: g-000584, g-000583, g-000544, g-000519, g-000575, g-000516, g-000585, g-000486, g-000489, g-000539 g-000484, g-000502, g-000523, g-000595, g-000305, g-000574, g-000599, g-000589, g-000509, g-000538 g-000526, g-000551, g-000579, g-000590, g-000445, g-000556, g-000543, g-000501, g-000504, g-000570 PC_ 3 Positive: g-000015, g-000575, g-000483, g-000316, g-000025, g-000364, g-000050, g-000278, g-000443, g-000360 g-000332, g-000124, g-000212, g-000387, g-000536, g-000252, g-000251, g-000321, g-000501, g-000470 g-000582, g-000106, g-000455, g-000368, g-000081, g-000104, g-000437, g-000288, g-000386, g-000317 Negative: g-000211, g-000337, g-000129, g-000185, g-000397, g-000403, g-000253, g-000098, g-000390, g-000303 g-000052, g-000088, g-000463, g-000468, g-000236, g-000209, g-000005, g-000375, g-000342, g-000262 g-000388, g-000091, g-000413, g-000285, g-000003, g-000095, g-000142, g-000205, g-000432, g-000241 PC_ 4 Positive: g-000334, g-000398, g-000292, g-000095, g-000097, g-000202, g-000382, g-000195, g-000007, g-000079 g-000086, g-000240, g-000263, g-000317, g-000576, g-000557, g-000160, g-000154, g-000214, g-000228 g-000313, g-000053, g-000524, g-000374, g-000568, g-000188, g-000358, g-000528, g-000362, g-000150 Negative: g-000379, g-000193, g-000212, g-000434, g-000593, g-000513, g-000177, g-000223, g-000069, g-000131 g-000162, g-000345, g-000462, g-000484, g-000448, g-000229, g-000365, g-000302, g-000010, g-000366 g-000051, g-000535, g-000269, g-000270, g-000155, g-000529, g-000373, g-000008, g-000393, g-000306 PC_ 5 Positive: g-000451, g-000339, g-000295, g-000328, g-000544, g-000061, g-000227, g-000391, g-000556, g-000237 g-000067, g-000165, g-000449, g-000591, g-000087, g-000129, g-000197, g-000203, g-000487, g-000505 g-000333, g-000029, g-000271, g-000064, g-000583, g-000156, g-000448, g-000153, g-000526, g-000393 Negative: g-000518, g-000108, g-000186, g-000170, g-000401, g-000337, g-000047, g-000599, g-000432, g-000578 g-000042, g-000065, g-000493, g-000261, g-000533, g-000256, g-000560, g-000596, g-000368, g-000381 g-000535, g-000338, g-000215, g-000159, g-000365, g-000234, g-000173, g-000387, g-000225, g-000272 Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 1200 Number of edges: 55489 Running Louvain algorithm with multilevel refinement... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.6846 Number of communities: 4 Elapsed time: 0 seconds Used resolution for Seurat clusterization is: 0.5 20:38:06 UMAP embedding parameters a = 0.9922 b = 1.112 20:38:06 Read 1200 rows and found 50 numeric columns 20:38:06 Using Annoy for neighbor search, n_neighbors = 30 20:38:06 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 20:38:07 Writing NN index file to temp file /tmp/RtmpAPlzjv/file397c3b2b5a6743 20:38:07 Searching Annoy index using 1 thread, search_k = 3000 20:38:07 Annoy recall = 100% 20:38:07 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 20:38:08 Initializing from normalized Laplacian + noise (using RSpectra) 20:38:08 Commencing optimization for 500 epochs, with 42274 positive edges Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 20:38:10 Optimization finished Creating Seurat object: DONE * checking uniformity of cluster '0' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [353] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5 Only analysis time 0.0272303779919942 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000521353300055463 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.111286135514577 Only genes' coex time 0.0762962261835734 Checking uniformity for the cluster '0' with 353 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 0 is uniform * checking uniformity of cluster '1' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [315] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.05303955078125 | max: 52.125 | % negative: 32.6666666666667 Only analysis time 0.02449871301651 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.288990571270105 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.10097937186559 Only genes' coex time 0.067999796072642 Checking uniformity for the cluster '1' with 315 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 1 is uniform * checking uniformity of cluster '2' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [311] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0517578125 | max: 17.296875 | % negative: 8.66666666666667 Only analysis time 0.0273979345957438 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.00206322795341098 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.110660509268443 Only genes' coex time 0.0752429405848185 Checking uniformity for the cluster '2' with 311 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 2 is uniform * checking uniformity of cluster '3' of 4 clusters Cotan analysis functions started Genes/cells selection done: dropped [1] genes and [0] cells Working on [599] genes and [221] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:599] to [1:599] Estimate dispersion: DONE dispersion | min: -0.06640625 | max: 79 | % negative: 35.0584307178631 Only analysis time 0.0239354411760966 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.333583750695604 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.105841469764709 Only genes' coex time 0.0731487274169922 Checking uniformity for the cluster '3' with 221 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE cluster 3 is uniform Found 4 uniform and 0 non-uniform clusters NO new possible uniform clusters! Unclustered cell left: 0 The final raw clusterization contains [ 4 ] different clusters: 00_0000, 00_0001, 00_0002, 00_0003 Creating cells' uniform clustering: DONE Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [315] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.05303955078125 | max: 52.125 | % negative: 32.6666666666667 Only analysis time 0.0275621692339579 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.288990571270105 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.113175765673319 Only genes' coex time 0.0769859274228414 Checking uniformity for the cluster 'Cluster_2' with 315 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE GDI plot Removed 0 low GDI genes (such as the fully-expressed) in GDI plot findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329657 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE findClustersMarkers - DONE findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329657 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE findClustersMarkers - DONE findClustersMarkers - START Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329657 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE findClustersMarkers - DONE [1] "3" Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [311] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0517578125 | max: 17.296875 | % negative: 8.66666666666667 Only analysis time 0.0274400313695272 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.00206322795341098 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.115064577261607 Only genes' coex time 0.0795042872428894 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE [1] "1" Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [353] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.038818359375 | max: 11.109375 | % negative: 5 Only analysis time 0.0269628643989563 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000521353300055463 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.110428361097972 Only genes' coex time 0.075010605653127 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Genes/cells selection done: dropped [0] genes and [0] cells Working on [10] genes and [20] cells Initializing `COTAN` meta-data Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0358717481295268 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.126802098751068 Only genes' coex time 0.0830091039339701 Calculating gene coexpression space - START Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Number of selected secondary markers: 109 Calculating S: START Calculating S: DONE Number of columns (V set - secondary markers): 109 Number of rows (U set): 60 Calculating gene coexpression space - DONE Establishing gene clusters - START Calculating gene coexpression space - START Using S Calculating S: START Calculating S: DONE calculating PValues: START Get p-values on a set of genes on columns and genome wide on rows calculating PValues: DONE Number of selected secondary markers: 109 Calculating S: START Calculating S: DONE Number of columns (V set - secondary markers): 109 Number of rows (U set): 60 Calculating gene coexpression space - DONE Establishing gene clusters - DONE Initializing `COTAN` meta-data Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.0353558858235677 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.126857288678487 Only genes' coex time 0.0828159093856811 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE clustersDeltaExpression - START Handling cluster '1' with mean UDE 1.43530796540674 Handling cluster '2' with mean UDE 0.546546914955575 Handling cluster '3' with mean UDE 1.22034802329657 Handling cluster '4' with mean UDE 0.640931107489519 clustersDeltaExpression - DONE In group G1 there are 3 detected over 3 genes In group G2 there are 2 detected over 2 genes In group G3 there are 5 detected over 5 genes Merging cells' uniform clustering: START Start merging smallest clusters: iteration 1 Differential Expression Analysis - START * analysis of cluster: '1' - START * analysis of cluster: '1' - DONE * analysis of cluster: '2' - START * analysis of cluster: '2' - DONE * analysis of cluster: '3' - START * analysis of cluster: '3' - DONE * analysis of cluster: '4' - START * analysis of cluster: '4' - DONE Differential Expression Analysis - DONE Clusters pairs for merging: c("1", "4") c("2", "3") *1_4-merge Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [574] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333 Only analysis time 0.027911110719045 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000105379922351636 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.110675382614136 Only genes' coex time 0.074321190516154 Checking uniformity for the cluster '1_4-merge' with 574 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Clusters 1 and 4 can be merged *2_3-merge Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [626] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667 Only analysis time 0.0286065419514974 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 5.54631170271769e-05 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.117936865488688 Only genes' coex time 0.0810826738675435 Checking uniformity for the cluster '2_3-merge' with 626 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Clusters 2 and 3 can be merged Start merging smallest clusters: iteration 2 Differential Expression Analysis - START * analysis of cluster: '1_4-merge' - START * analysis of cluster: '1_4-merge' - DONE * analysis of cluster: '2_3-merge' - START * analysis of cluster: '2_3-merge' - DONE Differential Expression Analysis - DONE Clusters pairs for merging: c("1_4-merge", "2_3-merge") *1_4-merge_2_3-merge-merge No genes/cells where dropped Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [1200] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: 0.2197265625 | max: 6.08056640625 | % negative: 0 Only analysis time 0.036107345422109 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.124430898825328 Only genes' coex time 0.0802790959676107 Checking uniformity for the cluster '1_4-merge_2_3-merge-merge' with 1200 cells Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Merging clusters 1_4-merge and 2_3-merge results in a too high GDI No clusters leaf-pairs could be merged. Retrying with all neightbooring pairs Clusters pairs for merging: c("1_4-merge", "2_3-merge") *1_4-merge_2_3-merge-merge Clusters 1_4-merge and 2_3-merge already analyzed and not mergeable: skip. The final merged clusterization contains [2] different clusters: 1_4-merge, 2_3-merge Merging cells' uniform clustering: DONE Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [626] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.03839111328125 | max: 17.40625 | % negative: 6.66666666666667 Only analysis time 0.0306147178014119 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 5.54631170271769e-05 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.111504375934601 Only genes' coex time 0.0731330076853434 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE Cotan analysis functions started Genes/cells selection done: dropped [0] genes and [0] cells Working on [600] genes and [574] cells Estimate dispersion: START Effective number of cores used: 1 Executing 1 genes batches from [1:600] to [1:600] Estimate dispersion: DONE dispersion | min: -0.0340576171875 | max: 10.4375 | % negative: 4.33333333333333 Only analysis time 0.0299468278884888 Cotan genes' coex estimation started Calculate genes' coex: START Retrieving expected genes' contingency table calculating NN.. done calculating NY..YN..YY.. done Calculating genes' coex normalization factor Fraction of genes with very low expected contingency tables: 0.000105379922351636 Retrieving observed genes' yes/yes contingency table calculating YY.. done Estimating genes' coex Calculate genes' coex: DONE Total time 0.115313899517059 Only genes' coex time 0.0772456447283427 Using S Calculating S: START Calculating S: DONE Calculate GDI dataframe: START Calculate GDI dataframe: DONE [ FAIL 0 | WARN 0 | SKIP 0 | PASS 312 ] > > proc.time() user system elapsed 332.254 2.793 331.632
COTAN.Rcheck/COTAN-Ex.timings
name | user | system | elapsed | |
COTAN | 0.165 | 0.008 | 0.173 | |
COTANObjectCreation | 7.462 | 0.353 | 7.498 | |
CalculatingCOEX | 31.166 | 1.155 | 30.988 | |
ClustersList | 0.004 | 0.000 | 0.004 | |
GenesCoexSpace | 8.015 | 0.224 | 7.904 | |
HandleMetaData | 0.071 | 0.004 | 0.074 | |
HandlingClusterizations | 11.628 | 0.304 | 11.933 | |
HeatmapPlots | 27.069 | 1.014 | 27.085 | |
LegacyFastSymmMatrix | 0.003 | 0.000 | 0.003 | |
LoggingFunctions | 0.002 | 0.000 | 0.002 | |
ParametersEstimations | 17.342 | 0.406 | 17.750 | |
RawDataCleaning | 2.103 | 0.072 | 2.175 | |
RawDataGetters | 0.067 | 0.004 | 0.071 | |
UniformClusters | 435.313 | 1.227 | 434.114 | |
cosineDissimilarity | 0 | 0 | 0 | |
getColorsVector | 0.001 | 0.000 | 0.001 | |