Back to Multiple platform build/check report for BioC 3.11
ABCDEFGHIJKLMN[O]PQRSTUVWXYZ

CHECK report for OmicsMarkeR on tokay2

This page was generated on 2020-10-17 11:57:18 -0400 (Sat, 17 Oct 2020).

TO THE DEVELOPERS/MAINTAINERS OF THE OmicsMarkeR PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
Package 1225/1905HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
OmicsMarkeR 1.20.0
Charles E. Determan Jr.
Snapshot Date: 2020-10-16 14:40:19 -0400 (Fri, 16 Oct 2020)
URL: https://git.bioconductor.org/packages/OmicsMarkeR
Branch: RELEASE_3_11
Last Commit: 2b71ef7
Last Changed Date: 2020-04-27 14:48:07 -0400 (Mon, 27 Apr 2020)
malbec2 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  ERROR 
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ ERROR ] OK 
machv2 macOS 10.14.6 Mojave / x86_64  OK  OK  ERROR  OK 

Summary

Package: OmicsMarkeR
Version: 1.20.0
Command: C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:OmicsMarkeR.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings OmicsMarkeR_1.20.0.tar.gz
StartedAt: 2020-10-17 06:34:58 -0400 (Sat, 17 Oct 2020)
EndedAt: 2020-10-17 06:38:33 -0400 (Sat, 17 Oct 2020)
EllapsedTime: 214.3 seconds
RetCode: 1
Status:  ERROR  
CheckDir: OmicsMarkeR.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:OmicsMarkeR.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings OmicsMarkeR_1.20.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.11-bioc/meat/OmicsMarkeR.Rcheck'
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'OmicsMarkeR/DESCRIPTION' ... OK
* this is package 'OmicsMarkeR' version '1.20.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'OmicsMarkeR' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking installed files from 'inst/doc' ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... ERROR
Running examples in 'OmicsMarkeR-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: fit.only.model
> ### Title: Fit Models without Feature Selection
> ### Aliases: fit.only.model
> 
> ### ** Examples
> 
> dat.discr <- create.discr.matrix(
+     create.corr.matrix(
+         create.random.matrix(nvar = 50, 
+                              nsamp = 100, 
+                              st.dev = 1, 
+                              perturb = 0.2)),
+     D = 10
+ )
solo last variable> 
> vars <- dat.discr$discr.mat
> groups <- dat.discr$classes
> 
> fit <- fit.only.model(X=vars, 
+                       Y=groups, 
+                       method="plsda", 
+                       p = 0.9)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Loaded gbm 2.1.8
Loading required package: cluster
Loading required package: survival
Loading required package: Matrix
Loaded glmnet 4.0-2
Calculating Model Performance Statistics
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
OmicsMarkeR
 --- call from context --- 
prediction.metrics(finalModel = finalModel, method = method, 
    raw.data = raw.data, inTrain = inTrain, outTrain = outTrain, 
    features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters, 
    grp.levs = grp.levs, stability.metric = NULL)
 --- call from argument --- 
if (class(inTrain) == "list" & class(outTrain) == "list") {
    inTrain.list <- rep(inTrain, length(method))
    outTrain.list <- rep(outTrain, length(method))
} else {
    inTrain.list <- rep(list(inTrain), length(finalModel))
    outTrain.list <- rep(list(outTrain), length(finalModel))
}
 --- R stacktrace ---
where 1: prediction.metrics(finalModel = finalModel, method = method, 
    raw.data = raw.data, inTrain = inTrain, outTrain = outTrain, 
    features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters, 
    grp.levs = grp.levs, stability.metric = NULL)
where 2: fit.only.model(X = vars, Y = groups, method = "plsda", p = 0.9)

 --- value of length: 2 type: logical ---
[1] FALSE FALSE
 --- function from context --- 
function (finalModel, method, raw.data, inTrain, outTrain, features, 
    bestTune, grp.levs, stability.metric) 
{
    raw.data.vars <- raw.data[, !colnames(raw.data) %in% c(".classes")]
    raw.data.grps <- raw.data[, colnames(raw.data) %in% c(".classes")]
    if (class(inTrain) == "list" & class(outTrain) == "list") {
        inTrain.list <- rep(inTrain, length(method))
        outTrain.list <- rep(outTrain, length(method))
    }
    else {
        inTrain.list <- rep(list(inTrain), length(finalModel))
        outTrain.list <- rep(list(outTrain), length(finalModel))
    }
    if (length(bestTune) != length(finalModel)) {
        tmp.mult <- length(finalModel)/length(bestTune)
        bestTune <- rep(bestTune, tmp.mult)
        names(bestTune) <- names(finalModel)
    }
    method.names <- unlist(lapply(method, FUN = function(x) {
        c(rep(x, length(bestTune)/length(method)))
    }))
    bestTune <- bestTune[match(method.names, names(bestTune))]
    finalModel <- finalModel[match(method.names, names(finalModel))]
    if (is.null(features)) {
        features <- vector("list", length(finalModel))
        for (f in seq(length(finalModel))) {
            features[[f]] <- colnames(raw.data.vars)
        }
    }
    features <- features[match(method.names, names(features))]
    predicted <- vector("list", length(finalModel))
    names(predicted) <- names(finalModel)
    for (e in seq(along = finalModel)) {
        new.dat <- switch(names(finalModel[e]), svm = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, glmnet = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, pam = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, plsda = , gbm = , rf = {
            raw.data.vars[outTrain.list[[e]], , drop = FALSE]
        }, )
        predicted[[e]] <- predicting(method = names(finalModel)[e], 
            modelFit = finalModel[[e]], orig.data = raw.data, 
            indicies = inTrain.list[[e]], newdata = new.dat, 
            param = bestTune[[e]])
    }
    for (g in seq(along = finalModel)) {
        predicted[[g]] <- factor(as.character(unlist(predicted[[g]])), 
            levels = grp.levs)
        predicted[[g]] <- data.frame(pred = predicted[[g]], obs = raw.data.grps[outTrain.list[[g]]], 
            stringsAsFactors = FALSE)
    }
    method.vector <- rep(method, each = length(finalModel)/length(method))
    perf.metrics <- mapply(predicted, FUN = function(x, y) perf.calc(x, 
        lev = grp.levs, model = y), y = method.vector, SIMPLIFY = FALSE)
    cells <- lapply(predicted, function(x) flatTable(x$pred, 
        x$obs))
    for (ind in seq(along = cells)) {
        perf.metrics[[ind]] <- c(perf.metrics[[ind]], cells[[ind]])
    }
    final.metrics <- do.call("rbind", perf.metrics)
}
<bytecode: 0x08a7f820>
<environment: namespace:OmicsMarkeR>
 --- function search by body ---
Function prediction.metrics in namespace OmicsMarkeR has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

** running examples for arch 'x64' ... ERROR
Running examples in 'OmicsMarkeR-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: fit.only.model
> ### Title: Fit Models without Feature Selection
> ### Aliases: fit.only.model
> 
> ### ** Examples
> 
> dat.discr <- create.discr.matrix(
+     create.corr.matrix(
+         create.random.matrix(nvar = 50, 
+                              nsamp = 100, 
+                              st.dev = 1, 
+                              perturb = 0.2)),
+     D = 10
+ )
solo last variable> 
> vars <- dat.discr$discr.mat
> groups <- dat.discr$classes
> 
> fit <- fit.only.model(X=vars, 
+                       Y=groups, 
+                       method="plsda", 
+                       p = 0.9)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Loaded gbm 2.1.8
Loading required package: cluster
Loading required package: survival
Loading required package: Matrix
Loaded glmnet 4.0-2
Calculating Model Performance Statistics
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
OmicsMarkeR
 --- call from context --- 
prediction.metrics(finalModel = finalModel, method = method, 
    raw.data = raw.data, inTrain = inTrain, outTrain = outTrain, 
    features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters, 
    grp.levs = grp.levs, stability.metric = NULL)
 --- call from argument --- 
if (class(inTrain) == "list" & class(outTrain) == "list") {
    inTrain.list <- rep(inTrain, length(method))
    outTrain.list <- rep(outTrain, length(method))
} else {
    inTrain.list <- rep(list(inTrain), length(finalModel))
    outTrain.list <- rep(list(outTrain), length(finalModel))
}
 --- R stacktrace ---
where 1: prediction.metrics(finalModel = finalModel, method = method, 
    raw.data = raw.data, inTrain = inTrain, outTrain = outTrain, 
    features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters, 
    grp.levs = grp.levs, stability.metric = NULL)
where 2: fit.only.model(X = vars, Y = groups, method = "plsda", p = 0.9)

 --- value of length: 2 type: logical ---
[1] FALSE FALSE
 --- function from context --- 
function (finalModel, method, raw.data, inTrain, outTrain, features, 
    bestTune, grp.levs, stability.metric) 
{
    raw.data.vars <- raw.data[, !colnames(raw.data) %in% c(".classes")]
    raw.data.grps <- raw.data[, colnames(raw.data) %in% c(".classes")]
    if (class(inTrain) == "list" & class(outTrain) == "list") {
        inTrain.list <- rep(inTrain, length(method))
        outTrain.list <- rep(outTrain, length(method))
    }
    else {
        inTrain.list <- rep(list(inTrain), length(finalModel))
        outTrain.list <- rep(list(outTrain), length(finalModel))
    }
    if (length(bestTune) != length(finalModel)) {
        tmp.mult <- length(finalModel)/length(bestTune)
        bestTune <- rep(bestTune, tmp.mult)
        names(bestTune) <- names(finalModel)
    }
    method.names <- unlist(lapply(method, FUN = function(x) {
        c(rep(x, length(bestTune)/length(method)))
    }))
    bestTune <- bestTune[match(method.names, names(bestTune))]
    finalModel <- finalModel[match(method.names, names(finalModel))]
    if (is.null(features)) {
        features <- vector("list", length(finalModel))
        for (f in seq(length(finalModel))) {
            features[[f]] <- colnames(raw.data.vars)
        }
    }
    features <- features[match(method.names, names(features))]
    predicted <- vector("list", length(finalModel))
    names(predicted) <- names(finalModel)
    for (e in seq(along = finalModel)) {
        new.dat <- switch(names(finalModel[e]), svm = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, glmnet = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, pam = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, plsda = , gbm = , rf = {
            raw.data.vars[outTrain.list[[e]], , drop = FALSE]
        }, )
        predicted[[e]] <- predicting(method = names(finalModel)[e], 
            modelFit = finalModel[[e]], orig.data = raw.data, 
            indicies = inTrain.list[[e]], newdata = new.dat, 
            param = bestTune[[e]])
    }
    for (g in seq(along = finalModel)) {
        predicted[[g]] <- factor(as.character(unlist(predicted[[g]])), 
            levels = grp.levs)
        predicted[[g]] <- data.frame(pred = predicted[[g]], obs = raw.data.grps[outTrain.list[[g]]], 
            stringsAsFactors = FALSE)
    }
    method.vector <- rep(method, each = length(finalModel)/length(method))
    perf.metrics <- mapply(predicted, FUN = function(x, y) perf.calc(x, 
        lev = grp.levs, model = y), y = method.vector, SIMPLIFY = FALSE)
    cells <- lapply(predicted, function(x) flatTable(x$pred, 
        x$obs))
    for (ind in seq(along = cells)) {
        perf.metrics[[ind]] <- c(perf.metrics[[ind]], cells[[ind]])
    }
    final.metrics <- do.call("rbind", perf.metrics)
}
<bytecode: 0x0000000017993928>
<environment: namespace:OmicsMarkeR>
 --- function search by body ---
Function prediction.metrics in namespace OmicsMarkeR has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'testthat.R'
 ERROR
Running the tests in 'tests/testthat.R' failed.
Last 13 lines of output:
          aggregation(efs = x, metric = aggregation.metric, f = f)
      })
      ensemble.results <- list(Methods = method, ensemble.results = agg, 
          Number.Bags = bags, Agg.metric = aggregation.metric, 
          Number.features = f)
      out <- list(results = ensemble.results, bestTunes = resample.tunes)
      out
  }
  <bytecode: 0x07fa1580>
  <environment: namespace:OmicsMarkeR>
   --- function search by body ---
  Function bagging.wrapper in namespace OmicsMarkeR has this body.
   ----------- END OF FAILURE REPORT -------------- 
  Fatal error: the condition has length > 1
  
** running tests for arch 'x64' ...
  Running 'testthat.R'
 ERROR
Running the tests in 'tests/testthat.R' failed.
Last 13 lines of output:
          aggregation(efs = x, metric = aggregation.metric, f = f)
      })
      ensemble.results <- list(Methods = method, ensemble.results = agg, 
          Number.Bags = bags, Agg.metric = aggregation.metric, 
          Number.features = f)
      out <- list(results = ensemble.results, bestTunes = resample.tunes)
      out
  }
  <bytecode: 0x000000000c5d37a0>
  <environment: namespace:OmicsMarkeR>
   --- function search by body ---
  Function bagging.wrapper in namespace OmicsMarkeR has this body.
   ----------- END OF FAILURE REPORT -------------- 
  Fatal error: the condition has length > 1
  
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 4 ERRORs
See
  'C:/Users/biocbuild/bbs-3.11-bioc/meat/OmicsMarkeR.Rcheck/00check.log'
for details.


Installation output

OmicsMarkeR.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.11/bioc/src/contrib/OmicsMarkeR_1.20.0.tar.gz && rm -rf OmicsMarkeR.buildbin-libdir && mkdir OmicsMarkeR.buildbin-libdir && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=OmicsMarkeR.buildbin-libdir OmicsMarkeR_1.20.0.tar.gz && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL OmicsMarkeR_1.20.0.zip && rm OmicsMarkeR_1.20.0.tar.gz OmicsMarkeR_1.20.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100  236k  100  236k    0     0  3788k      0 --:--:-- --:--:-- --:--:-- 4220k

install for i386

* installing *source* package 'OmicsMarkeR' ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'OmicsMarkeR'
    finding HTML links ... done
    CLA                                     html  
    EE                                      html  
    EM                                      html  
    ES                                      html  
    RPT                                     html  
    aggregation                             html  
    bagging.wrapper                         html  
    canberra                                html  
    canberra_stability                      html  
    create.corr.matrix                      html  
    create.discr.matrix                     html  
    create.random.matrix                    html  
    denovo.grid                             html  
    extract.args                            html  
    extract.features                        html  
    feature.table                           html  
    fit.only.model                          html  
    fs.ensembl.stability                    html  
    fs.stability                            html  
    jaccard                                 html  
    kuncheva                                html  
    modelList                               html  
    modelTuner                              html  
    modelTuner_loo                          html  
    noise.matrix                            html  
    ochiai                                  html  
    optimize.model                          html  
    pairwise.model.stability                html  
    pairwise.stability                      html  
    params                                  html  
    perf.calc                               html  
    finding level-2 HTML links ... done

    performance.metrics                     html  
    performance.stats                       html  
    perm.class                              html  
    perm.features                           html  
    pof                                     html  
    predictNewClasses                       html  
    predicting                              html  
    prediction.metrics                      html  
    sequester                               html  
    sorensen                                html  
    spearman                                html  
    svm.weights                             html  
    svmrfeFeatureRanking                    html  
    svmrfeFeatureRankingForMulticlass       html  
    training                                html  
    tune.instructions                       html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'OmicsMarkeR' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'OmicsMarkeR' as OmicsMarkeR_1.20.0.zip
* DONE (OmicsMarkeR)
* installing to library 'C:/Users/biocbuild/bbs-3.11-bioc/R/library'
package 'OmicsMarkeR' successfully unpacked and MD5 sums checked

Tests output

OmicsMarkeR.Rcheck/tests_i386/testthat.Rout.fail


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(OmicsMarkeR)
> 
> test_check("OmicsMarkeR")
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
OmicsMarkeR
 --- call from context --- 
bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags, 
    f = f, aggregation.metric = aggregation.metric, k.folds = k.folds, 
    repeats = repeats, res = resolution, tuning.grid = tuning.grid, 
    optimize = optimize, optimize.resample = optimize.resample, 
    metric = metric, model.features = model.features, verbose = verbose, 
    allowParallel = allowParallel, theDots = theDots)
 --- call from argument --- 
if (class(features[[j]]) != "data.frame") {
    features[[j]] <- data.frame(features[[j]])
}
 --- R stacktrace ---
where 1: bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags, 
    f = f, aggregation.metric = aggregation.metric, k.folds = k.folds, 
    repeats = repeats, res = resolution, tuning.grid = tuning.grid, 
    optimize = optimize, optimize.resample = optimize.resample, 
    metric = metric, model.features = model.features, verbose = verbose, 
    allowParallel = allowParallel, theDots = theDots)
where 2: fs.ensembl.stability(vars, groups, method = c("svm", "plsda"), 
    f = 10, k = 3, bags = 3, stability.metric = "canberra", k.folds = 3, 
    verbose = "none")
where 3: withCallingHandlers(expr, warning = function(w) if (inherits(w, 
    classes)) tryInvokeRestart("muffleWarning"))
where 4 at testthat/test_fs.ensembl.stability.R#39: suppressWarnings(fs.ensembl.stability(vars, groups, method = c("svm", 
    "plsda"), f = 10, k = 3, bags = 3, stability.metric = "canberra", 
    k.folds = 3, verbose = "none"))
where 5: eval(code, test_env)
where 6: eval(code, test_env)
where 7: withCallingHandlers({
    eval(code, test_env)
    if (!handled && !is.null(test)) {
        skip_empty()
    }
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning, 
    message = handle_message, error = handle_error)
where 8: doTryCatch(return(expr), name, parentenv, handler)
where 9: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 10: tryCatchList(expr, names[-nh], parentenv, handlers[-nh])
where 11: doTryCatch(return(expr), name, parentenv, handler)
where 12: tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]), 
    names[nh], parentenv, handlers[[nh]])
where 13: tryCatchList(expr, classes, parentenv, handlers)
where 14: tryCatch(withCallingHandlers({
    eval(code, test_env)
    if (!handled && !is.null(test)) {
        skip_empty()
    }
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning, 
    message = handle_message, error = handle_error), error = handle_fatal, 
    skip = function(e) {
    })
where 15: test_code(NULL, exprs, env)
where 16: source_file(path, new.env(parent = env), chdir = TRUE, wrap = wrap)
where 17: force(code)
where 18: doWithOneRestart(return(expr), restart)
where 19: withOneRestart(expr, restarts[[1L]])
where 20: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 21: with_reporter(reporter = reporter, start_end_reporter = start_end_reporter, 
    {
        reporter$start_file(basename(path))
        lister$start_file(basename(path))
        source_file(path, new.env(parent = env), chdir = TRUE, 
            wrap = wrap)
        reporter$.end_context()
        reporter$end_file()
    })
where 22: FUN(X[[i]], ...)
where 23: lapply(paths, test_file, env = env, reporter = current_reporter, 
    start_end_reporter = FALSE, load_helpers = FALSE, wrap = wrap)
where 24: force(code)
where 25: doWithOneRestart(return(expr), restart)
where 26: withOneRestart(expr, restarts[[1L]])
where 27: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 28: with_reporter(reporter = current_reporter, results <- lapply(paths, 
    test_file, env = env, reporter = current_reporter, start_end_reporter = FALSE, 
    load_helpers = FALSE, wrap = wrap))
where 29: test_files(paths, reporter = reporter, env = env, stop_on_failure = stop_on_failure, 
    stop_on_warning = stop_on_warning, wrap = wrap)
where 30: test_dir(path = test_path, reporter = reporter, env = env, filter = filter, 
    ..., stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning, 
    wrap = wrap)
where 31: test_package_dir(package = package, test_path = test_path, filter = filter, 
    reporter = reporter, ..., stop_on_failure = stop_on_failure, 
    stop_on_warning = stop_on_warning, wrap = wrap)
where 32: test_check("OmicsMarkeR")

 --- value of length: 2 type: logical ---
[1] TRUE TRUE
 --- function from context --- 
function (X, Y, method, bags, f, aggregation.metric, k.folds, 
    repeats, res, tuning.grid, optimize, optimize.resample, metric, 
    model.features, allowParallel, verbose, theDots) 
{
    rownames(X) <- NULL
    var.names <- colnames(X)
    nr <- nrow(X)
    nc <- ncol(X)
    num.group = nlevels(Y)
    grp.levs <- levels(Y)
    trainVars.list <- vector("list", bags)
    trainGroup.list <- vector("list", bags)
    if (optimize == TRUE & optimize.resample == TRUE) {
        resample.tunes <- vector("list", bags)
        names(resample.tunes) <- paste("Bag", 1:bags, sep = ".")
    }
    else {
        resample.tunes <- NULL
    }
    for (i in 1:bags) {
        boot = sample(nr, nr, replace = TRUE)
        trainVars <- X[boot, ]
        trainGroup <- Y[boot]
        trainVars.list[[i]] <- trainVars
        trainGroup.list[[i]] <- trainGroup
        trainData <- as.data.frame(trainVars)
        trainData$.classes <- trainGroup
        rownames(trainData) <- NULL
        if (optimize == TRUE) {
            if (optimize.resample == TRUE) {
                tuned.methods <- optimize.model(trainVars = trainVars, 
                  trainGroup = trainGroup, method = method, k.folds = k.folds, 
                  repeats = repeats, res = res, grid = tuning.grid, 
                  metric = metric, allowParallel = allowParallel, 
                  verbose = verbose, theDots = theDots)
                if (i == 1) {
                  finalModel <- tuned.methods$finalModel
                }
                else {
                  finalModel <- append(finalModel, tuned.methods$finalModel)
                }
                names(tuned.methods$bestTune) = method
                resample.tunes[[i]] <- tuned.methods$bestTune
            }
            else {
                if (i == 1) {
                  tuned.methods <- optimize.model(trainVars = trainVars, 
                    trainGroup = trainGroup, method = method, 
                    k.folds = k.folds, repeats = repeats, res = res, 
                    grid = tuning.grid, metric = metric, allowParallel = allowParallel, 
                    verbose = verbose, theDots = theDots)
                  finalModel <- tuned.methods$finalModel
                  names(tuned.methods$bestTune) <- method
                }
                else {
                  tmp <- vector("list", length(method))
                  names(tmp) <- method
                  for (d in seq(along = method)) {
                    tmp[[d]] <- training(data = trainData, method = method[d], 
                      tuneValue = tuned.methods$bestTune[[d]], 
                      obsLevels = grp.levs, theDots = theDots)$fit
                  }
                  finalModel <- append(finalModel, tmp)
                }
            }
        }
        else {
            names(theDots) <- paste(".", names(theDots), sep = "")
            args.seq <- sequester(theDots, method)
            names(theDots) <- sub(".", "", names(theDots))
            moreDots <- theDots[!names(theDots) %in% args.seq$pnames]
            if (length(moreDots) == 0) {
                moreDots <- NULL
            }
            finalModel <- vector("list", length(method))
            for (q in seq(along = method)) {
                finalModel[[q]] <- training(data = trainData, 
                  method = method[q], tuneValue = args.seq$parameters[[q]], 
                  obsLevels = grp.levs, theDots = moreDots)
            }
        }
    }
    method.names <- unlist(lapply(method, FUN = function(x) paste(c(rep(x, 
        bags)), seq(bags), sep = ".")))
    names(finalModel) <- paste(method, rep(seq(bags), each = length(method)), 
        sep = ".")
    finalModel <- finalModel[match(method.names, names(finalModel))]
    features <- vector("list", length(method))
    names(features) <- tolower(method)
    for (j in seq(along = method)) {
        mydata <- vector("list", bags)
        if (method[j] == "pam") {
            for (t in 1:bags) {
                mydata[[t]] <- list(x = t(trainVars.list[[t]]), 
                  y = factor(trainGroup.list[[t]]), geneid = as.character(colnames(trainVars.list[[t]])))
            }
        }
        else {
            for (t in 1:bags) {
                mydata[[t]] <- trainVars.list[[t]]
            }
        }
        if (j == 1) {
            start <- 1
            end <- bags
        }
        if (method[j] == "svm" | method[j] == "pam" | method[j] == 
            "glmnet") {
            bt <- vector("list", bags)
            for (l in seq(bags)) {
                if (optimize == TRUE) {
                  if (optimize.resample == FALSE) {
                    bt[[l]] <- tuned.methods$bestTune[[j]]
                  }
                  else {
                    bt[[l]] <- tuned.methods$bestTune[[l]]
                  }
                }
            }
        }
        else {
            bt <- vector("list", bags)
        }
        if (method[j] == "plsda") {
            cc <- vector("list", bags)
            for (c in seq(bags)) {
                if (optimize == TRUE) {
                  if (optimize.resample == FALSE) {
                    cc[[c]] <- tuned.methods$bestTune[[j]]
                  }
                  else {
                    cc[[c]] <- tuned.methods$bestTune[[c]]
                  }
                }
            }
        }
        finalModel.bag <- finalModel[start:end]
        tmp <- vector("list", bags)
        for (s in seq(bags)) {
            tmp[[s]] <- extract.features(x = finalModel.bag[s], 
                dat = mydata[[s]], grp = trainGroup.list[[s]], 
                bestTune = bt[[s]], model.features = FALSE, method = method[j], 
                f = NULL, comp.catch = cc)
        }
        if (method[j] == "glmnet") {
            features[[j]] <- data.frame(do.call("cbind", unlist(unlist(tmp, 
                recursive = FALSE), recursive = FALSE)))
        }
        else {
            features[[j]] <- do.call("cbind", unlist(tmp, recursive = FALSE))
            if (class(features[[j]]) != "data.frame") {
                features[[j]] <- data.frame(features[[j]])
            }
        }
        rownames(features[[j]]) <- colnames(X)
        start <- start + bags
        end <- end + bags
    }
    features.num <- lapply(features, FUN = function(z) {
        sapply(z, FUN = function(x) as.numeric(as.character(x)))
    })
    features.num <- lapply(features.num, function(x) {
        rownames(x) <- var.names
        return(x)
    })
    agg <- lapply(features.num, FUN = function(x) {
        aggregation(efs = x, metric = aggregation.metric, f = f)
    })
    ensemble.results <- list(Methods = method, ensemble.results = agg, 
        Number.Bags = bags, Agg.metric = aggregation.metric, 
        Number.features = f)
    out <- list(results = ensemble.results, bestTunes = resample.tunes)
    out
}
<bytecode: 0x07fa1580>
<environment: namespace:OmicsMarkeR>
 --- function search by body ---
Function bagging.wrapper in namespace OmicsMarkeR has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

OmicsMarkeR.Rcheck/tests_x64/testthat.Rout.fail


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(OmicsMarkeR)
> 
> test_check("OmicsMarkeR")
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
OmicsMarkeR
 --- call from context --- 
bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags, 
    f = f, aggregation.metric = aggregation.metric, k.folds = k.folds, 
    repeats = repeats, res = resolution, tuning.grid = tuning.grid, 
    optimize = optimize, optimize.resample = optimize.resample, 
    metric = metric, model.features = model.features, verbose = verbose, 
    allowParallel = allowParallel, theDots = theDots)
 --- call from argument --- 
if (class(features[[j]]) != "data.frame") {
    features[[j]] <- data.frame(features[[j]])
}
 --- R stacktrace ---
where 1: bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags, 
    f = f, aggregation.metric = aggregation.metric, k.folds = k.folds, 
    repeats = repeats, res = resolution, tuning.grid = tuning.grid, 
    optimize = optimize, optimize.resample = optimize.resample, 
    metric = metric, model.features = model.features, verbose = verbose, 
    allowParallel = allowParallel, theDots = theDots)
where 2: fs.ensembl.stability(vars, groups, method = c("svm", "plsda"), 
    f = 10, k = 3, bags = 3, stability.metric = "canberra", k.folds = 3, 
    verbose = "none")
where 3: withCallingHandlers(expr, warning = function(w) if (inherits(w, 
    classes)) tryInvokeRestart("muffleWarning"))
where 4 at testthat/test_fs.ensembl.stability.R#39: suppressWarnings(fs.ensembl.stability(vars, groups, method = c("svm", 
    "plsda"), f = 10, k = 3, bags = 3, stability.metric = "canberra", 
    k.folds = 3, verbose = "none"))
where 5: eval(code, test_env)
where 6: eval(code, test_env)
where 7: withCallingHandlers({
    eval(code, test_env)
    if (!handled && !is.null(test)) {
        skip_empty()
    }
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning, 
    message = handle_message, error = handle_error)
where 8: doTryCatch(return(expr), name, parentenv, handler)
where 9: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 10: tryCatchList(expr, names[-nh], parentenv, handlers[-nh])
where 11: doTryCatch(return(expr), name, parentenv, handler)
where 12: tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]), 
    names[nh], parentenv, handlers[[nh]])
where 13: tryCatchList(expr, classes, parentenv, handlers)
where 14: tryCatch(withCallingHandlers({
    eval(code, test_env)
    if (!handled && !is.null(test)) {
        skip_empty()
    }
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning, 
    message = handle_message, error = handle_error), error = handle_fatal, 
    skip = function(e) {
    })
where 15: test_code(NULL, exprs, env)
where 16: source_file(path, new.env(parent = env), chdir = TRUE, wrap = wrap)
where 17: force(code)
where 18: doWithOneRestart(return(expr), restart)
where 19: withOneRestart(expr, restarts[[1L]])
where 20: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 21: with_reporter(reporter = reporter, start_end_reporter = start_end_reporter, 
    {
        reporter$start_file(basename(path))
        lister$start_file(basename(path))
        source_file(path, new.env(parent = env), chdir = TRUE, 
            wrap = wrap)
        reporter$.end_context()
        reporter$end_file()
    })
where 22: FUN(X[[i]], ...)
where 23: lapply(paths, test_file, env = env, reporter = current_reporter, 
    start_end_reporter = FALSE, load_helpers = FALSE, wrap = wrap)
where 24: force(code)
where 25: doWithOneRestart(return(expr), restart)
where 26: withOneRestart(expr, restarts[[1L]])
where 27: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 28: with_reporter(reporter = current_reporter, results <- lapply(paths, 
    test_file, env = env, reporter = current_reporter, start_end_reporter = FALSE, 
    load_helpers = FALSE, wrap = wrap))
where 29: test_files(paths, reporter = reporter, env = env, stop_on_failure = stop_on_failure, 
    stop_on_warning = stop_on_warning, wrap = wrap)
where 30: test_dir(path = test_path, reporter = reporter, env = env, filter = filter, 
    ..., stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning, 
    wrap = wrap)
where 31: test_package_dir(package = package, test_path = test_path, filter = filter, 
    reporter = reporter, ..., stop_on_failure = stop_on_failure, 
    stop_on_warning = stop_on_warning, wrap = wrap)
where 32: test_check("OmicsMarkeR")

 --- value of length: 2 type: logical ---
[1] TRUE TRUE
 --- function from context --- 
function (X, Y, method, bags, f, aggregation.metric, k.folds, 
    repeats, res, tuning.grid, optimize, optimize.resample, metric, 
    model.features, allowParallel, verbose, theDots) 
{
    rownames(X) <- NULL
    var.names <- colnames(X)
    nr <- nrow(X)
    nc <- ncol(X)
    num.group = nlevels(Y)
    grp.levs <- levels(Y)
    trainVars.list <- vector("list", bags)
    trainGroup.list <- vector("list", bags)
    if (optimize == TRUE & optimize.resample == TRUE) {
        resample.tunes <- vector("list", bags)
        names(resample.tunes) <- paste("Bag", 1:bags, sep = ".")
    }
    else {
        resample.tunes <- NULL
    }
    for (i in 1:bags) {
        boot = sample(nr, nr, replace = TRUE)
        trainVars <- X[boot, ]
        trainGroup <- Y[boot]
        trainVars.list[[i]] <- trainVars
        trainGroup.list[[i]] <- trainGroup
        trainData <- as.data.frame(trainVars)
        trainData$.classes <- trainGroup
        rownames(trainData) <- NULL
        if (optimize == TRUE) {
            if (optimize.resample == TRUE) {
                tuned.methods <- optimize.model(trainVars = trainVars, 
                  trainGroup = trainGroup, method = method, k.folds = k.folds, 
                  repeats = repeats, res = res, grid = tuning.grid, 
                  metric = metric, allowParallel = allowParallel, 
                  verbose = verbose, theDots = theDots)
                if (i == 1) {
                  finalModel <- tuned.methods$finalModel
                }
                else {
                  finalModel <- append(finalModel, tuned.methods$finalModel)
                }
                names(tuned.methods$bestTune) = method
                resample.tunes[[i]] <- tuned.methods$bestTune
            }
            else {
                if (i == 1) {
                  tuned.methods <- optimize.model(trainVars = trainVars, 
                    trainGroup = trainGroup, method = method, 
                    k.folds = k.folds, repeats = repeats, res = res, 
                    grid = tuning.grid, metric = metric, allowParallel = allowParallel, 
                    verbose = verbose, theDots = theDots)
                  finalModel <- tuned.methods$finalModel
                  names(tuned.methods$bestTune) <- method
                }
                else {
                  tmp <- vector("list", length(method))
                  names(tmp) <- method
                  for (d in seq(along = method)) {
                    tmp[[d]] <- training(data = trainData, method = method[d], 
                      tuneValue = tuned.methods$bestTune[[d]], 
                      obsLevels = grp.levs, theDots = theDots)$fit
                  }
                  finalModel <- append(finalModel, tmp)
                }
            }
        }
        else {
            names(theDots) <- paste(".", names(theDots), sep = "")
            args.seq <- sequester(theDots, method)
            names(theDots) <- sub(".", "", names(theDots))
            moreDots <- theDots[!names(theDots) %in% args.seq$pnames]
            if (length(moreDots) == 0) {
                moreDots <- NULL
            }
            finalModel <- vector("list", length(method))
            for (q in seq(along = method)) {
                finalModel[[q]] <- training(data = trainData, 
                  method = method[q], tuneValue = args.seq$parameters[[q]], 
                  obsLevels = grp.levs, theDots = moreDots)
            }
        }
    }
    method.names <- unlist(lapply(method, FUN = function(x) paste(c(rep(x, 
        bags)), seq(bags), sep = ".")))
    names(finalModel) <- paste(method, rep(seq(bags), each = length(method)), 
        sep = ".")
    finalModel <- finalModel[match(method.names, names(finalModel))]
    features <- vector("list", length(method))
    names(features) <- tolower(method)
    for (j in seq(along = method)) {
        mydata <- vector("list", bags)
        if (method[j] == "pam") {
            for (t in 1:bags) {
                mydata[[t]] <- list(x = t(trainVars.list[[t]]), 
                  y = factor(trainGroup.list[[t]]), geneid = as.character(colnames(trainVars.list[[t]])))
            }
        }
        else {
            for (t in 1:bags) {
                mydata[[t]] <- trainVars.list[[t]]
            }
        }
        if (j == 1) {
            start <- 1
            end <- bags
        }
        if (method[j] == "svm" | method[j] == "pam" | method[j] == 
            "glmnet") {
            bt <- vector("list", bags)
            for (l in seq(bags)) {
                if (optimize == TRUE) {
                  if (optimize.resample == FALSE) {
                    bt[[l]] <- tuned.methods$bestTune[[j]]
                  }
                  else {
                    bt[[l]] <- tuned.methods$bestTune[[l]]
                  }
                }
            }
        }
        else {
            bt <- vector("list", bags)
        }
        if (method[j] == "plsda") {
            cc <- vector("list", bags)
            for (c in seq(bags)) {
                if (optimize == TRUE) {
                  if (optimize.resample == FALSE) {
                    cc[[c]] <- tuned.methods$bestTune[[j]]
                  }
                  else {
                    cc[[c]] <- tuned.methods$bestTune[[c]]
                  }
                }
            }
        }
        finalModel.bag <- finalModel[start:end]
        tmp <- vector("list", bags)
        for (s in seq(bags)) {
            tmp[[s]] <- extract.features(x = finalModel.bag[s], 
                dat = mydata[[s]], grp = trainGroup.list[[s]], 
                bestTune = bt[[s]], model.features = FALSE, method = method[j], 
                f = NULL, comp.catch = cc)
        }
        if (method[j] == "glmnet") {
            features[[j]] <- data.frame(do.call("cbind", unlist(unlist(tmp, 
                recursive = FALSE), recursive = FALSE)))
        }
        else {
            features[[j]] <- do.call("cbind", unlist(tmp, recursive = FALSE))
            if (class(features[[j]]) != "data.frame") {
                features[[j]] <- data.frame(features[[j]])
            }
        }
        rownames(features[[j]]) <- colnames(X)
        start <- start + bags
        end <- end + bags
    }
    features.num <- lapply(features, FUN = function(z) {
        sapply(z, FUN = function(x) as.numeric(as.character(x)))
    })
    features.num <- lapply(features.num, function(x) {
        rownames(x) <- var.names
        return(x)
    })
    agg <- lapply(features.num, FUN = function(x) {
        aggregation(efs = x, metric = aggregation.metric, f = f)
    })
    ensemble.results <- list(Methods = method, ensemble.results = agg, 
        Number.Bags = bags, Agg.metric = aggregation.metric, 
        Number.features = f)
    out <- list(results = ensemble.results, bestTunes = resample.tunes)
    out
}
<bytecode: 0x000000000c5d37a0>
<environment: namespace:OmicsMarkeR>
 --- function search by body ---
Function bagging.wrapper in namespace OmicsMarkeR has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1


Example timings

OmicsMarkeR.Rcheck/examples_i386/OmicsMarkeR-Ex.timings

nameusersystemelapsed
RPT0.020.000.11
aggregation000
canberra000
canberra_stability000
create.corr.matrix0.020.000.01
create.discr.matrix000
create.random.matrix000
denovo.grid000
feature.table9.190.299.56

OmicsMarkeR.Rcheck/examples_x64/OmicsMarkeR-Ex.timings

nameusersystemelapsed
RPT000
aggregation0.020.000.01
canberra000
canberra_stability000
create.corr.matrix0.020.000.01
create.discr.matrix000
create.random.matrix0.020.000.02
denovo.grid0.010.000.01
feature.table10.74 0.0810.82