Back to Multiple platform build/check report for BioC 3.15 |
|
This page was generated on 2022-03-18 11:07:15 -0400 (Fri, 18 Mar 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | R Under development (unstable) (2022-02-17 r81757) -- "Unsuffered Consequences" | 4334 |
riesling1 | Windows Server 2019 Standard | x64 | R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" | 4097 |
palomino3 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2022-02-17 r81757 ucrt) -- "Unsuffered Consequences" | 4083 |
merida1 | macOS 10.14.6 Mojave | x86_64 | R Under development (unstable) (2022-03-02 r81842) -- "Unsuffered Consequences" | 4134 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the ComplexHeatmap package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/ComplexHeatmap.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 381/2090 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
ComplexHeatmap 2.11.0 (landing page) Zuguang Gu
| nebbiolo1 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
riesling1 | Windows Server 2019 Standard / x64 | OK | OK | OK | OK | |||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: ComplexHeatmap |
Version: 2.11.0 |
Command: D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:ComplexHeatmap.install-out.txt --library=D:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings ComplexHeatmap_2.11.0.tar.gz |
StartedAt: 2022-03-17 18:47:36 -0400 (Thu, 17 Mar 2022) |
EndedAt: 2022-03-17 18:52:36 -0400 (Thu, 17 Mar 2022) |
EllapsedTime: 299.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: ComplexHeatmap.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:ComplexHeatmap.install-out.txt --library=D:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings ComplexHeatmap_2.11.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'D:/biocbuild/bbs-3.15-bioc/meat/ComplexHeatmap.Rcheck' * using R Under development (unstable) (2021-11-21 r81221) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'ComplexHeatmap/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'ComplexHeatmap' version '2.11.0' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'ComplexHeatmap' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking files in 'vignettes' ... OK * checking examples ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'test-AnnotationFunction.R' Running 'test-ColorMapping-class.R' Running 'test-Heatmap-class.R' Running 'test-Heatmap-cluster.R' Running 'test-HeatmapAnnotation.R' Running 'test-HeatmapList-class.R' Running 'test-Legend.R' Running 'test-SingleAnnotation.R' Running 'test-annotation_axis.R' Running 'test-dendrogram.R' Running 'test-gridtext.R' Running 'test-interactive.R' Running 'test-multiple-page.R' Running 'test-oncoPrint.R' Running 'test-pheatmap.R' Running 'test-upset.R' Running 'test-utils.R' Running 'testthat-all.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: OK
ComplexHeatmap.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD INSTALL ComplexHeatmap ### ############################################################################## ############################################################################## * installing to library 'D:/biocbuild/bbs-3.15-bioc/R/library' * installing *source* package 'ComplexHeatmap' ... ** using staged installation ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package 'ComplexHeatmap' finding HTML links ... done AdditiveUnit-class html AdditiveUnit html AnnotationFunction-class html AnnotationFunction html ColorMapping-class html ColorMapping html ComplexHeatmap-package html Extract.AnnotationFunction html Extract.Heatmap html Extract.HeatmapAnnotation html Extract.HeatmapList html Extract.SingleAnnotation html Extract.comb_mat html Extract.gridtext html Heatmap-class html Heatmap html Heatmap3D html HeatmapAnnotation-class html HeatmapAnnotation html HeatmapList-class html HeatmapList html Legend html Legends-class html Legends html SingleAnnotation-class html SingleAnnotation html UpSet html add.AdditiveUnit html add_heatmap-Heatmap-method html add_heatmap-HeatmapAnnotation-method html add_heatmap-HeatmapList-method html add_heatmap-dispatch html adjust_dend_by_x html adjust_heatmap_list-HeatmapList-method html alter_graphic html anno_barplot html anno_block html anno_boxplot html anno_customize html anno_density html anno_empty html anno_histogram html anno_horizon html anno_image html anno_joyplot html anno_lines html anno_link html anno_mark html anno_oncoprint_barplot html anno_points html anno_simple html anno_summary html anno_text html anno_zoom html annotation_axis_grob html annotation_legend_size-HeatmapList-method html attach_annotation-Heatmap-method html bar3D html bin_genome html c.ColorMapping html c.HeatmapAnnotation html cluster_between_groups html cluster_within_group html color_mapping_legend-ColorMapping-method html columnAnnotation html column_dend-Heatmap-method html column_dend-HeatmapList-method html column_dend-dispatch html column_order-Heatmap-method html column_order-HeatmapList-method html column_order-dispatch html comb_degree html comb_name html comb_size html compare_heatmap.2 html compare_heatmap html compare_pheatmap html complement_size html component_height-Heatmap-method html component_height-HeatmapList-method html component_height-dispatch html component_width-Heatmap-method html component_width-HeatmapList-method html component_width-dispatch html copy_all-AnnotationFunction-method html copy_all-SingleAnnotation-method html copy_all-dispatch html decorate_annotation html decorate_column_dend html decorate_column_names html decorate_column_title html decorate_dend html decorate_dimnames html decorate_heatmap_body html decorate_row_dend html decorate_row_names html decorate_row_title html decorate_title html default_axis_param html default_get_type html dend_heights html dend_xy html dendrogramGrob html densityHeatmap html dim.Heatmap html dist2 html draw-AnnotationFunction-method html draw-Heatmap-method html draw-HeatmapAnnotation-method html draw-HeatmapList-method html draw-Legends-method html draw-SingleAnnotation-method html draw-dispatch html draw_annotation-Heatmap-method html draw_annotation_legend-HeatmapList-method html draw_dend-Heatmap-method html draw_dimnames-Heatmap-method html draw_heatmap_body-Heatmap-method html draw_heatmap_legend-HeatmapList-method html draw_heatmap_list-HeatmapList-method html draw_title-Heatmap-method html draw_title-HeatmapList-method html draw_title-dispatch html extract_comb html frequencyHeatmap html full_comb_code html getXY_in_parent_vp html get_color_mapping_list-HeatmapAnnotation-method html get_legend_param_list-HeatmapAnnotation-method html grid.annotation_axis html grid.boxplot html grid.dendrogram html grid.draw.Legends html gt_render html heatmap_legend_size-HeatmapList-method html height.AnnotationFunction html height.Heatmap html height.HeatmapAnnotation html height.HeatmapList html height.Legends html height.SingleAnnotation html heightAssign.AnnotationFunction html heightAssign.HeatmapAnnotation html heightAssign.SingleAnnotation html heightDetails.annotation_axis html heightDetails.legend html heightDetails.legend_body html heightDetails.packed_legends html ht_global_opt html ht_opt html ht_size html is_abs_unit html length.HeatmapAnnotation html length.HeatmapList html list_components html list_to_matrix html make_column_cluster-Heatmap-method html make_comb_mat html make_layout-Heatmap-method html make_layout-HeatmapList-method html make_layout-dispatch html make_row_cluster-Heatmap-method html map_to_colors-ColorMapping-method html max_text_height html max_text_width html merge_dendrogram html names.HeatmapAnnotation html names.HeatmapList html namesAssign.HeatmapAnnotation html ncol.Heatmap html nobs.AnnotationFunction html nobs.HeatmapAnnotation html nobs.SingleAnnotation html normalize_comb_mat html normalize_genomic_signals_to_bins html nrow.Heatmap html oncoPrint html order.comb_mat html packLegend html pct_v_pct html pheatmap html pindex html plot.Heatmap html plot.HeatmapAnnotation html plot.HeatmapList html prepare-Heatmap-method html print.comb_mat html re_size-HeatmapAnnotation-method html restore_matrix html rowAnnotation html row_anno_barplot html row_anno_boxplot html row_anno_density html row_anno_histogram html row_anno_points html row_anno_text html row_dend-Heatmap-method html row_dend-HeatmapList-method html row_dend-dispatch html row_order-Heatmap-method html row_order-HeatmapList-method html row_order-dispatch html set_component_height-Heatmap-method html set_component_width-Heatmap-method html set_name html set_nameAssign html set_size html show-AnnotationFunction-method html show-ColorMapping-method html show-Heatmap-method html show-HeatmapAnnotation-method html show-HeatmapList-method html show-SingleAnnotation-method html show-dispatch html size.AnnotationFunction html size.HeatmapAnnotation html size.SingleAnnotation html sizeAssign.AnnotationFunction html sizeAssign.HeatmapAnnotation html sizeAssign.SingleAnnotation html smartAlign2 html str.comb_mat html subset_gp html subset_matrix_by_row html subset_no html subset_vector html summary.Heatmap html summary.HeatmapList html t.comb_mat html test_alter_fun html unify_mat_list html upset_left_annotation html upset_right_annotation html upset_top_annotation html width.AnnotationFunction html width.Heatmap html width.HeatmapAnnotation html width.HeatmapList html width.Legends html width.SingleAnnotation html widthAssign.AnnotationFunction html widthAssign.HeatmapAnnotation html widthAssign.SingleAnnotation html widthDetails.annotation_axis html widthDetails.legend html widthDetails.legend_body html widthDetails.packed_legends html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (ComplexHeatmap) Making 'packages.html' ... done
ComplexHeatmap.Rcheck/tests/test-annotation_axis.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > > > gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, + side = "left", facing = "outside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "left", facing = "outside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, + side = "left", facing = "inside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "left", facing = "inside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, + side = "right", facing = "outside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "right", facing = "outside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, + side = "right", facing = "inside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "right", facing = "inside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, + side = "top", facing = "outside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "top", facing = "outside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 90, + side = "top", facing = "outside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "top", facing = "outside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 45, + side = "top", facing = "outside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "top", facing = "outside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, + side = "top", facing = "inside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "top", facing = "inside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, + side = "bottom", facing = "outside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "bottom", facing = "outside"') > grid.draw(gb) > popViewport() > > gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, + side = "bottom", facing = "inside") > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > grid.rect() > grid.text('side = "bottom", facing = "inside"') > grid.draw(gb) > popViewport() > > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > gb = annotation_axis_grob(labels_rot = 0, side = "left", facing = "outside") > grid.rect() > grid.text('side = "left", facing = "outside"') > grid.draw(gb) > popViewport() > > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > gb = annotation_axis_grob(side = "left", direction = "reverse") > grid.rect() > grid.text('side = "left", direction = "reverse') > grid.draw(gb) > popViewport() > > grid.newpage() > pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6)) > gb = annotation_axis_grob(side = "bottom", direction = "reverse") > grid.rect() > grid.text('side = "bottom", direction = "reverse"') > grid.draw(gb) > popViewport() > > > > proc.time() user system elapsed 2.12 0.26 2.34
ComplexHeatmap.Rcheck/tests/test-AnnotationFunction.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > if(!exists("normalize_graphic_param_to_mat")) { + normalize_graphic_param_to_mat = ComplexHeatmap:::normalize_graphic_param_to_mat + } > > if(!exists("height")) { + height = ComplexHeatmap:::height + } > > if(!exists("width")) { + width = ComplexHeatmap:::width + } > > normalize_graphic_param_to_mat(1, nc = 2, nr = 4, "foo") [,1] [,2] [1,] 1 1 [2,] 1 1 [3,] 1 1 [4,] 1 1 > normalize_graphic_param_to_mat(1:2, nc = 2, nr = 4, "foo") [,1] [,2] [1,] 1 2 [2,] 1 2 [3,] 1 2 [4,] 1 2 > normalize_graphic_param_to_mat(1:4, nc = 2, nr = 4, "foo") [,1] [,2] [1,] 1 1 [2,] 2 2 [3,] 3 3 [4,] 4 4 > > ### AnnotationFunction constructor ##### > fun = function(index) { + x = runif(10) + pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1))) + grid.points(index, x[index]) + popViewport() + } > anno = AnnotationFunction(fun = fun) > > x = runif(10) > fun = function(index) { + pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1))) + grid.points(index, x[index]) + popViewport() + } > anno = AnnotationFunction(fun = fun, var_import = "x") > anno = AnnotationFunction(fun = fun, var_import = list(x)) > > > x = runif(10) > cell_fun = function(i) { + pushViewport(viewport(yscale = c(0, 1))) + grid.points(unit(0.5, "npc"), x[i]) + popViewport() + } > anno = AnnotationFunction(cell_fun = cell_fun, var_import = "x") > ha = HeatmapAnnotation(foo = anno) > draw(ha, 1:10, test = T) > > cell_fun = function(i) { + pushViewport(viewport(xscale = c(0, 1))) + grid.points(x[i], unit(0.5, "npc")) + popViewport() + } > anno = AnnotationFunction(cell_fun = cell_fun, var_import = "x", which = "row") > ha = rowAnnotation(foo = anno) > draw(ha, 1:10, test = T) > > # devAskNewPage(ask = dev.interactive()) > > ########### testing anno_simple ############ > anno = anno_simple(1:10) > draw(anno, test = "as a simple vector") > draw(anno[1:5], test = "subset of column annotation") > anno = anno_simple(1:10, which = "row") > draw(anno, test = "as row annotation") > draw(anno[1:5], test = "subste of row annotation") > > anno = anno_simple(1:10, col = structure(rand_color(10), names = 1:10)) > draw(anno, test = "self-define colors") > > anno = anno_simple(1:10, border = TRUE) > draw(anno, test = "border") > anno = anno_simple(1:10, gp = gpar(col = "red")) > draw(anno, test = "gp for the grids") > > anno = anno_simple(c(1:9, NA)) > draw(anno, test = "vector has NA values") > > anno = anno_simple(cbind(1:10, 10:1)) > draw(anno, test = "a matrix") > draw(anno[1:5], test = "subste of a matrix") > > anno = anno_simple(1:10, pch = 1, pt_gp = gpar(col = "red"), pt_size = unit(seq(1, 10), "mm")) > draw(anno, test = "with symbols + pt_gp + pt_size") > anno = anno_simple(1:10, pch = 1:10) > draw(anno, test = "pch is a vector") > anno = anno_simple(1:10, pch = c(1:4, NA, 6:8, NA, 10, 11)) > draw(anno, test = "pch has NA values") > > anno = anno_simple(cbind(1:10, 10:1), pch = 1, pt_gp = gpar(col = "blue")) > draw(anno, test = "matrix with symbols") > anno = anno_simple(cbind(1:10, 10:1), pch = 1:2) > draw(anno, test = "matrix, length of pch is number of annotations") > anno = anno_simple(cbind(1:10, 10:1), pch = 1:10) > draw(anno, test = "matrix, length of pch is length of samples") > anno = anno_simple(cbind(1:10, 10:1), pch = matrix(1:20, nc = 2)) > draw(anno, test = "matrix, pch is a matrix") > pch = matrix(1:20, nc = 2) > pch[sample(length(pch), 10)] = NA > anno = anno_simple(cbind(1:10, 10:1), pch = pch) > draw(anno, test = "matrix, pch is a matrix with NA values") > > > ####### test anno_empty ###### > anno = anno_empty() > draw(anno, test = "anno_empty") > anno = anno_empty(border = FALSE) > draw(anno, test = "anno_empty without border") > > if(0) { + ###### test anno_image ##### + image1 = sample(dir("~/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10) + anno = anno_image(image1) + draw(anno, test = "png") + draw(anno[1:5], test = "subset of png") + anno = anno_image(image1, which = "row") + draw(anno, test = "png on rows") + image2 = sample(dir("~/Downloads/IcoMoon-Free-master/SVG/", full.names = TRUE), 10) + anno = anno_image(image2) + draw(anno, test = "svg") + image3 = sample(dir("~/Downloads/IcoMoon-Free-master/EPS/", full.names = TRUE), 10) + anno = anno_image(image3) + draw(anno, test = "eps") + image4 = sample(dir("~/Downloads/IcoMoon-Free-master/PDF/", full.names = TRUE), 10) + anno = anno_image(image4) + draw(anno, test = "pdf") + + anno = anno_image(c(image1[1:3], image2[1:3], image3[1:3], image4[1:3])) + draw(anno, test = "png+svg+eps+pdf") + + anno = anno_image(image1, gp = gpar(fill = 1:10, col = "black")) + draw(anno, test = "png + gp") + draw(anno[1:5], test = "png + gp") + + anno = anno_image(image1, space = unit(3, "mm")) + draw(anno, test = "space") + + image1[1] = "" + anno = anno_image(image1) + draw(anno, test = "png") + } > > ######## test anno_points ##### > anno = anno_points(runif(10)) > draw(anno, test = "anno_points") > anno = anno_points(matrix(runif(20), nc = 2), pch = 1:2) > draw(anno, test = "matrix") > anno = anno_points(c(1:5, 1:5)) > draw(anno, test = "anno_points") > anno = anno_points(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3)) > draw(anno, test = "matrix") > > anno = anno_points(1:10, gp = gpar(col = rep(2:3, each = 5)), pch = rep(2:3, each = 5)) > draw(anno, test = "anno_points") > draw(anno, index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10), test = "anno_points") > > anno = anno_points(c(1:5, NA, 7:10)) > draw(anno, test = "anno_points") > > > anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1)) > draw(anno, test = "anno_points") > > anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1), which = "row") > draw(anno, test = "anno_points") > > # pch as image > if(0) { + image1 = sample(dir("/desktop-home/guz/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10) + x = runif(10) + anno1 = anno_points(x, pch = image1, pch_as_image = TRUE, size = unit(5, "mm"), height = unit(4, "cm")) + anno2 = anno_points(x, height = unit(4, "cm")) + draw(anno1, test = "anno_points") + draw(anno2, test = "anno_points") + } > > ##### test anno_lines ### > anno = anno_lines(runif(10)) > draw(anno, test = "anno_lines") > anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3)) > draw(anno, test = "matrix") > anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3), + add_points = TRUE, pt_gp = gpar(col = 5:6), pch = c(1, 16)) > draw(anno, test = "matrix") > anno = anno_lines(sort(rnorm(10)), height = unit(2, "cm"), smooth = TRUE, add_points = TRUE) > draw(anno, test = "anno_lines, smooth") > anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), + height = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3)) > draw(anno, test = "anno_lines, smooth, matrix") > > anno = anno_lines(sort(rnorm(10)), width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, which = "row") > draw(anno, test = "anno_lines, smooth, by row") > anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), + width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3), which = "row") > draw(anno, test = "anno_lines, smooth, matrix, by row") > > anno = anno_lines(c(1:5, NA, 7:10)) > draw(anno, test = "anno_lines") > > anno = anno_lines(runif(10), axis_param = list(direction = "reverse")) > draw(anno, test = "anno_lines") > > ###### test anno_text ####### > anno = anno_text(month.name) > draw(anno, test = "month names") > anno = anno_text(month.name, gp = gpar(fontsize = 16)) > draw(anno, test = "month names with fontsize") > anno = anno_text(month.name, gp = gpar(fontsize = 1:12+4)) > draw(anno, test = "month names with changing fontsize") > anno = anno_text(month.name, which = "row") > draw(anno, test = "month names on rows") > anno = anno_text(month.name, location = 0, rot = 45, just = "left", gp = gpar(col = 1:12)) > draw(anno, test = "with rotations") > anno = anno_text(month.name, location = 1, rot = 45, just = "right", gp = gpar(fontsize = 1:12+4)) > draw(anno, test = "with rotations") > > > for(rot in seq(0, 360, by = 45)) { + anno = anno_text(month.name, which = "row", location = 0, rot = rot, + just = "left") + draw(anno, test = paste0("rot =", rot)) + } > > > ##### test anno_barplot ##### > anno = anno_barplot(1:10) > draw(anno, test = "a vector") > draw(anno[1:5], test = "a vector, subset") > anno = anno_barplot(1:10, which = "row") > draw(anno, test = "a vector") > anno = anno_barplot(1:10, bar_width = 1) > draw(anno, test = "bar_width") > anno = anno_barplot(1:10, gp = gpar(fill = 1:10)) > draw(anno, test = "fill colors") > > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1))) > draw(anno, test = "a matrix") > draw(anno[1:5], test = "a matrix, subset") > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row") > draw(anno, test = "a matrix, on rows") > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), gp = gpar(fill = 2:3, col = 2:3)) > draw(anno, test = "a matrix with fill") > > m = matrix(runif(4*10), nc = 4) > m = t(apply(m, 1, function(x) x/sum(x))) > anno = anno_barplot(m) > draw(anno, test = "proportion matrix") > anno = anno_barplot(m, gp = gpar(fill = 2:5), bar_width = 1, height = unit(6, "cm")) > draw(anno, test = "proportion matrix") > > anno = anno_barplot(c(1:5, NA, 7:10)) > draw(anno, test = "a vector") > > anno = anno_barplot(1:10, which = "row", axis_param = list(direction = "reverse")) > draw(anno, test = "a vector") > > anno = anno_barplot(1:10, baseline = 5, which = "row", axis_param = list(direction = "reverse")) > draw(anno, test = "a vector") > > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row", axis_param = list(direction = "reverse")) > draw(anno, test = "a vector") > > > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE) > draw(anno, test = "a matrix") > draw(anno[1:5], test = "a matrix, subset") > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE, which = "row") > draw(anno, test = "a matrix, on rows") > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), beside = TRUE, gp = gpar(fill = 2:3, col = 2:3)) > draw(anno, test = "a matrix with fill") > > > > ##### test anno_boxplot ##### > set.seed(123) > m = matrix(rnorm(100), 10) > anno = anno_boxplot(m, height = unit(4, "cm")) > draw(anno, test = "anno_boxplot") > draw(anno[1:5], test = "subset") > anno = anno_boxplot(m, height = unit(4, "cm"), gp = gpar(fill = 1:10)) > draw(anno, test = "anno_boxplot with gp") > anno = anno_boxplot(m, height = unit(4, "cm"), box_width = 0.9) > draw(anno, test = "anno_boxplot with box_width") > > m = matrix(rnorm(100), 10) > m[1, ] = NA > anno = anno_boxplot(m, height = unit(4, "cm")) > draw(anno, test = "anno_boxplot") > > > ####### test anno_joyplot #### > m = matrix(rnorm(1000), nc = 10) > lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")])) > anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row") > draw(anno, test = "joyplot") > anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = 1:10)) > draw(anno, test = "joyplot + col") > anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", scale = 1) > draw(anno, test = "joyplot + scale") > > m = matrix(rnorm(5000), nc = 50) > lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")])) > anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = NA), scale = 4) > draw(anno, test = "joyplot") > > ######## test anno_horizon ###### > lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1) > anno = anno_horizon(lt, which = "row") > draw(anno, test = "horizon chart") > anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = "orange", neg_fill = "darkgreen")) > draw(anno, test = "horizon chart, col") > anno = anno_horizon(lt, which = "row", negative_from_top = TRUE) > draw(anno, test = "horizon chart + negative_from_top") > anno = anno_horizon(lt, which = "row", gap = unit(1, "mm")) > draw(anno, test = "horizon chart + gap") > anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = rep(c("orange", "red"), each = 10), + neg_fill = rep(c("darkgreen", "blue"), each = 10))) > draw(anno, test = "horizon chart, col") > > ####### test anno_histogram #### > m = matrix(rnorm(1000), nc = 10) > anno = anno_histogram(t(m), which = "row") > draw(anno, test = "row histogram") > draw(anno[1:5], test = "subset row histogram") > anno = anno_histogram(t(m), which = "row", gp = gpar(fill = 1:10)) > draw(anno, test = "row histogram with color") > anno = anno_histogram(t(m), which = "row", n_breaks = 20) > draw(anno, test = "row histogram with color") > m[1, ] = NA > anno = anno_histogram(t(m), which = "row") > draw(anno, test = "row histogram") > > > ####### test anno_density ###### > anno = anno_density(t(m), which = "row") > draw(anno, test = "normal density") > draw(anno[1:5], test = "normal density, subset") > anno = anno_density(t(m), which = "row", type = "violin") > draw(anno, test = "violin") > anno = anno_density(t(m), which = "row", type = "heatmap") > draw(anno, test = "heatmap") > anno = anno_density(t(m), which = "row", type = "heatmap", heatmap_colors = c("white", "orange")) > draw(anno, test = "heatmap, colors") > > > ###### anno_mark ### > if(0) { + library(gridtext) + grid.text = function(text, x = 0.5, y = 0.5, gp = gpar(), rot = 0, default.units = "npc", just = "center") { + if(length(just) == 1) { + if(just == "center") { + just = c("center", "center") + } else if(just == "bottom") { + just = c("center", "bottom") + } else if (just == "top") { + just = c("center", "top") + } else if(just == "left") { + just = c("left", "center") + } else if(just == "right") { + just = c("right", "center") + } + } + just2 = c(0.5, 0.5) + if(is.character(just)) { + just2[1] = switch(just[1], "center" = 0.5, "left" = 0, "right" = 1) + just2[2] = switch(just[2], "center" = 0.5, "bottom" = 0, "top" = 1) + } + gb = richtext_grob(text, x = x, y = y, gp = gpar(fontsize = 10), box_gp = gpar(col = "black"), + default.units = default.units, hjust = just2[1], vjust = just2[2], rot = rot) + grid.draw(gb) + } + } > anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row") > draw(anno, index = 1:100, test = "anno_mark") > > anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], labels_rot = 30, which = "column") > draw(anno, index = 1:100, test = "anno_mark") > > m = matrix(1:1000, byrow = TRUE, nr = 100) > anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row", labels_rot = 30) > Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno) > Heatmap(m) + rowAnnotation(mark = anno) > > ht_list = Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno) > draw(ht_list, row_split = c(rep("a", 95), rep("b", 5))) > > > grid.newpage() > pushViewport(viewport(x = 0.45, w = 0.7, h = 0.95)) > h = unit(0, "mm") > for(rot in seq(0, 360, by = 30)[-13]) { + anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "column", side = "bottom") + h = h + height(anno) + pushViewport(viewport(y = h, height = height(anno), just = "top")) + grid.rect() + draw(anno, index = 1:100) + grid::grid.text(qq("labels_rot = @{rot}"), unit(1, "npc") + unit(2, "mm"), just = "left") + popViewport() + } > > > grid.newpage() > pushViewport(viewport(w = 0.9, h = 0.9)) > w = unit(0, "mm") > for(rot in seq(0, 360, by = 30)) { + anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "row", side = "left") + w = w + width(anno) + pushViewport(viewport(x = w, width = width(anno), just = "right")) + grid.rect() + draw(anno, index = 1:100) + popViewport() + } > > > > ### graphic parameters after reordering > index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10) > anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)), + pt_size = unit(1:10, "mm")) > draw(anno, index, test = "a numeric vector") > anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)), + pt_size = unit(1:10, "mm"), which = "row") > draw(anno, index, test = "a numeric vector") > > > anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)), + size = unit(1:10, "mm")) > draw(anno, index, test = "a numeric vector") > anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)), + size = unit(1:10, "mm"), which = "row") > draw(anno, index, test = "a numeric vector") > > > anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)), + size = unit(1:10, "mm"), add_points = TRUE) > draw(anno, index, test = "a numeric vector") > anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)), + size = unit(1:10, "mm"), add_points = TRUE, which = "row") > draw(anno, index, test = "a numeric vector") > > > anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5))) > draw(anno, index, test = "a numeric vector") > anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row") > draw(anno, index, test = "a numeric vector") > > anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2)) > draw(anno, index, test = "a numeric vector") > anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2), which = "row") > draw(anno, index, test = "a numeric vector") > > > m = matrix(rnorm(100), 10) > m = m[, order(apply(m, 2, median))] > anno = anno_boxplot(m, pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)), + size = unit(1:10, "mm"), height = unit(4, "cm")) > draw(anno, index, test = "a numeric vector") > anno = anno_boxplot(t(m), pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)), + size = unit(1:10, "mm"), which = "row", width = unit(4, "cm")) > draw(anno, index, test = "a numeric vector") > > anno = anno_histogram(m, gp = gpar(fill = rep(c(1, 2), each = 5))) > draw(anno, index, test = "a numeric vector") > anno = anno_histogram(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row") > draw(anno, index, test = "a numeric vector") > > anno = anno_density(m, gp = gpar(fill = rep(c(1, 2), each = 5))) > draw(anno, index, test = "a numeric vector") > anno = anno_density(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row") > draw(anno, index, test = "a numeric vector") > > > anno = anno_density(m, type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5))) > draw(anno, index, test = "a numeric vector") > anno = anno_density(t(m), type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row") > draw(anno, index, test = "a numeric vector") > > > anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5))) > draw(anno, index, test = "a numeric vector") > anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5)), which= "row") > draw(anno, index, test = "a numeric vector") > > lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1) > anno = anno_horizon(lt, gp = gpar(pos_fill = rep(c(1, 2), each = 5), neg_fill = rep(c(3, 4), each = 5)), which = "row") > draw(anno, index, test = "a numeric vector") > > m = matrix(rnorm(1000), nc = 10) > lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")])) > anno = anno_joyplot(lt, gp = gpar(fill = rep(c(1, 2), each = 5)), + width = unit(4, "cm"), which = "row") > draw(anno, index, test = "joyplot") > > > anno = anno_block(gp = gpar(fill = 1:4)) > draw(anno, index = 1:10, k = 1, n = 4, test = "anno_block") > draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block") > > anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white")) > draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block") > draw(anno, index = 1:10, k = 4, n = 4, test = "anno_block") > # draw(anno, index = 1:10, k = 2, n = 2, test = "anno_block") > > anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white"), which = "row") > draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block") > > > ### anno_zoom > fa = sort(sample(letters[1:3], 100, replace = TRUE, prob = c(1, 2, 3))) > panel_fun = function(index, nm) { + grid.rect() + grid.text(nm) + } > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun) > draw(anno, index = 1:100, test = "anno_zoom") > > anno = anno_zoom(align_to = list(a = which(fa == "a")), which = "row", panel_fun = panel_fun) > draw(anno, index = 1:100, test = "anno_zoom") > > > panel_fun = function(index, nm) { + grid.rect(gp = gpar(fill = "grey", col = NA)) + grid.text(nm) + } > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, link_gp = gpar(fill = "grey", col = "black"), internal_line = FALSE) > draw(anno, index = 1:100, test = "anno_zoom") > > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + gap = unit(1, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, set gap") > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = 1:3) > draw(anno, index = 1:100, test = "anno_zoom, size set as relative values") > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = 1:3, extend = unit(1, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, extend") > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = unit(1:3, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values") > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = unit(c(2, 20, 40), "cm")) > draw(anno, index = 1:100, test = "anno_zoom, big size") > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = 1:3, gap = unit(1, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, size set as relative values, gap") > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = unit(1:3, "cm"), gap = unit(1, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values, gap") > > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = unit(1:3, "cm"), side = "left") > draw(anno, index = 1:100, test = "anno_zoom, side") > > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3)) > draw(anno, index = 1:100, test = "anno_zoom, link_gp") > > anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, + size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3), + link_width = unit(2, "cm"), width = unit(4, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, width") > > anno = anno_zoom(align_to = list(a = 1:10, b = 30:45, c = 70:90), + which = "row", panel_fun = panel_fun, size = unit(1:3, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, a list of indices") > > anno = anno_zoom(align_to = fa, which = "column", panel_fun = panel_fun, + size = unit(1:3, "cm")) > draw(anno, index = 1:100, test = "anno_zoom, column annotation") > > > m = matrix(rnorm(100*10), nrow = 100) > hc = hclust(dist(m)) > fa2 = cutree(hc, k = 4) > anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun) > draw(anno, index = hc$order, test = "anno_zoom, column annotation") > > anno = anno_zoom(align_to = fa2, which = "column", panel_fun = panel_fun) > draw(anno, index = hc$order, test = "anno_zoom, column annotation") > > > anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun) > draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno))) > draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno), row_split = 2)) > > > anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun, size = unit(1:4, "cm")) > draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno))) > > set.seed(123) > m = matrix(rnorm(100*10), nrow = 100) > subgroup = sample(letters[1:3], 100, replace = TRUE, prob = c(1, 5, 10)) > rg = range(m) > panel_fun = function(index, nm) { + pushViewport(viewport(xscale = rg, yscale = c(0, 2))) + grid.rect() + grid.xaxis(gp = gpar(fontsize = 8)) + grid.boxplot(m[index, ], pos = 1, direction = "horizontal") + grid.text(paste("distribution of group", nm), mean(rg), y = 1.9, + just = "top", default.units = "native", gp = gpar(fontsize = 10)) + popViewport() + } > anno = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun, + size = unit(2, "cm"), gap = unit(1, "cm"), width = unit(4, "cm")) > draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), row_split = subgroup)) > > panel_fun2 = function(index, nm) { + pushViewport(viewport()) + grid.rect() + n = floor(length(index)/4) + txt = paste("gene function", 1:n, collapse = "\n") + grid.text(txt, 0.95, 0.5, default.units = "npc", just = "right", gp = gpar(fontsize = 8)) + popViewport() + } > anno2 = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun2, + gap = unit(1, "cm"), width = unit(3, "cm"), side = "left") > > draw(Heatmap(m, right_annotation = rowAnnotation(subgroup = subgroup, foo = anno, + show_annotation_name = FALSE), + left_annotation = rowAnnotation(bar = anno2, subgroup = subgroup, show_annotation_name = FALSE), + show_row_dend = FALSE, + row_split = subgroup)) > > draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), + left_annotation = rowAnnotation(bar = anno2), + show_row_dend = FALSE, + row_split = subgroup)) > > set.seed(12345) > mat = matrix(rnorm(30*10), nr = 30) > row_split = c(rep("a", 10), rep("b", 5), rep("c", 2), rep("d", 3), + rep("e", 2), letters[10:17]) > row_split = factor(row_split) > > panel_fun = function(index, name) { + pushViewport(viewport()) + grid.rect() + grid.text(name) + popViewport() + } > > anno = anno_zoom(align_to = row_split, which = "row", panel_fun = panel_fun, + size = unit(0.5, "cm"), width = unit(4, "cm")) > > # > dev.size() > # [1] 3.938326 4.502203 > dev.new(width = 3.938326, height = 4.502203) dev.new(): using pdf(file="Rplots1.pdf") > draw(Heatmap(mat, right_annotation = rowAnnotation(foo = anno), + row_split = row_split)) > > > > #### anno_custome ### > x = sort(sample(letters[1:3], 10, replace = TRUE)) > graphics = list( + "a" = function(x, y, w, h) grid.points(x, y, pch = 16), + "b" = function(x, y, w, h) grid.rect(x, y, w*0.8, h*0.8, gp = gpar(fill = "red")), + "c" = function(x, y, w, h) grid.segments(x - 0.5*w, y - 0.5*h, x + 0.5*w, y + 0.5*h, gp = gpar(lty = 2)) + ) > > anno = anno_customize(x, graphics = graphics) > draw(anno, index = 1:10, test = "") > > anno = anno_customize(c(x, "d"), graphics = graphics) Note: following levels in `x` have no graphics defined: d. Set `verbose = FALSE` in `anno_customize()` to turn off this message. > > > > proc.time() user system elapsed 15.51 0.29 15.86
ComplexHeatmap.Rcheck/tests/test-ColorMapping-class.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > cm = ColorMapping(name = "test", + colors = c("blue", "white", "red"), + levels = c("a", "b", "c")) > color_mapping_legend(cm) > > cm = ColorMapping(name = "test", + col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))) > color_mapping_legend(cm) > > cm = ColorMapping(name = "test", + colors = c("blue", "white", "red"), + levels = c(1, 2, 3)) > color_mapping_legend(cm) > > ha = SingleAnnotation(value = rep(NA, 10), name = "foo") > cm = ha@color_mapping > color_mapping_legend(cm) > > > proc.time() user system elapsed 1.70 0.21 1.90
ComplexHeatmap.Rcheck/tests/test-dendrogram.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > if(!exists("cut_dendrogram")) { + cut_dendrogram = ComplexHeatmap:::cut_dendrogram + } > > library(dendextend) --------------------- Welcome to dendextend version 1.15.2 Type citation('dendextend') for how to cite the package. Type browseVignettes(package = 'dendextend') for the package vignette. The github page is: https://github.com/talgalili/dendextend/ Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues You may ask questions at stackoverflow, use the r and dendextend tags: https://stackoverflow.com/questions/tagged/dendextend To suppress this message use: suppressPackageStartupMessages(library(dendextend)) --------------------- Attaching package: 'dendextend' The following object is masked from 'package:stats': cutree > > m = matrix(rnorm(100), 10) > dend1 = as.dendrogram(hclust(dist(m))) > dend1 = adjust_dend_by_x(dend1, sort(runif(10))) > > m = matrix(rnorm(50), nr = 5) > dend2 = as.dendrogram(hclust(dist(m))) > > dend3 = as.dendrogram(hclust(dist(m[1:2, ]))) > > > dend_merge = merge_dendrogram(dend3, + list(set(dend1, "branches_col", "red"), + set(dend2, "branches_col", "blue")) + ) > > grid.dendrogram(dend_merge, test = TRUE, facing = "bottom") > grid.dendrogram(dend_merge, test = TRUE, facing = "top") > grid.dendrogram(dend_merge, test = TRUE, facing = "left") > grid.dendrogram(dend_merge, test = TRUE, facing = "right") > > grid.dendrogram(dend_merge, test = TRUE, facing = "bottom", order = "reverse") > grid.dendrogram(dend_merge, test = TRUE, facing = "top", order = "reverse") > grid.dendrogram(dend_merge, test = TRUE, facing = "left", order = "reverse") > grid.dendrogram(dend_merge, test = TRUE, facing = "right", order = "reverse") > > > m = matrix(rnorm(100), 10) > dend1 = as.dendrogram(hclust(dist(m))) > dend1 = adjust_dend_by_x(dend1, unit(1:10, "cm")) > grid.dendrogram(dend1, test = TRUE) > > dl = cut_dendrogram(dend1, k = 3) > grid.dendrogram(dl$upper, test = TRUE) > > > m1 = matrix(rnorm(100), nr = 10) > m2 = matrix(rnorm(80), nr = 8) > m3 = matrix(rnorm(50), nr = 5) > dend1 = as.dendrogram(hclust(dist(m1))) > dend2 = as.dendrogram(hclust(dist(m2))) > dend3 = as.dendrogram(hclust(dist(m3))) > dend_p = as.dendrogram(hclust(dist(rbind(colMeans(m1), colMeans(m2), colMeans(m3))))) > dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3)) > grid.dendrogram(dend_m, test = T) > > dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3), only_parent = TRUE) > grid.dendrogram(dend_m, test = T) > > require(dendextend) > dend1 = color_branches(dend1, k = 1, col = "red") > dend2 = color_branches(dend2, k = 1, col = "blue") > dend3 = color_branches(dend3, k = 1, col = "green") > dend_p = color_branches(dend_p, k = 1, col = "orange") > dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3)) > grid.dendrogram(dend_m, test = T) > > > m = matrix(rnorm(120), nc = 12) > colnames(m) = letters[1:12] > fa = rep(c("a", "b", "c"), times = c(2, 4, 6)) > dend = cluster_within_group(m, fa) > grid.dendrogram(dend, test = TRUE) > > > # stack overflow problem > m = matrix(1, nrow = 1000, ncol = 10) > m[1, 2] = 2 > dend = as.dendrogram(hclust(dist(m))) > grid.dendrogram(dend, test = T) > > # node attr > m = matrix(rnorm(100), 10) > dend = as.dendrogram(hclust(dist(m))) > require(dendextend) > dend1 = color_branches(dend, k = 2, col = 1:2) > grid.dendrogram(dend1, test = T) > dend1 = dend > dend1 = dendrapply(dend, function(d) { + attr(d, "nodePar") = list(pch = sample(20, 1), cex = runif(1, min = 0.3, max = 1.3), col = rand_color(1)) + d + }) > grid.dendrogram(dend1, test = T) > > Heatmap(m, cluster_rows = dend1, cluster_columns = dend1) > > d1 = ComplexHeatmap:::dend_edit_node(dend, method = "top-bottom", function(d, index) { + attr(d, "depth") = length(index) + d + }) > > d2 = ComplexHeatmap:::dend_edit_node(dend, method = "bottom-top", function(d, index) { + attr(d, "depth") = length(index) + d + }) > > identical(d1, d2) [1] TRUE > > proc.time() user system elapsed 5.46 0.54 6.01
ComplexHeatmap.Rcheck/tests/test-gridtext.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > > if(requireNamespace("gridtext")) { + ##### test anno_richtext #### + mat = matrix(rnorm(100), 10) + rownames(mat) = letters[1:10] + ht = Heatmap(mat, + column_title = gt_render("Some <span style='color:blue'>blue text **in bold.**</span><br>And *italics text.*<br>And some <span style='font-size:18pt; color:black'>large</span> text.", r = unit(2, "pt"), padding = unit(c(2, 2, 2, 2), "pt")), + column_title_gp = gpar(box_fill = "orange"), + row_labels = gt_render(letters[1:10], padding = unit(c(2, 10, 2, 10), "pt")), + row_names_gp = gpar(box_col = rep(2:3, times = 5), box_fill = ifelse(1:10%%2, "yellow", "white")), + row_km = 2, + row_title = gt_render(c("title1", "title2")), + row_title_gp = gpar(box_fill = "yellow"), + heatmap_legend_param = list( + title = gt_render("<span style='color:orange'>**Legend title**</span>"), + title_gp = gpar(box_fill = "grey"), + at = c(-3, 0, 3), + labels = gt_render(c("*negative* three", "zero", "*positive* three")) + )) + ht = rowAnnotation( + foo = anno_text(gt_render(sapply(LETTERS[1:10], strrep, 10), align_widths = TRUE), + gp = gpar(box_col = "blue", box_lwd = 2), + just = "right", + location = unit(1, "npc") + )) + ht + draw(ht) + + } Loading required namespace: gridtext > > proc.time() user system elapsed 3.01 0.34 3.32
ComplexHeatmap.Rcheck/tests/test-Heatmap-class.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > set.seed(123) > nr1 = 10; nr2 = 8; nr3 = 6 > nc1 = 6; nc2 = 8; nc3 = 10 > mat = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc1, mean = 0, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc1, mean = 0, sd = 0.5), nr = nr3)), + rbind(matrix(rnorm(nr1*nc2, mean = 0, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc2, mean = 1, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc2, mean = 0, sd = 0.5), nr = nr3)), + rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc3, mean = 1, sd = 0.5), nr = nr3)) + ) > > rownames(mat) = paste0("row", seq_len(nrow(mat))) > colnames(mat) = paste0("column", seq_len(nrow(mat))) > > ht = Heatmap(mat) > draw(ht, test = TRUE) > ht > > > ht = Heatmap(mat, col = colorRamp2(c(-3, 0, 3), c("green", "white", "red"))) > draw(ht, test = TRUE) > > ht = Heatmap(mat, name = "test") > draw(ht, test = TRUE) > > ht = Heatmap(mat, rect_gp = gpar(col = "black")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, border = "red") > draw(ht, test = TRUE) > > ######## test title ########## > ht = Heatmap(mat, row_title = "blablabla") > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_title = "blablabla", row_title_side = "right") > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fontsize = 20, font = 2)) > draw(ht, test = TRUE) > > # ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 45) > # draw(ht, test = TRUE) > > ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 0) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fill = "red", col = "white")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_title = "blablabla") > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_title = "blablabla", column_title_side = "bottom") > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_title = "blablabla", column_title_gp = gpar(fontsize = 20, font = 2)) > draw(ht, test = TRUE) > > # ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 45) > # draw(ht, test = TRUE) > > ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 90) > draw(ht, test = TRUE) > > > ### test clustering #### > > ht = Heatmap(mat, cluster_rows = FALSE) > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_distance_rows = "pearson") > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_distance_rows = function(x) dist(x)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_distance_rows = function(x, y) 1 - cor(x, y)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_method_rows = "single") > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_dend_side = "right") > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_dend_width = unit(4, "cm")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_dend_gp = gpar(lwd = 2, col = "red")) > draw(ht, test = TRUE) > > dend = as.dendrogram(hclust(dist(mat))) > ht = Heatmap(mat, cluster_rows = dend) > draw(ht, test = TRUE) > > library(dendextend) --------------------- Welcome to dendextend version 1.15.2 Type citation('dendextend') for how to cite the package. Type browseVignettes(package = 'dendextend') for the package vignette. The github page is: https://github.com/talgalili/dendextend/ Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues You may ask questions at stackoverflow, use the r and dendextend tags: https://stackoverflow.com/questions/tagged/dendextend To suppress this message use: suppressPackageStartupMessages(library(dendextend)) --------------------- Attaching package: 'dendextend' The following object is masked from 'package:stats': cutree > dend = color_branches(dend, k = 3) > ht = Heatmap(mat, cluster_rows = dend) > draw(ht, test = TRUE) > > > ht = Heatmap(mat, cluster_columns = FALSE) > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_distance_columns = "pearson") > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_distance_columns = function(x) dist(x)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_distance_columns = function(x, y) 1 - cor(x, y)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, clustering_method_columns = "single") > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_dend_side = "bottom") > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_dend_height = unit(4, "cm")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_dend_gp = gpar(lwd = 2, col = "red")) > draw(ht, test = TRUE) > > dend = as.dendrogram(hclust(dist(t(mat)))) > ht = Heatmap(mat, cluster_columns = dend) > draw(ht, test = TRUE) > > dend = color_branches(dend, k = 3) > ht = Heatmap(mat, cluster_columns = dend) > draw(ht, test = TRUE) > > > ### test row/column order > od = c(seq(1, 24, by = 2), seq(2, 24, by = 2)) > ht = Heatmap(mat, row_order = od) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_order = od, cluster_rows = TRUE) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_order = od) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_order = od, cluster_columns = TRUE) > draw(ht, test = TRUE) > > > #### test row/column names ##### > ht = Heatmap(unname(mat)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, show_row_names = FALSE) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_names_side = "left") > draw(ht, test = TRUE) > > random_str2 = function(k) { + sapply(1:k, function(i) paste(sample(letters, sample(5:10, 1)), collapse = "")) + } > ht = Heatmap(mat, row_labels = random_str2(24)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_names_gp = gpar(fontsize = 20)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_names_gp = gpar(fontsize = 1:24/2 + 5)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_names_rot = 45) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_names_rot = 45, row_names_side = "left") > draw(ht, test = TRUE) > > ht = Heatmap(mat, show_column_names = FALSE) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_names_side = "top") > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_labels = random_str2(24)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_names_gp = gpar(fontsize = 20)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_names_gp = gpar(fontsize = 1:24/2 + 5)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_names_rot = 45) > draw(ht, test = TRUE) > > ### test annotations #### > anno = HeatmapAnnotation( + foo = 1:24, + df = data.frame(type = c(rep("A", 12), rep("B", 12))), + bar = anno_barplot(24:1)) > ht = Heatmap(mat, top_annotation = anno) > draw(ht, test = TRUE) > > ht = Heatmap(mat, bottom_annotation = anno) > draw(ht, test = TRUE) > > ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno) > draw(ht, test = TRUE) > > > ### test split #### > ht = Heatmap(mat, km = 3) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3) > draw(ht, test = TRUE) > > ht = Heatmap(mat, split = rep(c("A", "B"), times = c(6, 18))) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18))) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A"))) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), row_gap = unit(5, "mm")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12))) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)), + row_gap = unit(c(1, 2, 3), "mm")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3, row_title = "foo") > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3, row_title = "cluster%s") > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_rot = 0) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_gp = gpar(fill = 2:4, col = "white")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3, row_title = NULL) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3, row_names_gp = gpar(col = 2:4)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3, row_title = "cluster%s,group%s", row_title_rot = 0) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = 2) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = 2, row_title = "foo") > ht = Heatmap(mat, row_split = 2, row_title = "cluster%s") > > > dend = as.dendrogram(hclust(dist(mat))) > ht = Heatmap(mat, cluster_rows = dend, row_split = 2) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = 2, row_names_gp = gpar(col = 2:3)) > draw(ht, test = TRUE) > > > ### column split > ht = Heatmap(mat, column_km = 2) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_km = 2, column_gap = unit(1, "cm")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18))) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)), + column_gap = unit(c(1, 2, 3), "mm")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_km = 2, column_title = "foo") > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_km = 2, column_title = "cluster%s") > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_rot = 90) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_gp = gpar(fill = 2:3, col = "white")) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_km = 2, column_title = NULL) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_km = 2, column_names_gp = gpar(col = 2:3)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("A", "B")), column_km = 2) > draw(ht, test = TRUE) > ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A")), column_km = 2) > > > ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18)), column_km = 2, + column_title = "cluster%s,group%s", column_title_rot = 90) > draw(ht, test = TRUE) > > ht = Heatmap(mat, column_split = 3) > draw(ht, test = TRUE) > > dend = as.dendrogram(hclust(dist(t(mat)))) > ht = Heatmap(mat, cluster_columns = dend, column_split = 3) > draw(ht, test = TRUE) > > ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_km = 2) > draw(ht, test = TRUE) > > ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_split = 3) > draw(ht, test = TRUE) > > ### combine row and column split > ht = Heatmap(mat, row_km = 3, column_km = 3) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = 3, column_split = 3) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 3, column_split = 3) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), + column_split = rep(c("C", "D"), 12)) > draw(ht, test = TRUE) > > ht = Heatmap(mat, top_annotation = anno, + row_split = rep(c("A", "B"), 12), + row_names_gp = gpar(col = 2:3), row_gap = unit(2, "mm"), + column_split = 3, + column_names_gp = gpar(col = 2:4), column_gap = unit(4, "mm") + ) > draw(ht, test = TRUE) > > > #### character matrix > mat3 = matrix(sample(letters[1:6], 100, replace = TRUE), 10, 10) > rownames(mat3) = {x = letters[1:10]; x[1] = "aaaaaaaaaaaaaaaaaaaaaaa";x} > ht = Heatmap(mat3, rect_gp = gpar(col = "white")) > draw(ht, test = TRUE) > > > ### cell_fun > mat = matrix(1:9, 3, 3) > rownames(mat) = letters[1:3] > colnames(mat) = letters[1:3] > > ht = Heatmap(mat, rect_gp = gpar(col = "white"), cell_fun = function(j, i, x, y, width, height, fill) grid.text(mat[i, j], x = x, y = y), + cluster_rows = FALSE, cluster_columns = FALSE, row_names_side = "left", column_names_side = "top", + column_names_rot = 0) > draw(ht, test = TRUE) > > > ### test the size > ht = Heatmap(mat) > ht = prepare(ht) > ht@heatmap_param[c("width", "height")] $width [1] 1npc $height [1] 1npc > ht@matrix_param[c("width", "height")] $width [1] 3null $height [1] 3null > > ht = Heatmap(mat, width = unit(10, "cm"), height = unit(10, "cm")) > ht = prepare(ht) > ht@heatmap_param[c("width", "height")] $width [1] 114.853733333333mm $height [1] 114.853733333333mm > ht@matrix_param[c("width", "height")] $width [1] 10cm $height [1] 10cm > draw(ht, test = TRUE) > > ht = Heatmap(mat, width = unit(10, "cm")) > ht = prepare(ht) > ht@heatmap_param[c("width", "height")] $width [1] 114.853733333333mm $height [1] 1npc > ht@matrix_param[c("width", "height")] $width [1] 10cm $height [1] 3null > draw(ht, test = TRUE) > > ht = Heatmap(mat, heatmap_width = unit(10, "cm"), heatmap_height = unit(10, "cm")) > ht = prepare(ht) > ht@heatmap_param[c("width", "height")] $width [1] 10cm $height [1] 10cm > ht@matrix_param[c("width", "height")] $width [1] 85.1462666666667mm $height [1] 85.1462666666667mm > draw(ht, test = TRUE) > > ht = Heatmap(mat, heatmap_width = unit(10, "cm")) > ht = prepare(ht) > ht@heatmap_param[c("width", "height")] $width [1] 10cm $height [1] 1npc > ht@matrix_param[c("width", "height")] $width [1] 85.1462666666667mm $height [1] 3null > draw(ht, test = TRUE) > > ht = Heatmap(mat, use_raster = TRUE) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 2, use_raster = TRUE) > draw(ht, test = TRUE) > > ht = Heatmap(mat, row_km = 2, column_km = 2, use_raster = TRUE) > draw(ht, test = TRUE) > > #### test global padding > ra = rowAnnotation(foo = 1:3) > ht = Heatmap(mat, show_column_names = FALSE) + ra > draw(ht) > > ht = Heatmap(matrix(rnorm(100), 10), row_km = 2, row_title = "") > draw(ht) > > if(0) { + ht = Heatmap(matrix(rnorm(100), 10), heatmap_width = unit(5, "mm")) + draw(ht) + } > > proc.time() user system elapsed 17.70 0.48 18.21
ComplexHeatmap.Rcheck/tests/test-Heatmap-cluster.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > # ht_opt("verbose" = TRUE) > m = matrix(rnorm(50), nr = 10) > > ht = Heatmap(m) > ht = make_row_cluster(ht) > > ht = Heatmap(m, cluster_rows = FALSE) > ht = make_row_cluster(ht) > > ht = Heatmap(m, row_km = 2) > ht = make_row_cluster(ht) > > ht = Heatmap(m, row_split = sample(letters[1:2], 10, replace = TRUE)) > ht = make_row_cluster(ht) > > ht = Heatmap(m, cluster_rows = hclust(dist(m))) > ht = make_row_cluster(ht) > > ht = Heatmap(m, cluster_rows = hclust(dist(m)), row_split = 2) > ht = make_row_cluster(ht) > > # ht_opt("verbose" = FALSE) > > proc.time() user system elapsed 1.73 0.20 1.92
ComplexHeatmap.Rcheck/tests/test-HeatmapAnnotation.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > > ha = HeatmapAnnotation(foo = 1:10) > ha A HeatmapAnnotation object with 1 annotation name: heatmap_annotation_0 position: column items: 10 width: 1npc height: 5mm this object is subsetable 6.75733333333333mm extension on the right name annotation_type color_mapping height foo continuous vector random 5mm > > > ha = HeatmapAnnotation(foo = cbind(1:10, 10:1)) > ha A HeatmapAnnotation object with 1 annotation name: heatmap_annotation_1 position: column items: 10 width: 1npc height: 10mm this object is subsetable 6.75733333333333mm extension on the right name annotation_type color_mapping height foo continuous matrix random 10mm > draw(ha, test = "matrix as column annotation") > > ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE), + pt = anno_points(1:10), annotation_name_side = "left") > draw(ha, test = "complex annotations") > > ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE), + pt = anno_points(1:10), annotation_name_side = "left", height = unit(8, "cm")) > draw(ha, test = "complex annotations") > > > ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE)) > > ha = HeatmapAnnotation(foo = 1:10, + bar = cbind(1:10, 10:1), + pt = anno_points(1:10), + gap = unit(2, "mm")) > draw(ha, test = "complex annotations") > > ha2 = re_size(ha, annotation_height = unit(1:3, "cm")) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha, annotation_height = 1, height = unit(6, "cm")) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha, annotation_height = 1:3, height = unit(6, "cm")) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha, annotation_height = unit(c(1, 2, 3), c("null", "null", "cm")), height = unit(6, "cm")) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "null", "cm")), height = unit(6, "cm")) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "cm", "cm"))) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha[, 1:2], annotation_height = 1, height = unit(4, "cm")) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha[, 1:2], annotation_height = c(1, 4), height = unit(4, "cm")) > draw(ha2, test = "complex annotations") > ha2 = re_size(ha[, 1:2], height = unit(6, "cm")) > draw(ha2, test = "complex annotations") > > ha2 = re_size(ha, height = unit(6, "cm")) > draw(ha2, test = "complex annotations") > > #### test anno_empty and self-defined anotation function > ha = HeatmapAnnotation(foo = anno_empty(), height = unit(4, "cm")) > draw(ha, 1:10, test = "anno_empty") > ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm")) > draw(ha, 1:10, test = "anno_empty") > ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm")) > draw(ha, 1:10, test = "anno_empty") > > ha = HeatmapAnnotation(foo = function(index) {grid.rect()}, bar = 1:10, height = unit(4, "cm")) > draw(ha, 1:10, test = "self-defined function") > > > lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1) > ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE), + anno = anno_horizon(lt), which = "row") > draw(ha, test = "complex annotations on row") > > ## test row annotation with no heatmap > rowAnnotation(foo = 1:10, bar = anno_points(10:1)) A HeatmapAnnotation object with 2 annotations name: heatmap_annotation_11 position: row items: 10 width: 15.3514598035146mm height: 1npc this object is subsetable 9.17784444444445mm extension on the bottom name annotation_type color_mapping width foo continuous vector random 5mm bar anno_points() 10mm > > if(0) { + HeatmapAnnotation(1:10) + + HeatmapAnnotation(data.frame(1:10)) + } > > > ha = HeatmapAnnotation(summary = anno_summary(height = unit(4, "cm"))) > v = sample(letters[1:2], 50, replace = TRUE) > split = sample(letters[1:2], 50, replace = TRUE) > > ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split) > draw(ht) > > ha = HeatmapAnnotation(summary = anno_summary(gp = gpar(fill = 2:3), height = unit(4, "cm"))) > v = rnorm(50) > ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split) > draw(ht) > > > ### auto adjust > m = matrix(rnorm(100), 10) > ht_list = Heatmap(m, top_annotation = HeatmapAnnotation(foo = 1:10), column_dend_height = unit(4, "cm")) + + Heatmap(m, top_annotation = HeatmapAnnotation(bar = anno_points(1:10)), + cluster_columns = FALSE) > draw(ht_list) > > fun = function(index) { + grid.rect() + } > ha = HeatmapAnnotation(fun = fun, height = unit(4, "cm")) > draw(ha, 1:10, test = TRUE) > > ha = rowAnnotation(fun = fun, width = unit(4, "cm")) > draw(ha, 1:10, test = TRUE) > > > ## test anno_mark > m = matrix(rnorm(1000), nrow = 100) > ha1 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10])) > ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1) > draw(ht) > ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha1 > draw(ht) > > split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b" > ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1, row_split = split, gap = unit(1, "cm")) > draw(ht) > ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha1 > draw(ht) > > # ha has two annotations > ha2 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100) > ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2) > draw(ht) > ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha2 > draw(ht) > > ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2, row_split = split, gap = unit(1, "cm")) > draw(ht) > ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha2 > draw(ht) > > ## test anno_mark as column annotation > m = matrix(rnorm(1000), ncol = 100) > ha1 = columnAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10])) > ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1) > draw(ht) > ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE) > draw(ht_list) > > split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b" > ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1, column_split = split, column_gap = unit(1, "cm")) > draw(ht) > ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, gap = unit(1, "cm")) > draw(ht_list) > > # ha has two annotations > ha2 = HeatmapAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100) > ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2) > draw(ht) > ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE) > draw(ht_list) > > ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2, column_split = split, column_gap = unit(1, "cm")) > draw(ht) > ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, column_gap = unit(1, "cm")) > draw(ht_list) > > > ### when there are only simple annotations > col_fun = colorRamp2(c(0, 10), c("white", "blue")) > ha = HeatmapAnnotation( + foo = cbind(a = 1:10, b = 10:1), + bar = sample(letters[1:3], 10, replace = TRUE), + col = list(foo = col_fun, + bar = c("a" = "red", "b" = "green", "c" = "blue") + ), + simple_anno_size = unit(1, "cm") + ) > draw(ha, test = TRUE) > > set.seed(123) > mat1 = matrix(rnorm(80, 2), 8, 10) > mat1 = rbind(mat1, matrix(rnorm(40, -2), 4, 10)) > rownames(mat1) = paste0("R", 1:12) > colnames(mat1) = paste0("C", 1:10) > > mat2 = matrix(runif(60, max = 3, min = 1), 6, 10) > mat2 = rbind(mat2, matrix(runif(60, max = 2, min = 0), 6, 10)) > rownames(mat2) = paste0("R", 1:12) > colnames(mat2) = paste0("C", 1:10) > > ind = sample(12, 12) > mat1 = mat1[ind, ] > mat2 = mat2[ind, ] > > ha1 = HeatmapAnnotation(foo1 = 1:10, + annotation_height = unit(1, "cm"), + simple_anno_size_adjust = TRUE, + annotation_name_side = "left") > ha2 = HeatmapAnnotation(df = data.frame(foo1 = 1:10, + foo2 = 1:10, + foo4 = 1:10, + foo5 = 1:10)) > ht1 = Heatmap(mat1, name = "rnorm", top_annotation = ha1) > ht2 = Heatmap(mat2, name = "runif", top_annotation = ha2) > > draw(ht1 + ht2) > > ##### test size of a single simple annotation > > ha = HeatmapAnnotation(foo1 = 1:10, + simple_anno_size = unit(1, "cm") + ) > ha = HeatmapAnnotation(foo1 = 1:10, + annotation_height = unit(1, "cm"), + simple_anno_size_adjust = TRUE + ) > ha = HeatmapAnnotation(foo1 = 1:10, + height = unit(1, "cm"), + simple_anno_size_adjust = TRUE + ) > > > ## annotation with the same names > > set.seed(123) > m = matrix(rnorm(100), 10) > ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE)) > ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE)) > > ht_list = Heatmap(m, top_annotation = ha1) + + Heatmap(m, top_annotation = ha2) > draw(ht_list) > > ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE), + annotation_legend_param = list( + foo = list(title = "letters", + at = c("a", "b", "c"), + labels = c("A", "B", "C") + ) + )) > ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE)) > > ht_list = Heatmap(m, top_annotation = ha1) + + Heatmap(m, top_annotation = ha2) > draw(ht_list) > > x = matrix(rnorm(6), ncol=3) > subtype_col = c("Basal" = "purple","Her2" = "black","Normal" = "blue") > h1 <- HeatmapAnnotation("Subtype" = c("Basal","Her2", "Normal"), + col = list("Subtype" = subtype_col)) > h2 <- HeatmapAnnotation("Subtype" = c("Normal","Normal", "Basal"), + col = list("Subtype" = subtype_col)) > > ht_list = Heatmap(x,top_annotation = h1) + Heatmap(x,top_annotation = h2) > draw(ht_list) > > > ### test annotation_label > ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10], + annotation_label = c("anno1", "anno2")) > draw(ha, test = TRUE) > > ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10], + annotation_label = list(foo = "anno1")) > draw(ha, test = TRUE) > > > ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10], + annotation_label = list( + foo = gt_render("foo", gp = gpar(box_fill = "red")))) Loading required namespace: gridtext > draw(ha, test = TRUE) > > ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10], + annotation_label = list( + foo = gt_render("foo", gp = gpar(box_fill = "red")), + bar = gt_render("bar", gp = gpar(box_fill = "blue")))) > draw(ha, test = TRUE) > > proc.time() user system elapsed 9.09 0.37 9.45
ComplexHeatmap.Rcheck/tests/test-HeatmapList-class.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > set.seed(123) > nr1 = 10; nr2 = 8; nr3 = 6 > nc1 = 6; nc2 = 8; nc3 = 10 > mat1 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc1, mean = 0, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc1, mean = 0, sd = 0.5), nr = nr3)), + rbind(matrix(rnorm(nr1*nc2, mean = 0, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc2, mean = 1, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc2, mean = 0, sd = 0.5), nr = nr3)), + rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc3, mean = 1, sd = 0.5), nr = nr3)) + ) > > rownames(mat1) = paste0("row_1_", seq_len(nrow(mat1))) > colnames(mat1) = paste0("column_1_", seq_len(nrow(mat1))) > > nr3 = 10; nr1 = 8; nr2 = 6 > nc3 = 6; nc1 = 8; nc2 = 10 > mat2 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc1, mean = 0, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc1, mean = 0, sd = 0.5), nr = nr3)), + rbind(matrix(rnorm(nr1*nc2, mean = 0, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc2, mean = 1, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc2, mean = 0, sd = 0.5), nr = nr3)), + rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1), + matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2), + matrix(rnorm(nr3*nc3, mean = 1, sd = 0.5), nr = nr3)) + ) > > rownames(mat2) = paste0("row_2_", seq_len(nrow(mat2))) > colnames(mat2) = paste0("column_2_", seq_len(nrow(mat2))) > > > ht_list = Heatmap(mat1) + Heatmap(mat2) > draw(ht_list) > > ######### legend ############ > draw(ht_list, heatmap_legend_side = "bottom") > draw(ht_list, heatmap_legend_side = "left") > draw(ht_list, heatmap_legend_side = "top") > > > ########## width ############# > ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2) > draw(ht_list) > ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(8, "cm")) > draw(ht_list) > ht_list = Heatmap(mat1, width = unit(12, "cm")) + Heatmap(mat2, width = unit(8, "cm")) > draw(ht_list) > > ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2) > draw(ht_list) > ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(6, "cm")) > draw(ht_list) > ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2, width = unit(6, "cm")) > draw(ht_list) > ht_list = Heatmap(mat1, width = 4) + Heatmap(mat2) > draw(ht_list) > ht_list = Heatmap(mat1, width = 2) + Heatmap(mat2, width = 1) > draw(ht_list) > > > ########### height ########### > ht_list = Heatmap(mat1, height = unit(6, "cm")) + Heatmap(mat2) > draw(ht_list) > ht_list = Heatmap(mat1, heatmap_height = unit(6, "cm")) + Heatmap(mat2) > draw(ht_list) > ht_list = Heatmap(mat1, width = unit(6, "cm"), height = unit(6, "cm")) + + Heatmap(mat2, width = unit(6, "cm"), height = unit(6, "cm")) > draw(ht_list, column_title = "foooooooooo", row_title = "baaaaaaaaaaar") > > ##### split ##### > ht_list = Heatmap(mat1, name = "m1", row_km = 2) + Heatmap(mat2, name = "m2", row_km = 3) > draw(ht_list, main_heatmap = "m1") > draw(ht_list, main_heatmap = "m2") > > ht_list = Heatmap(mat1, name = "m1", row_km = 2, column_km = 3, width = unit(8, "cm"), height = unit(6, "cm")) + + Heatmap(mat2, name = "m2", row_km = 3, column_km = 2, width = unit(8, "cm"), height = unit(10, "cm")) > draw(ht_list, main_heatmap = "m1", column_title = "foooooooooo", row_title = "baaaaaaaaaaar") > draw(ht_list, main_heatmap = "m2", column_title = "foooooooooo", row_title = "baaaaaaaaaaar") > > ##### adjust column annotations ##### > ha1 = HeatmapAnnotation(foo = 1:24, bar = anno_points(24:1, height = unit(4, "cm"))) > ha2 = HeatmapAnnotation(bar = anno_points(24:1), foo = 1:24) > ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2) > draw(ht_list) > ha2 = HeatmapAnnotation(foo = 1:24) > ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2) > draw(ht_list) > ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2) > draw(ht_list) > ht_list = Heatmap(mat1, bottom_annotation = ha1) + Heatmap(mat2) > draw(ht_list) > > > #### row annotations ##### > ha = rowAnnotation(foo = 1:24, bar = anno_points(24:1), width = unit(6, "cm")) > ht_list = Heatmap(mat1) + ha > draw(ht_list) > ht_list = Heatmap(mat1, width = unit(6, "cm")) + ha > draw(ht_list) > ht_list = Heatmap(mat1, width = unit(6, "cm"), row_km = 2) + ha > draw(ht_list) > > ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") + + rowAnnotation(foo = 1:10, bar = anno_points(10:1)) + + Heatmap(matrix(runif(100), 10), name = "runif") > summary(ht_list[1:5, ]) A horizontal heamtap list with 3 heatmap/annotations. rnorm: a matrix with 5 rows and 10 columns heatmap_annotation_4: a list of 2 annotations foo: a simple annotation. bar: a complex annotation. runif: a matrix with 5 rows and 10 columns > summary(ht_list[1:5, 1]) A horizontal heamtap list with 1 heatmap/annotations. rnorm: a matrix with 5 rows and 10 columns > summary(ht_list[1:5, "rnorm"]) A horizontal heamtap list with 1 heatmap/annotations. rnorm: a matrix with 5 rows and 10 columns > summary(ht_list[1:5, c("rnorm", "foo")]) A horizontal heamtap list with 2 heatmap/annotations. rnorm: a matrix with 5 rows and 10 columns heatmap_annotation_4: a list of 1 annotations foo: a simple annotation. > > ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") %v% + columnAnnotation(foo = 1:10, bar = anno_points(10:1)) %v% + Heatmap(matrix(runif(100), 10), name = "runif") > summary(ht_list[, 1:5]) A vertical heamtap list with 3 heatmap/annotations. rnorm: a matrix with 10 rows and 5 columns heatmap_annotation_5: a list of 2 annotations foo: a simple annotation. bar: a complex annotation. runif: a matrix with 10 rows and 5 columns > summary(ht_list[1, 1:5]) A vertical heamtap list with 1 heatmap/annotations. rnorm: a matrix with 10 rows and 5 columns > summary(ht_list["rnorm", 1:5]) A vertical heamtap list with 1 heatmap/annotations. rnorm: a matrix with 10 rows and 5 columns > summary(ht_list[c("rnorm", "foo"), 1:5]) A vertical heamtap list with 2 heatmap/annotations. rnorm: a matrix with 10 rows and 5 columns heatmap_annotation_5: a list of 1 annotations foo: a simple annotation. > > > > > proc.time() user system elapsed 11.15 0.46 11.59
ComplexHeatmap.Rcheck/tests/test-interactive.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > if(0) { + + m = matrix(rnorm(100), 10) + rownames(m) = 1:10 + colnames(m) = 1:10 + + ht = Heatmap(m) + ht = draw(ht) + selectArea(ht) + + + + ht = Heatmap(m, row_km = 2, column_km = 2) + ht = draw(ht) + selectArea(ht) + + + ht = Heatmap(m, row_km = 2, column_km = 2) + Heatmap(m, row_km = 2, column_km = 2) + ht = draw(ht) + selectArea(ht) + + pdf("~/test.pdf") + ht = Heatmap(m) + ht = draw(ht) + selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE) + + set.seed(123) + ht = Heatmap(m, row_km = 2, column_km = 2) + ht = draw(ht) + selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE) + dev.off() + + png("~/test-1.png") + ht = Heatmap(m) + ht = draw(ht) + selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE) + dev.off() + + png("~/test-2.png") + set.seed(123) + ht = Heatmap(m, row_km = 2, column_km = 2) + ht = draw(ht) + selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE) + dev.off() + + } > > proc.time() user system elapsed 0.15 0.03 0.17
ComplexHeatmap.Rcheck/tests/test-Legend.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > if(!exists("random_str")) { + random_str = ComplexHeatmap:::random_str + } > > lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6)) > draw(lgd, test = "default discrete legends style") > > lgd = Legend(labels = 1:6, legend_gp = gpar(fill = 1:6)) > draw(lgd, test = "only specify labels with no at") > > > lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6)) > draw(lgd, test = "add labels and title") > > lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6), + title_position = "lefttop") > draw(lgd, test = "title put in the lefttop") > > lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6), + title_position = "lefttop-rot") > draw(lgd, test = "title put in the lefttop-rot") > > lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6), + title_position = "leftcenter-rot") > draw(lgd, test = "title put in the leftcenter-rot") > > lgd = Legend(labels = 1:6, title = "fooooooo", legend_gp = gpar(fill = 1:6)) > draw(lgd, test = "title is longer than the legend body") > > lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), grid_height = unit(1, "cm"), + title = "foo", grid_width = unit(5, "mm")) > draw(lgd, test = "grid size") > > lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", + labels_gp = gpar(col = "red", fontsize = 14)) > draw(lgd, test = "labels_gp") > > lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", + title_gp = gpar(col = "red", fontsize = 14)) > draw(lgd, test = "title_gp") > > lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", + border = "red") > draw(lgd, test = "legend border") > > lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", + ncol = 3) > draw(lgd, test = "in 3 columns") > > lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", + ncol = 3, title_position = "topcenter") > draw(lgd, test = "in 3 columns, title in the center") > > lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", + ncol = 3, by_row = TRUE) > draw(lgd, test = "in 3 columns and by rows") > > lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", + ncol = 3, gap = unit(1, "cm")) > draw(lgd, test = "in 3 columns with gap between columns") > > lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", + nrow = 3) > draw(lgd, test = "in 3 rows") > > lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", + nrow = 1, title_position = "lefttop") > draw(lgd, test = "1 row and title is on the left") > > lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", + nrow = 1, title_position = "lefttop-rot") > draw(lgd, test = "1 row and title is on the left, 90 rotation") > > lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", + nrow = 1, title_position = "leftcenter") > draw(lgd, test = "1 row and title is on the left, 90 rotation") > > lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = 1:6, + legend_gp = gpar(col = 1:6), background = "red") > draw(lgd, test = "points as legends") > > lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = letters[1:6], + legend_gp = gpar(col = 1:6), background = "white") > draw(lgd, test = "letters as legends") > > lgd = Legend(labels = month.name[1:6], title = "foo", type = "lines", + legend_gp = gpar(col = 1:6, lty = 1:6)) > draw(lgd, test = "lines as legends") > > ###### vertical continous legend ####### > col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")) > lgd = Legend(col_fun = col_fun, title = "foo") > draw(lgd, test = "only col_fun") > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1)) > draw(lgd, test = "with at") > > lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1))) > draw(lgd, test = "with at") > > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high")) > draw(lgd, test = "with labels") > > lgd = Legend(col_fun = col_fun, title = "foo", legend_height = unit(6, "cm")) > draw(lgd, test = "set legend_height") > > lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red")) > draw(lgd, test = "set label color") > > lgd = Legend(col_fun = col_fun, title = "foo", border = "red") > draw(lgd, test = "legend border") > > lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "lefttop-rot") > draw(lgd, test = "lefttop rot title") > > lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "leftcenter-rot") > draw(lgd, test = "leftcenter top title") > > > lgd = Legend(col_fun = col_fun, title = "foo", title_position = "lefttop", direction = "horizontal") > draw(lgd, test = "lefttop title") > > ###### horizontal continous legend ####### > col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")) > lgd = Legend(col_fun = col_fun, title = "foo", direction = "horizontal") > draw(lgd, test = "only col_fun") > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal") > draw(lgd, test = "with at") > > lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1)), direction = "horizontal") > draw(lgd, test = "with at") > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high"), + direction = "horizontal") > draw(lgd, test = "with labels") > > lgd = Legend(col_fun = col_fun, title = "foo", legend_width = unit(6, "cm"), direction = "horizontal") > draw(lgd, test = "set legend_width") > > lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red"), direction = "horizontal") > draw(lgd, test = "set label color") > > lgd = Legend(col_fun = col_fun, title = "foo", border = "red", direction = "horizontal") > draw(lgd, test = "legend border") > > lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", + title_position = "topcenter") > draw(lgd, test = "topcenter title") > > lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", + title_position = "lefttop") > draw(lgd, test = "lefttop title") > > lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", + title_position = "leftcenter") > draw(lgd, test = "leftcenter title") > > > ###### pack legend > lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1") > lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1)) > > pd = packLegend(lgd1, lgd2) > draw(pd, test = "two legends") > > pd = packLegend(list = list(lgd1, lgd2)) > draw(pd, test = "two legends specified as a list") > > pd = packLegend(lgd1, lgd2, direction = "horizontal") > draw(pd, test = "two legends packed horizontally") > > lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1") > lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal") > pd = packLegend(lgd3, lgd4) > draw(pd, test = "two legends with different directions") > pd = packLegend(lgd3, lgd4, direction = "horizontal") > draw(pd, test = "two legends with different directions") > > pd = packLegend(lgd1, lgd2, lgd1, lgd2) > draw(pd, test = "many legends with same legends") > > lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1") > lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1)) > pd = packLegend(lgd1, lgd2, lgd3, lgd4) > draw(pd, test = "many legends with all different legends") > > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2) > draw(pd, test = "many legends") > > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(1, "npc")) > draw(pd, test = "many legends, max_height = unit(1, 'npc')") > ## reduce the height of the interactive window and rerun draw() > > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm")) > draw(pd, test = "many legends, max_height = unit(10, 'cm')") > > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm"), gap = unit(1, "cm")) > draw(pd, test = "many legends, max_height = unit(10, 'cm'), with gap") > > lgd_long = Legend(at = 1:50, legend_gp = gpar(fill = 1:50)) > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, lgd_long, max_height = unit(10, "cm")) > draw(pd, test = "many legends with a long one, max_height = unit(10, 'cm')") > > lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1", + nr = 1) > lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1), + direction = "horizontal") > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, direction = "horizontal") > draw(pd, test = "many legends") > > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(1, "npc"), direction = "horizontal") > draw(pd, test = "many legends, max_width = unit(1, 'npc')") > ## reduce the height of the interactive window and rerun draw() > > pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(10, "cm"), direction = "horizontal") > draw(pd, test = "many legends, max_width = unit(10, 'cm')") > > > ####### unequal interval breaks > col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")) > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1)) > draw(lgd, test = "unequal interval breaks") > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.3, 1), legend_height = unit(4, "cm")) > draw(lgd, test = "unequal interval breaks but not label position adjustment") > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1), + direction = "horizontal") > draw(lgd, test = "unequal interval breaks") > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1), + direction = "horizontal", title_position = "lefttop") > draw(lgd, test = "unequal interval breaks") > > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1), + direction = "horizontal", title_position = "lefttop", labels_rot = 90) > draw(lgd, test = "unequal interval breaks, label rot 90") > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1), + labels = c("mininal", "q10", "median", "q75", "maximal"), + direction = "horizontal", title_position = "lefttop") > draw(lgd, test = "unequal interval breaks with labels") > > > lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1), + labels = c("mininal", "q10", "median", "q75", "maximal"), + direction = "horizontal") > draw(lgd, test = "unequal interval breaks with labels") > > > col_fun = colorRamp2(c(0, 0.05, 0.1, 0.5, 1), c("green", "white", "red", "black", "blue")) > lgd = Legend(col_fun = col_fun, title = "foo", break_dist = 1:4) > draw(lgd, test = "unequal interval breaks") > > > #### position of legends to heatmaps ## > if(0) { + m = matrix(rnorm(100), 10) + rownames(m) = random_str(10, len = 20) + colnames(m) = random_str(10, len = 20) + Heatmap(m) + } > > > > proc.time() user system elapsed 3.35 0.25 3.59
ComplexHeatmap.Rcheck/tests/test-multiple-page.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > m = matrix(rnorm(100), 10) > > postscript("test.ps") > lgd = Legend(labels = c("a", "b", "c")) > draw(Heatmap(m), heatmap_legend_list = list(lgd)) > dev.off() null device 1 > > check_pages = function() { + lines = readLines("test.ps") + print(lines[length(lines)-1]) + invisible(file.remove("test.ps")) + } > > check_pages() [1] "%%Pages: 1" > > postscript("test.ps") > ha = HeatmapAnnotation(foo = 1:10, bar = anno_points(1:10)) > Heatmap(m, top_annotation = ha) > dev.off() null device 1 > > check_pages() [1] "%%Pages: 1" > > proc.time() user system elapsed 4.42 0.26 4.68
ComplexHeatmap.Rcheck/tests/test-oncoPrint.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > mat = read.table(textConnection( + "s1,s2,s3 + g1,snv;indel,snv,indel + g2,,snv;indel,snv + g3,snv,,indel;snv"), row.names = 1, header = TRUE, sep = ",", stringsAsFactors = FALSE) > mat = as.matrix(mat) > > get_type_fun = function(x) strsplit(x, ";")[[1]] > > alter_fun = list( + snv = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.9, + gp = gpar(fill = col["snv"], col = NA)), + indel = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.4, + gp = gpar(fill = col["indel"], col = NA)) + ) > > col = c(snv = "red", indel = "blue") > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col) All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > ## turn off row names while turn on column names > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col, + show_column_names = TRUE, show_row_names = FALSE, show_pct = FALSE) All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col, pct_side = "right", + row_names_side = "left") All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col, + top_annotation = HeatmapAnnotation(column_barplot = anno_oncoprint_barplot()) + ) All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col, + top_annotation = HeatmapAnnotation( + column_barplot = anno_oncoprint_barplot(), + foo = 1:3, + annotation_name_side = "left") + ) All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col, + top_annotation = HeatmapAnnotation( + cbar = anno_oncoprint_barplot(), + foo1 = 1:3, + annotation_name_side = "left"), + left_annotation = rowAnnotation(foo2 = 1:3), + right_annotation = rowAnnotation(cbar = anno_oncoprint_barplot(), foo3 = 1:3), + ) All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col, + top_annotation = HeatmapAnnotation( + cbar = anno_oncoprint_barplot(border = TRUE), + foo1 = 1:3, + annotation_name_side = "left"), + left_annotation = rowAnnotation(foo2 = 1:3), + right_annotation = rowAnnotation( + cbar = anno_oncoprint_barplot(border = TRUE), + foo3 = 1:3), + ) All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > ht = oncoPrint(mat, get_type = get_type_fun, + alter_fun = alter_fun, col = col, + right_annotation = rowAnnotation(rbar = anno_oncoprint_barplot(axis_param = list(side = "bottom", labels_rot = 90))) + ) All mutation types: snv, indel. `alter_fun` is assumed vectorizable. If it does not generate correct plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`. > draw(ht) > > > proc.time() user system elapsed 6.34 0.34 6.67
ComplexHeatmap.Rcheck/tests/test-pheatmap.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > > if(requireNamespace("pheatmap")) { + mat = matrix(rnorm(100), 10) + + compare_pheatmap(mat) + + pheatmap(mat) + pheatmap(mat, col = rev(RColorBrewer::brewer.pal(n = 7, name = "RdYlBu"))) + + test = matrix(rnorm(200), 20, 10) + test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3 + test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2 + test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4 + colnames(test) = paste("Test", 1:10, sep = "") + rownames(test) = paste("Gene", 1:20, sep = "") + + # Draw heatmaps + compare_pheatmap(test) + compare_pheatmap(test, kmeans_k = 2) + compare_pheatmap(test, scale = "row", clustering_distance_rows = "correlation") + compare_pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50)) + compare_pheatmap(test, cluster_row = FALSE) + compare_pheatmap(test, legend = FALSE) + + # Show text within cells + compare_pheatmap(test, display_numbers = TRUE) + compare_pheatmap(test, display_numbers = TRUE, number_format = "%.1e") + compare_pheatmap(test, display_numbers = matrix(ifelse(test > 5, "*", ""), nrow(test))) + compare_pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0", + "1e-4", "1e-3", "1e-2", "1e-1", "1")) + + # Fix cell sizes and save to file with correct size + compare_pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap") + + # Generate annotations for rows and columns + annotation_col = data.frame( + CellType = factor(rep(c("CT1", "CT2"), 5)), + Time = 1:5 + ) + rownames(annotation_col) = paste("Test", 1:10, sep = "") + + annotation_row = data.frame( + GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6))) + ) + rownames(annotation_row) = paste("Gene", 1:20, sep = "") + + # Display row and color annotations + compare_pheatmap(test, annotation_col = annotation_col) + compare_pheatmap(test, annotation_col = annotation_col, annotation_legend = FALSE) + compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row) + + # Change angle of text in the columns + compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, angle_col = "45") + compare_pheatmap(test, annotation_col = annotation_col, angle_col = "0") + + # Specify colors + ann_colors = list( + Time = c("white", "firebrick"), + CellType = c(CT1 = "#1B9E77", CT2 = "#D95F02"), + GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E") + ) + + compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors, main = "Title") + compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, + annotation_colors = ann_colors) + compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors[2]) + + # Gaps in heatmaps + compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14)) + compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14), + cutree_col = 2) + + # Show custom strings as row/col names + labels_row = c("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", + "", "", "Il10", "Il15", "Il1b") + + compare_pheatmap(test, annotation_col = annotation_col, labels_row = labels_row) + + # Specifying clustering from distance matrix + drows = dist(test, method = "minkowski") + dcols = dist(t(test), method = "minkowski") + compare_pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols) + + library(dendsort) + + callback = function(hc, ...){dendsort(hc)} + compare_pheatmap(test, clustering_callback = callback) + } Loading required namespace: pheatmap Warning message: argument `kmeans_k` is not suggested to use in pheatmap -> Heatmap translation because it changes the input matrix. You might check `row_km` and `column_km` arguments in Heatmap(). > > > set.seed(42) > nsamples <- 10 > > mat <- matrix(rpois(20*nsamples, 20), ncol=nsamples) > colnames(mat) <- paste0("sample", seq_len(ncol(mat))) > rownames(mat) <- paste0("gene", seq_len(nrow(mat))) > > annot <- data.frame( + labs = sample(c("A","B","C","D"), size = ncol(mat), replace = TRUE), + row.names = colnames(mat) + ) > ins <- list(mat = mat, annotation_col = annot) > do.call(ComplexHeatmap::pheatmap, ins[1]) > do.call(ComplexHeatmap::pheatmap, ins) > > proc.time() user system elapsed 19.65 0.34 20.03
ComplexHeatmap.Rcheck/tests/test-SingleAnnotation.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > ha = SingleAnnotation(value = 1:10) > draw(ha, test = "single column annotation") > ha = SingleAnnotation(value = 1:10, which = "row") > draw(ha, test = "single row annotation") > ha = SingleAnnotation(value = 1:10) > draw(ha, index = 6:10, test = "single column annotation, subset") > draw(ha, index = 6:10, k = 1, n = 2, test = "single column annotation, subset, k=1 n=2") > draw(ha, index = 6:10, k = 2, n = 2, test = "single column annotation, subset, k=1 n=2") > > x = 1:10 > ha = SingleAnnotation(value = x) > draw(ha, test = "single column annotation") > > m = cbind(1:10, 10:1) > colnames(m) = c("a", "b") > ha = SingleAnnotation(value = m) > draw(ha, test = "matrix as column annotation") > > ha = SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red"))) > draw(ha, test = "color mapping function") > > ha = SingleAnnotation(value = c(rep(c("a", "b"), 5))) > draw(ha, test = "discrete annotation") > ha = SingleAnnotation(value = c(rep(c("a", "b"), 5)), col = c("a" = "red", "b" = "blue")) > draw(ha, test = "discrete annotation with defined colors") > > anno = anno_simple(1:10) > ha = SingleAnnotation(fun = anno) > draw(ha, test = "AnnotationFunction as input") > > anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1))) > ha = SingleAnnotation(fun = anno) > draw(ha, test = "anno_barplot as input") > draw(ha, index = 1:5, test = "anno_barplot as input, 1:5") > draw(ha, index = 1:5, k = 1, n = 2, test = "anno_barplot as input, 1:5, k = 1, n = 2") > draw(ha, index = 1:5, k = 2, n = 2, test = "anno_barplot as input, 1:5, k = 2, n = 2") > > lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1) > anno = anno_horizon(lt, which = "row") > ha = SingleAnnotation(fun = anno, which = "row") > draw(ha, test = "anno_horizon as input") > > fun = local({ + value = 1:10 + function(index, k = 1, n = 1) { + pushViewport(viewport(xscale = c(0.5, length(index) + 0.5), yscale = range(value))) + grid.points(seq_along(index), value[index]) + grid.rect() + if(k == 1) grid.yaxis() + popViewport() + } + }) > ha = SingleAnnotation(fun = fun, height = unit(4, "cm")) > # ha[1:5] > draw(ha, index = c(1, 4, 2, 6), test = "self-defined function") > draw(ha, index = c(1, 4, 2, 6), k = 1, n = 2, test = "self-defined function, k = 1, n = 2") > draw(ha, index = c(1, 4, 2, 6), k = 2, n = 2, test = "self-defined function, k = 2, n = 2") > > > # test gridtext > ha = SingleAnnotation(value = 1:10, label = gt_render("foo", r = unit(2, "pt")), name_gp = gpar(box_fill = "red")) Loading required namespace: gridtext > draw(ha, test = "single column annotation") > > > > proc.time() user system elapsed 3.26 0.26 3.51
ComplexHeatmap.Rcheck/tests/test-upset.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > set.seed(123) > lt = list(a = sample(letters, 10), + b = sample(letters, 15), + c = sample(letters, 20)) > > m = make_comb_mat(lt) > t(m) A combination matrix with 3 sets and 6 combinations. ranges of combination set size: c(1, 8). mode for the combination size: distinct. sets are on columns Combination sets are: a b c code size x x x 111 4 x x 110 4 x x 101 2 x x 011 6 x 010 1 x 001 8 Sets are: set size a 10 b 15 c 20 > set_name(m) [1] "a" "b" "c" > comb_name(m) [1] "111" "110" "101" "011" "010" "001" > set_size(m) a b c 10 15 20 > comb_size(m) 111 110 101 011 010 001 4 4 2 6 1 8 > lapply(comb_name(m), function(x) extract_comb(m, x)) [[1]] [1] "e" "j" "x" "y" [[2]] [1] "c" "k" "n" "s" [[3]] [1] "o" "r" [[4]] [1] "a" "g" "h" "i" "l" "u" [[5]] [1] "d" [[6]] [1] "b" "f" "m" "q" "t" "v" "w" "z" > draw(UpSet(m)) > draw(UpSet(m, comb_col = c(rep(2, 3), rep(3, 3), 1))) > draw(UpSet(t(m))) > > set_name(t(m)) [1] "a" "b" "c" > comb_name(t(m)) [1] "111" "110" "101" "011" "010" "001" > set_size(t(m)) a b c 10 15 20 > comb_size(t(m)) 111 110 101 011 010 001 4 4 2 6 1 8 > lapply(comb_name(t(m)), function(x) extract_comb(t(m), x)) [[1]] [1] "e" "j" "x" "y" [[2]] [1] "c" "k" "n" "s" [[3]] [1] "o" "r" [[4]] [1] "a" "g" "h" "i" "l" "u" [[5]] [1] "d" [[6]] [1] "b" "f" "m" "q" "t" "v" "w" "z" > > m = make_comb_mat(lt, mode = "intersect") > lapply(comb_name(m), function(x) extract_comb(m, x)) [[1]] [1] "e" "j" "x" "y" [[2]] [1] "c" "e" "j" "k" "n" "s" "x" "y" [[3]] [1] "e" "j" "o" "r" "x" "y" [[4]] [1] "a" "e" "g" "h" "i" "j" "l" "u" "x" "y" [[5]] [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y" [[6]] [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y" [[7]] [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y" [20] "z" > draw(UpSet(m)) > > m = make_comb_mat(lt, mode = "union") > lapply(comb_name(m), function(x) extract_comb(m, x)) [[1]] [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t" [20] "u" "v" "w" "x" "y" "z" [[2]] [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "o" "r" "s" "u" "x" "y" [[3]] [1] "a" "b" "c" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t" "u" [20] "v" "w" "x" "y" "z" [[4]] [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t" [20] "u" "v" "w" "x" "y" "z" [[5]] [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y" [[6]] [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y" [[7]] [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y" [20] "z" > draw(UpSet(m)) > > f = system.file("extdata", "movies.csv", package = "UpSetR") > if(file.exists(f)) { + movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), header = T, sep = ";") + m = make_comb_mat(movies, top_n_sets = 6) + t(m) + set_name(m) + comb_name(m) + set_size(m) + comb_size(m) + lapply(comb_name(m), function(x) extract_comb(m, x)) + + set_name(t(m)) + comb_name(t(m)) + set_size(t(m)) + comb_size(t(m)) + lapply(comb_name(t(m)), function(x) extract_comb(t(m), x)) + + draw(UpSet(m)) + draw(UpSet(t(m))) + + m = make_comb_mat(movies, top_n_sets = 6, mode = "intersect") + m = make_comb_mat(movies, top_n_sets = 6, mode = "union") + } > > library(circlize) > library(GenomicRanges) Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Attaching package: 'IRanges' The following object is masked from 'package:grDevices': windows Loading required package: GenomeInfoDb > lt = lapply(1:4, function(i) generateRandomBed()) > lt = lapply(lt, function(df) GRanges(seqnames = df[, 1], ranges = IRanges(df[, 2], df[, 3]))) > names(lt) = letters[1:4] > m = make_comb_mat(lt) > > # if(0) { > # set.seed(123) > # lt = list(a = sample(letters, 10), > # b = sample(letters, 15), > # c = sample(letters, 20)) > # v = gplots::venn(lt, show.plot = FALSE) > # rownames(v) = apply(v[, -1], 1, paste, collapse = "") > # m = make_comb_mat(lt) > # cs = structure(comb_size(m), names = comb_name(m)) > # } > > if(file.exists(f)) { + movies <- read.csv(f, header = T, sep = ";") + genre = c("Action", "Romance", "Horror", "Children", "SciFi", "Documentary") + rate = cut(movies$AvgRating, c(0, 1, 2, 3, 4, 5)) + m_list = tapply(seq_len(nrow(movies)), rate, function(ind) { + make_comb_mat(movies[ind, genre, drop = FALSE]) + }) + m_list2 = normalize_comb_mat(m_list) + + lapply(m_list2, set_name) + lapply(m_list2, set_size) + lapply(m_list2, comb_name) + lapply(m_list2, comb_size) + + lapply(1:length(m_list), function(i) { + n1 = comb_name(m_list[[i]]) + x1 = comb_size(m_list[[i]]) + n2 = comb_name(m_list2[[i]]) + x2 = comb_size(m_list2[[i]]) + l = n2 %in% n1 + x2[!l] + }) + } [[1]] 110001 100101 100011 110000 100100 100010 100001 010100 010010 010001 000110 0 0 0 0 0 0 0 0 0 0 0 000101 000011 100000 000010 0 0 0 1 [[2]] 110001 100101 100011 100001 010100 010010 010001 000110 000101 000011 1 1 0 5 0 0 0 0 8 0 [[3]] 110001 100101 100011 100001 010001 000101 000011 0 4 0 35 7 27 1 [[4]] 110001 100101 100011 100100 100001 010001 000101 000011 1 6 1 6 45 5 11 4 [[5]] 110001 100101 100011 100100 100001 010100 010010 010001 000110 000101 000011 0 1 1 1 6 0 0 0 0 0 0 > > > proc.time() user system elapsed 17.71 0.51 18.17
ComplexHeatmap.Rcheck/tests/test-utils.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(circlize) ======================================== circlize version 0.4.14 CRAN page: https://cran.r-project.org/package=circlize Github page: https://github.com/jokergoo/circlize Documentation: https://jokergoo.github.io/circlize_book/book/ If you use it in published research, please cite: Gu, Z. circlize implements and enhances circular visualization in R. Bioinformatics 2014. This message can be suppressed by: suppressPackageStartupMessages(library(circlize)) ======================================== > library(ComplexHeatmap) Loading required package: grid ======================================== ComplexHeatmap version 2.11.0 Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ Github page: https://github.com/jokergoo/ComplexHeatmap Documentation: http://jokergoo.github.io/ComplexHeatmap-reference If you use it in published research, please cite: Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016. The new InteractiveComplexHeatmap package can directly export static complex heatmaps into an interactive Shiny app with zero effort. Have a try! This message can be suppressed by: suppressPackageStartupMessages(library(ComplexHeatmap)) ======================================== > library(GetoptLong) > > # things needed to be tested > # 1. the order > # 2. if the sum of sizes are larger than xlim > > make_plot = function(pos1, pos2, range) { + oxpd = par("xpd") + par(xpd = NA) + plot(NULL, xlim = c(0, 4), ylim = range, ann = FALSE) + col = rand_color(nrow(pos1), transparency = 0.5) + rect(0.5, pos1[, 1], 1.5, pos1[, 2], col = col) + rect(2.5, pos2[, 1], 3.5, pos2[, 2], col = col) + segments(1.5, rowMeans(pos1), 2.5, rowMeans(pos2)) + par(xpd = oxpd) + } > > range = c(0, 10) > pos1 = rbind(c(1, 2), c(5, 7)) > make_plot(pos1, smartAlign2(pos1, range = range), range) > > range = c(0, 10) > pos1 = rbind(c(-0.5, 2), c(5, 7)) > make_plot(pos1, smartAlign2(pos1, range = range), range) > > pos1 = rbind(c(-1, 2), c(3, 4), c(5, 6), c(7, 11)) > pos1 = pos1 + runif(length(pos1), max = 0.3, min = -0.3) > par(mfrow = c(3, 3)) > for(i in 1:9) { + ind = sample(4, 4) + make_plot(pos1[ind, ], smartAlign2(pos1[ind, ], range = range), range) + } > par(mfrow = c(1, 1)) > > pos1 = rbind(c(3, 6), c(4, 7)) > make_plot(pos1, smartAlign2(pos1, range = range), range) > > pos1 = rbind(c(1, 8), c(3, 10)) > make_plot(pos1, smartAlign2(pos1, range = range), range) > > ########## new version of smartAlign2() ############ > > start = c(0.0400972528391016, 0.0491583597430212, 0.0424302664385027, 0.0547524243812509, 0.0820937279769642, 0.126861283282835, 0.178503822565168, 0.327742831447437, 0.570671411156898, 0.81775868755151) > end = c(0.0921142856224367, 0.107091640256979, 0.137858195099959, 0.159189883311057, 0.177521656638421, 0.20727333210178, 0.304669254357909, 0.463122553167947, 0.676924742689255, 0.929837466294643) > range = c(0, 1) > smartAlign2(start, end, range, plot = TRUE) enter to continue [,1] [,2] [1,] 0.002200888 0.05421792 [2,] 0.054217921 0.11215120 [3,] 0.112151202 0.20757913 [4,] 0.207579130 0.31201659 [5,] 0.312016589 0.40744452 [6,] 0.407444518 0.48785657 [7,] 0.487856567 0.61402200 [8,] 0.614021999 0.74940172 [9,] 0.749401720 0.85565505 [10,] 0.855655052 0.96773383 > > > start <- c(0.722121284290678, 0.701851666769472, 0.284795592003117, 0.335674695572052, 0.246977082249377, 0.767289857630785, 0.728198060058033, 0.299241440370817, -0.0149946764559372, 0.85294351791166, 0.126216621670218, 0.478169948493225) > end <- c(0.766196472718668, 0.763101604258565, 0.34604552949221, 0.421334650222341, 0.344144413077725, 0.847196123677626, 0.813858014708322, 0.392347344675911, 0.108452620381171, 0.969486388630396, 0.249951602628847, 0.584914163656308) > od = order(start) > start = start[od]; end = end[od] > range = c(0, 1) > pos = smartAlign2(start, end, range) > n = nrow(pos) > pos[1:(n-1), 2] > pos[2:n, 1] [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE > > > if(0) { + go_id = random_GO(500) + mat = GO_similarity(go_id) + invisible(simplify(mat, order_by_size = FALSE)) + } > > proc.time() user system elapsed 1.70 0.25 1.93
ComplexHeatmap.Rcheck/tests/testthat-all.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > > suppressWarnings(suppressPackageStartupMessages(library(ComplexHeatmap))) > library(testthat) > > test_check("ComplexHeatmap") [ FAIL 0 | WARN 0 | SKIP 0 | PASS 181 ] > > proc.time() user system elapsed 22.75 0.60 32.42
ComplexHeatmap.Rcheck/ComplexHeatmap-Ex.timings
name | user | system | elapsed | |
AdditiveUnit-class | 0 | 0 | 0 | |
AdditiveUnit | 0 | 0 | 0 | |
AnnotationFunction-class | 0 | 0 | 0 | |
AnnotationFunction | 2.89 | 0.17 | 3.06 | |
ColorMapping-class | 0 | 0 | 0 | |
ColorMapping | 0.01 | 0.00 | 0.02 | |
ComplexHeatmap-package | 0 | 0 | 0 | |
Extract.AnnotationFunction | 0.02 | 0.00 | 0.01 | |
Extract.Heatmap | 0.34 | 0.01 | 0.36 | |
Extract.HeatmapAnnotation | 0.03 | 0.00 | 0.03 | |
Extract.HeatmapList | 0.10 | 0.00 | 0.09 | |
Extract.SingleAnnotation | 0 | 0 | 0 | |
Extract.comb_mat | 0.02 | 0.00 | 0.01 | |
Extract.gridtext | 0 | 0 | 0 | |
Heatmap-class | 0 | 0 | 0 | |
Heatmap | 0 | 0 | 0 | |
Heatmap3D | 0.11 | 0.00 | 0.11 | |
HeatmapAnnotation-class | 0 | 0 | 0 | |
HeatmapAnnotation | 0 | 0 | 0 | |
HeatmapList-class | 0 | 0 | 0 | |
HeatmapList | 0 | 0 | 0 | |
Legend | 0.04 | 0.00 | 0.05 | |
Legends-class | 0.02 | 0.00 | 0.02 | |
Legends | 0 | 0 | 0 | |
SingleAnnotation-class | 0 | 0 | 0 | |
SingleAnnotation | 0.03 | 0.00 | 0.03 | |
UpSet | 0.38 | 0.00 | 0.37 | |
add.AdditiveUnit | 0 | 0 | 0 | |
add_heatmap-Heatmap-method | 0 | 0 | 0 | |
add_heatmap-HeatmapAnnotation-method | 0 | 0 | 0 | |
add_heatmap-HeatmapList-method | 0 | 0 | 0 | |
add_heatmap-dispatch | 0 | 0 | 0 | |
adjust_dend_by_x | 0.01 | 0.00 | 0.02 | |
adjust_heatmap_list-HeatmapList-method | 0 | 0 | 0 | |
alter_graphic | 0.13 | 0.00 | 0.12 | |
anno_barplot | 0.01 | 0.00 | 0.02 | |
anno_block | 0.58 | 0.00 | 0.58 | |
anno_boxplot | 0.02 | 0.00 | 0.02 | |
anno_customize | 0.45 | 0.00 | 0.45 | |
anno_density | 0.33 | 0.01 | 0.34 | |
anno_empty | 0.01 | 0.00 | 0.02 | |
anno_histogram | 0.07 | 0.00 | 0.06 | |
anno_horizon | 4.11 | 0.05 | 4.16 | |
anno_image | 0 | 0 | 0 | |
anno_joyplot | 0.39 | 0.02 | 0.42 | |
anno_lines | 0.07 | 0.01 | 0.09 | |
anno_link | 0 | 0 | 0 | |
anno_mark | 0.57 | 0.00 | 0.57 | |
anno_oncoprint_barplot | 0 | 0 | 0 | |
anno_points | 0.01 | 0.02 | 0.03 | |
anno_simple | 0.05 | 0.01 | 0.06 | |
anno_summary | 0.37 | 0.00 | 0.38 | |
anno_text | 0.10 | 0.00 | 0.09 | |
anno_zoom | 0.48 | 0.00 | 0.48 | |
annotation_axis_grob | 0.08 | 0.00 | 0.08 | |
annotation_legend_size-HeatmapList-method | 0 | 0 | 0 | |
attach_annotation-Heatmap-method | 0.69 | 0.00 | 0.69 | |
bar3D | 0.01 | 0.00 | 0.01 | |
bin_genome | 0 | 0 | 0 | |
c.ColorMapping | 0 | 0 | 0 | |
c.HeatmapAnnotation | 0.05 | 0.00 | 0.05 | |
cluster_between_groups | 0.03 | 0.00 | 0.03 | |
cluster_within_group | 0.02 | 0.00 | 0.01 | |
color_mapping_legend-ColorMapping-method | 0 | 0 | 0 | |
columnAnnotation | 0 | 0 | 0 | |
column_dend-Heatmap-method | 0.35 | 0.00 | 0.34 | |
column_dend-HeatmapList-method | 0.89 | 0.00 | 0.89 | |
column_dend-dispatch | 0 | 0 | 0 | |
column_order-Heatmap-method | 0.19 | 0.01 | 0.20 | |
column_order-HeatmapList-method | 0.70 | 0.02 | 0.72 | |
column_order-dispatch | 0 | 0 | 0 | |
comb_degree | 0 | 0 | 0 | |
comb_name | 0 | 0 | 0 | |
comb_size | 0 | 0 | 0 | |
compare_heatmap.2 | 0.74 | 0.00 | 0.77 | |
compare_heatmap | 0.54 | 0.00 | 0.54 | |
compare_pheatmap | 0.43 | 0.06 | 0.49 | |
complement_size | 0 | 0 | 0 | |
component_height-Heatmap-method | 0 | 0 | 0 | |
component_height-HeatmapList-method | 0 | 0 | 0 | |
component_height-dispatch | 0 | 0 | 0 | |
component_width-Heatmap-method | 0 | 0 | 0 | |
component_width-HeatmapList-method | 0 | 0 | 0 | |
component_width-dispatch | 0 | 0 | 0 | |
copy_all-AnnotationFunction-method | 0 | 0 | 0 | |
copy_all-SingleAnnotation-method | 0 | 0 | 0 | |
copy_all-dispatch | 0 | 0 | 0 | |
decorate_annotation | 0.28 | 0.00 | 0.29 | |
decorate_column_dend | 0 | 0 | 0 | |
decorate_column_names | 0 | 0 | 0 | |
decorate_column_title | 0 | 0 | 0 | |
decorate_dend | 0.15 | 0.00 | 0.16 | |
decorate_dimnames | 0.36 | 0.00 | 0.36 | |
decorate_heatmap_body | 0.08 | 0.00 | 0.08 | |
decorate_row_dend | 0 | 0 | 0 | |
decorate_row_names | 0 | 0 | 0 | |
decorate_row_title | 0 | 0 | 0 | |
decorate_title | 0.11 | 0.00 | 0.11 | |
default_axis_param | 0 | 0 | 0 | |
default_get_type | 0 | 0 | 0 | |
dend_heights | 0 | 0 | 0 | |
dend_xy | 0 | 0 | 0 | |
dendrogramGrob | 0 | 0 | 0 | |
densityHeatmap | 0.79 | 0.00 | 0.80 | |
dim.Heatmap | 0 | 0 | 0 | |
dist2 | 0.02 | 0.00 | 0.01 | |
draw-AnnotationFunction-method | 0 | 0 | 0 | |
draw-Heatmap-method | 0 | 0 | 0 | |
draw-HeatmapAnnotation-method | 0 | 0 | 0 | |
draw-HeatmapList-method | 0 | 0 | 0 | |
draw-Legends-method | 0 | 0 | 0 | |
draw-SingleAnnotation-method | 0 | 0 | 0 | |
draw-dispatch | 0 | 0 | 0 | |
draw_annotation-Heatmap-method | 0 | 0 | 0 | |
draw_annotation_legend-HeatmapList-method | 0 | 0 | 0 | |
draw_dend-Heatmap-method | 0.01 | 0.00 | 0.02 | |
draw_dimnames-Heatmap-method | 0 | 0 | 0 | |
draw_heatmap_body-Heatmap-method | 0 | 0 | 0 | |
draw_heatmap_legend-HeatmapList-method | 0 | 0 | 0 | |
draw_heatmap_list-HeatmapList-method | 0 | 0 | 0 | |
draw_title-Heatmap-method | 0 | 0 | 0 | |
draw_title-HeatmapList-method | 0 | 0 | 0 | |
draw_title-dispatch | 0 | 0 | 0 | |
extract_comb | 0 | 0 | 0 | |
frequencyHeatmap | 0.35 | 0.00 | 0.34 | |
full_comb_code | 0 | 0 | 0 | |
getXY_in_parent_vp | 0 | 0 | 0 | |
get_color_mapping_list-HeatmapAnnotation-method | 0 | 0 | 0 | |
get_legend_param_list-HeatmapAnnotation-method | 0 | 0 | 0 | |
grid.annotation_axis | 0 | 0 | 0 | |
grid.boxplot | 0.01 | 0.00 | 0.02 | |
grid.dendrogram | 0.52 | 0.02 | 0.53 | |
grid.draw.Legends | 0.02 | 0.00 | 0.01 | |
gt_render | 0.46 | 0.00 | 0.47 | |
heatmap_legend_size-HeatmapList-method | 0 | 0 | 0 | |
height.AnnotationFunction | 0.02 | 0.00 | 0.02 | |
height.Heatmap | 0 | 0 | 0 | |
height.HeatmapAnnotation | 0 | 0 | 0 | |
height.HeatmapList | 0 | 0 | 0 | |
height.Legends | 0 | 0 | 0 | |
height.SingleAnnotation | 0 | 0 | 0 | |
heightAssign.AnnotationFunction | 0 | 0 | 0 | |
heightAssign.HeatmapAnnotation | 0 | 0 | 0 | |
heightAssign.SingleAnnotation | 0 | 0 | 0 | |
heightDetails.annotation_axis | 0 | 0 | 0 | |
heightDetails.legend | 0 | 0 | 0 | |
heightDetails.legend_body | 0 | 0 | 0 | |
heightDetails.packed_legends | 0 | 0 | 0 | |
ht_global_opt | 0 | 0 | 0 | |
ht_opt | 0 | 0 | 0 | |
ht_size | 0 | 0 | 0 | |
is_abs_unit | 0 | 0 | 0 | |
length.HeatmapAnnotation | 0 | 0 | 0 | |
length.HeatmapList | 0 | 0 | 0 | |
list_components | 0 | 0 | 0 | |
list_to_matrix | 0 | 0 | 0 | |
make_column_cluster-Heatmap-method | 0 | 0 | 0 | |
make_comb_mat | 0 | 0 | 0 | |
make_layout-Heatmap-method | 0 | 0 | 0 | |
make_layout-HeatmapList-method | 0 | 0 | 0 | |
make_layout-dispatch | 0 | 0 | 0 | |
make_row_cluster-Heatmap-method | 0 | 0 | 0 | |
map_to_colors-ColorMapping-method | 0 | 0 | 0 | |
max_text_height | 0.02 | 0.00 | 0.02 | |
max_text_width | 0 | 0 | 0 | |
merge_dendrogram | 0.07 | 0.00 | 0.07 | |
names.HeatmapAnnotation | 0.02 | 0.00 | 0.02 | |
names.HeatmapList | 0 | 0 | 0 | |
namesAssign.HeatmapAnnotation | 0 | 0 | 0 | |
ncol.Heatmap | 0 | 0 | 0 | |
nobs.AnnotationFunction | 0 | 0 | 0 | |
nobs.HeatmapAnnotation | 0 | 0 | 0 | |
nobs.SingleAnnotation | 0 | 0 | 0 | |
normalize_comb_mat | 0 | 0 | 0 | |
normalize_genomic_signals_to_bins | 0 | 0 | 0 | |
nrow.Heatmap | 0 | 0 | 0 | |
oncoPrint | 0 | 0 | 0 | |
order.comb_mat | 0 | 0 | 0 | |
packLegend | 0.04 | 0.00 | 0.04 | |
pct_v_pct | 0 | 0 | 0 | |
pheatmap | 0 | 0 | 0 | |
pindex | 0 | 0 | 0 | |
plot.Heatmap | 0 | 0 | 0 | |
plot.HeatmapAnnotation | 0 | 0 | 0 | |
plot.HeatmapList | 0 | 0 | 0 | |
prepare-Heatmap-method | 0 | 0 | 0 | |
print.comb_mat | 0 | 0 | 0 | |
re_size-HeatmapAnnotation-method | 0 | 0 | 0 | |
restore_matrix | 0.35 | 0.00 | 0.35 | |
rowAnnotation | 0 | 0 | 0 | |
row_anno_barplot | 0 | 0 | 0 | |
row_anno_boxplot | 0 | 0 | 0 | |
row_anno_density | 0 | 0 | 0 | |
row_anno_histogram | 0 | 0 | 0 | |
row_anno_points | 0 | 0 | 0 | |
row_anno_text | 0 | 0 | 0 | |
row_dend-Heatmap-method | 0.21 | 0.00 | 0.20 | |
row_dend-HeatmapList-method | 0.53 | 0.00 | 0.54 | |
row_dend-dispatch | 0 | 0 | 0 | |
row_order-Heatmap-method | 0.25 | 0.01 | 0.26 | |
row_order-HeatmapList-method | 0.57 | 0.00 | 0.58 | |
row_order-dispatch | 0 | 0 | 0 | |
set_component_height-Heatmap-method | 0 | 0 | 0 | |
set_component_width-Heatmap-method | 0 | 0 | 0 | |
set_name | 0 | 0 | 0 | |
set_nameAssign | 0 | 0 | 0 | |
set_size | 0.02 | 0.00 | 0.02 | |
show-AnnotationFunction-method | 0 | 0 | 0 | |
show-ColorMapping-method | 0 | 0 | 0 | |
show-Heatmap-method | 0 | 0 | 0 | |
show-HeatmapAnnotation-method | 0 | 0 | 0 | |
show-HeatmapList-method | 0 | 0 | 0 | |
show-SingleAnnotation-method | 0 | 0 | 0 | |
show-dispatch | 0 | 0 | 0 | |
size.AnnotationFunction | 0 | 0 | 0 | |
size.HeatmapAnnotation | 0 | 0 | 0 | |
size.SingleAnnotation | 0 | 0 | 0 | |
sizeAssign.AnnotationFunction | 0 | 0 | 0 | |
sizeAssign.HeatmapAnnotation | 0 | 0 | 0 | |
sizeAssign.SingleAnnotation | 0 | 0 | 0 | |
smartAlign2 | 0.17 | 0.00 | 0.17 | |
str.comb_mat | 0 | 0 | 0 | |
subset_gp | 0 | 0 | 0 | |
subset_matrix_by_row | 0 | 0 | 0 | |
subset_no | 0 | 0 | 0 | |
subset_vector | 0 | 0 | 0 | |
summary.Heatmap | 0 | 0 | 0 | |
summary.HeatmapList | 0 | 0 | 0 | |
t.comb_mat | 0 | 0 | 0 | |
test_alter_fun | 0.03 | 0.00 | 0.03 | |
unify_mat_list | 0 | 0 | 0 | |
upset_left_annotation | 0 | 0 | 0 | |
upset_right_annotation | 0 | 0 | 0 | |
upset_top_annotation | 0 | 0 | 0 | |
width.AnnotationFunction | 0 | 0 | 0 | |
width.Heatmap | 0 | 0 | 0 | |
width.HeatmapAnnotation | 0 | 0 | 0 | |
width.HeatmapList | 0 | 0 | 0 | |
width.Legends | 0.01 | 0.00 | 0.02 | |
width.SingleAnnotation | 0 | 0 | 0 | |
widthAssign.AnnotationFunction | 0 | 0 | 0 | |
widthAssign.HeatmapAnnotation | 0 | 0 | 0 | |
widthAssign.SingleAnnotation | 0 | 0 | 0 | |
widthDetails.annotation_axis | 0 | 0 | 0 | |
widthDetails.legend | 0 | 0 | 0 | |
widthDetails.legend_body | 0 | 0 | 0 | |
widthDetails.packed_legends | 0 | 0 | 0 | |