Back to Multiple platform build/check report for BioC 3.11 |
|
This page was generated on 2020-10-17 11:57:56 -0400 (Sat, 17 Oct 2020).
TO THE DEVELOPERS/MAINTAINERS OF THE tidybulk PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1797/1905 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
tidybulk 1.0.2 Stefano Mangiola
| malbec2 | Linux (Ubuntu 18.04.4 LTS) / x86_64 | OK | OK | WARNINGS | |||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ WARNINGS ] | NA | |||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | WARNINGS | OK |
Package: tidybulk |
Version: 1.0.2 |
Command: C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:tidybulk.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings tidybulk_1.0.2.tar.gz |
StartedAt: 2020-10-17 08:50:35 -0400 (Sat, 17 Oct 2020) |
EndedAt: 2020-10-17 09:04:47 -0400 (Sat, 17 Oct 2020) |
EllapsedTime: 852.7 seconds |
RetCode: 0 |
Status: WARNINGS |
CheckDir: tidybulk.Rcheck |
Warnings: 2 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:tidybulk.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings tidybulk_1.0.2.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.11-bioc/meat/tidybulk.Rcheck' * using R version 4.0.3 (2020-10-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'tidybulk/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'tidybulk' version '1.0.2' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'tidybulk' can be installed ... OK * checking installed package size ... NOTE installed size is 7.9Mb sub-directories of 1Mb or more: data 6.7Mb * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... NOTE File LICENSE is not mentioned in the DESCRIPTION file. * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... NOTE package 'methods' is used but not declared * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE .cluster_elements: no visible binding for global variable '.' .deconvolve_cellularity: no visible binding for global variable 'X_cibersort' .deconvolve_cellularity_se: no visible binding for global variable 'X_cibersort' .keep_abundant: no visible binding for global variable '.' .tidybulk_se: no visible binding for global variable '.' .tidybulk_se: no visible binding for global variable 'feature' add_scaled_counts_bulk.calcNormFactor: no visible binding for global variable 'transcript' add_scaled_counts_bulk.get_low_expressed: no visible binding for global variable 'transcript' add_scaled_counts_bulk.get_low_expressed: no visible binding for global variable '.' aggregate_duplicated_transcripts_bulk: no visible binding for global variable '.abundance_scaled' aggregate_duplicated_transcripts_bulk: no visible binding for global variable 'n_aggr' as_matrix: no visible binding for global variable 'variable' check_if_duplicated_genes: no visible binding for global variable 'transcript' check_if_duplicated_genes: no visible binding for global variable 'read count' create_tt_from_bam_sam_bulk: no visible binding for global variable '.' create_tt_from_bam_sam_bulk: no visible binding for global variable 'temp' create_tt_from_bam_sam_bulk: no visible binding for global variable 'Status' create_tt_from_bam_sam_bulk: no visible binding for global variable 'counts' create_tt_from_bam_sam_bulk: no visible binding for global variable 'GeneID' create_tt_from_bam_sam_bulk: no visible binding for global variable 'genes' create_tt_from_bam_sam_bulk: no visible binding for global variable 'transcript' create_tt_from_bam_sam_bulk: no visible binding for global variable 'samples' create_tt_from_bam_sam_bulk: no visible binding for global variable 'entrez' deconvolve_cellularity: no visible binding for global variable 'X_cibersort' eliminate_sparse_transcripts: no visible binding for global variable 'my_n' entrez_rank_to_gsea: no visible binding for global variable 'gs_cat' entrez_rank_to_gsea: no visible binding for global variable 'test' error_if_duplicated_genes: no visible binding for global variable 'transcript' error_if_duplicated_genes: no visible binding for global variable 'read count' error_if_log_transformed: no visible binding for global variable 'm' fill_NA_using_formula: no visible binding for global variable '.' get_abundance_norm_if_exists: no visible binding for global variable '.abundance_scaled' get_adjusted_counts_for_unwanted_variation_bulk: no visible binding for global variable '.' get_cell_type_proportions: no visible binding for global variable 'X_cibersort' get_cell_type_proportions: no visible binding for global variable '.' get_clusters_SNN_bulk: no visible binding for global variable 'seurat_clusters' get_clusters_kmeans_bulk: no visible binding for global variable '.' get_clusters_kmeans_bulk: no visible binding for global variable 'cluster' get_clusters_kmeans_bulk: no visible binding for global variable 'cluster kmeans' get_differential_transcript_abundance_bulk: no visible binding for global variable '.' get_differential_transcript_abundance_bulk: no visible binding for global variable 'lowly_abundant' get_reduced_dimensions_MDS_bulk: no visible binding for global variable 'cmdscale.out' get_reduced_dimensions_PCA_bulk: no visible binding for global variable 'sdev' get_reduced_dimensions_PCA_bulk: no visible binding for global variable 'name' get_reduced_dimensions_PCA_bulk: no visible binding for global variable 'value' get_reduced_dimensions_PCA_bulk: no visible binding for global variable 'rotation' get_reduced_dimensions_TSNE_bulk: no visible binding for global variable 'Y' get_rotated_dimensions: no visible binding for global variable 'value' get_rotated_dimensions: no visible binding for global variable 'rotated dimensions' get_scaled_counts_bulk: no visible binding for global variable 'med' get_scaled_counts_bulk: no visible binding for global variable 'tot_filt' get_scaled_counts_bulk: no visible binding for global variable '.' get_scaled_counts_bulk: no visible binding for global variable 'tot' get_scaled_counts_bulk: no visible binding for global variable 'multiplier' get_scaled_counts_bulk: no visible binding for global variable 'x' get_symbol_from_ensembl: no visible binding for global variable 'ensembl_id' get_symbol_from_ensembl: no visible binding for global variable 'transcript' get_symbol_from_ensembl: no visible binding for global variable 'ref_genome' get_tt_columns: no visible binding for global variable 'tt_columns' initialise_tt_internals: no visible binding for global variable '.' remove_redundancy_elements_though_reduced_dimensions: no visible binding for global variable 'sample b' remove_redundancy_elements_though_reduced_dimensions: no visible binding for global variable 'sample a' remove_redundancy_elements_though_reduced_dimensions: no visible binding for global variable 'sample 1' remove_redundancy_elements_though_reduced_dimensions: no visible binding for global variable 'sample 2' remove_redundancy_elements_through_correlation: no visible binding for global variable 'rc' remove_redundancy_elements_through_correlation: no visible binding for global variable 'transcript' remove_redundancy_elements_through_correlation: no visible binding for global variable 'correlation' remove_redundancy_elements_through_correlation: no visible binding for global variable 'item1' scale_design: no visible binding for global variable 'value' scale_design: no visible binding for global variable 'sample_idx' scale_design: no visible binding for global variable '(Intercept)' select_closest_pairs: no visible binding for global variable 'sample 1' select_closest_pairs: no visible binding for global variable 'sample 2' symbol_to_entrez: no visible binding for global variable 'entrez' test_gene_enrichment_bulk_EGSEA: no visible global function definition for 'buildIdx' test_gene_enrichment_bulk_EGSEA: no visible global function definition for 'egsea' test_gene_enrichment_bulk_EGSEA: no visible global function definition for 'egsea.base' test_gene_enrichment_bulk_EGSEA: no visible binding for global variable 'med.rank' test_gene_enrichment_bulk_EGSEA: no visible binding for global variable 'data_base' test_gene_enrichment_bulk_EGSEA: no visible binding for global variable 'pathway' tidybulk_to_SummarizedExperiment: no visible binding for global variable '.' tidybulk_to_SummarizedExperiment: no visible binding for global variable 'assay' tidybulk_to_SummarizedExperiment: no visible binding for global variable '.a' cluster_elements,spec_tbl_df: no visible binding for global variable '.' cluster_elements,tbl_df: no visible binding for global variable '.' cluster_elements,tidybulk: no visible binding for global variable '.' deconvolve_cellularity,RangedSummarizedExperiment: no visible binding for global variable 'X_cibersort' deconvolve_cellularity,SummarizedExperiment: no visible binding for global variable 'X_cibersort' deconvolve_cellularity,spec_tbl_df: no visible binding for global variable 'X_cibersort' deconvolve_cellularity,tbl_df: no visible binding for global variable 'X_cibersort' deconvolve_cellularity,tidybulk: no visible binding for global variable 'X_cibersort' keep_abundant,spec_tbl_df: no visible binding for global variable '.' keep_abundant,tbl_df: no visible binding for global variable '.' keep_abundant,tidybulk: no visible binding for global variable '.' tidybulk,RangedSummarizedExperiment: no visible binding for global variable '.' tidybulk,RangedSummarizedExperiment: no visible binding for global variable 'feature' tidybulk,SummarizedExperiment: no visible binding for global variable '.' tidybulk,SummarizedExperiment: no visible binding for global variable 'feature' Undefined global functions or variables: (Intercept) . .a .abundance_scaled GeneID Status X_cibersort Y assay buildIdx cluster cluster kmeans cmdscale.out correlation counts data_base egsea egsea.base ensembl_id entrez feature genes gs_cat item1 lowly_abundant m med med.rank multiplier my_n n_aggr name pathway rc read count ref_genome rotated dimensions rotation sample 1 sample 2 sample a sample b sample_idx samples sdev seurat_clusters temp test tot tot_filt transcript tt_columns value variable x Consider adding importFrom("base", "sample") importFrom("stats", "kmeans") to your NAMESPACE file. * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... WARNING Found the following significant warnings: Warning: 'msigdbr::msigdbr_show_species' is deprecated. Deprecated functions may be defunct as soon as of the next release of R. See ?Deprecated. Examples with CPU (user + system) or elapsed time > 5s user system elapsed deconvolve_cellularity-methods 67.46 0.66 68.14 test_gene_overrepresentation-methods 35.94 3.82 39.87 adjust_abundance-methods 6.92 0.27 7.19 ** running examples for arch 'x64' ... WARNING Found the following significant warnings: Warning: 'msigdbr::msigdbr_show_species' is deprecated. Deprecated functions may be defunct as soon as of the next release of R. See ?Deprecated. Examples with CPU (user + system) or elapsed time > 5s user system elapsed deconvolve_cellularity-methods 72.16 0.50 72.67 test_gene_overrepresentation-methods 38.00 2.16 40.17 adjust_abundance-methods 8.66 0.16 8.81 * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'testthat.R' OK ** running tests for arch 'x64' ... Running 'testthat.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 WARNINGs, 4 NOTEs See 'C:/Users/biocbuild/bbs-3.11-bioc/meat/tidybulk.Rcheck/00check.log' for details.
tidybulk.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.11/bioc/src/contrib/tidybulk_1.0.2.tar.gz && rm -rf tidybulk.buildbin-libdir && mkdir tidybulk.buildbin-libdir && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=tidybulk.buildbin-libdir tidybulk_1.0.2.tar.gz && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL tidybulk_1.0.2.zip && rm tidybulk_1.0.2.tar.gz tidybulk_1.0.2.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 4458k 100 4458k 0 0 30.5M 0 --:--:-- --:--:-- --:--:-- 32.2M install for i386 * installing *source* package 'tidybulk' ... ** using staged installation ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading in method for 'tidybulk' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'tidybulk' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'scale_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'scale_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'cluster_elements' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'cluster_elements' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'reduce_dimensions' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'reduce_dimensions' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'rotate_dimensions' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'rotate_dimensions' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'remove_redundancy' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'remove_redundancy' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'adjust_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'adjust_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'aggregate_duplicates' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'aggregate_duplicates' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'deconvolve_cellularity' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'deconvolve_cellularity' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'test_differential_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'test_differential_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'keep_variable' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'keep_variable' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'keep_abundant' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'keep_abundant' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" in method for 'impute_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment" in method for 'impute_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment" Note: wrong number of arguments to '!' Note: wrong number of arguments to '>' Note: wrong number of arguments to '>' Note: wrong number of arguments to '<' Note: wrong number of arguments to '>' Note: wrong number of arguments to '!' Note: wrong number of arguments to '<' Note: wrong number of arguments to '>' Note: wrong number of arguments to '<' Note: wrong number of arguments to '<' Note: wrong number of arguments to '!' Note: wrong number of arguments to '!' Note: wrong number of arguments to '^' Note: wrong number of arguments to '/' Note: wrong number of arguments to 'floor' Note: wrong number of arguments to '>' Note: wrong number of arguments to '<' ** help *** installing help indices converting help for package 'tidybulk' finding HTML links ... done X_cibersort html add_attr html add_class html add_scaled_counts_bulk.calcNormFactor html add_scaled_counts_bulk.get_low_expressed html adjust_abundance-methods html aggregate_duplicated_transcripts_bulk html aggregate_duplicates-methods html as_matrix html bind html breast_tcga_mini html check_if_counts_is_na html check_if_duplicated_genes html check_if_wrong_input html cluster_elements-methods html counts html counts_ensembl html counts_mini html create_tt_from_bam_sam_bulk html create_tt_from_tibble_bulk html deconvolve_cellularity-methods html distinct html dplyr-methods html drop_attr html drop_class html ensembl_symbol_mapping html ensembl_to_symbol-methods html error_if_counts_is_na html error_if_duplicated_genes html error_if_log_transformed html error_if_wrong_input html fill_NA_using_formula html fill_NA_with_row_median html filter html flybaseIDs html full_join html get_abundance_norm_if_exists html get_adjusted_counts_for_unwanted_variation_bulk html get_cell_type_proportions html get_clusters_SNN_bulk html get_clusters_kmeans_bulk html get_differential_transcript_abundance_bulk html get_elements html get_elements_features html get_elements_features_abundance html get_reduced_dimensions_MDS_bulk html get_reduced_dimensions_PCA_bulk html get_reduced_dimensions_TSNE_bulk html get_rotated_dimensions html get_sample html get_sample_counts html get_sample_transcript html get_sample_transcript_counts html get_scaled_counts_bulk html get_symbol_from_ensembl html get_transcript html get_x_y_annotation_columns html group_by html ifelse2_pipe html ifelse_pipe html impute_abundance-methods html inner_join html keep_abundant-methods html keep_variable-methods html keep_variable_transcripts html left_join html mutate html parse_formula html pivot_sample-methods html pivot_transcript-methods html prepend html reduce_dimensions-methods html reexports html remove_redundancy-methods html remove_redundancy_elements_though_reduced_dimensions html remove_redundancy_elements_through_correlation html rename html right_join html rotate_dimensions-methods html rowwise html run_llsr html scale_abundance-methods html scale_design html se html se_mini html select_closest_pairs html summarise html symbol_to_entrez html test_differential_abundance-methods html test_gene_enrichment-methods html test_gene_enrichment_bulk_EGSEA html test_gene_overrepresentation-methods html tidybulk-methods html tidybulk_SAM_BAM-methods html tidybulk_to_SummarizedExperiment html tidyr-methods html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'tidybulk' ... ** testing if installed package can be loaded * MD5 sums packaged installation of 'tidybulk' as tidybulk_1.0.2.zip * DONE (tidybulk) * installing to library 'C:/Users/biocbuild/bbs-3.11-bioc/R/library' package 'tidybulk' successfully unpacked and MD5 sums checked
tidybulk.Rcheck/tests_i386/testthat.Rout R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(tidybulk) Attaching package: 'tidybulk' The following object is masked from 'package:stats': filter > > test_check("tidybulk") Getting the 5 most variable genes | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 251 Number of edges: 8484 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5329 Number of communities: 4 Elapsed time: 0 seconds | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 251 Number of edges: 8484 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5329 Number of communities: 4 Elapsed time: 0 seconds | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 251 Number of edges: 8484 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5329 Number of communities: 4 Elapsed time: 0 seconds Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Performing PCA Read the 48 x 48 data matrix successfully! OpenMP is working. 1 threads. Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000 Computing input similarities... Building tree... Done in 0.00 seconds (sparsity = 0.497396)! Learning embedding... Iteration 50: error is 51.120058 (50 iterations in 0.00 seconds) Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds) Iteration 150: error is 48.253052 (50 iterations in 0.02 seconds) Iteration 200: error is 45.889853 (50 iterations in 0.00 seconds) Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds) Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds) Iteration 350: error is 0.747725 (50 iterations in 0.01 seconds) Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds) Iteration 450: error is 0.538093 (50 iterations in 0.00 seconds) Iteration 500: error is 0.719163 (50 iterations in 0.00 seconds) Iteration 550: error is 0.660301 (50 iterations in 0.02 seconds) Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds) Iteration 650: error is 0.323845 (50 iterations in 0.00 seconds) Iteration 700: error is 0.172424 (50 iterations in 0.00 seconds) Iteration 750: error is 0.113369 (50 iterations in 0.02 seconds) Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds) Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds) Iteration 900: error is 0.024178 (50 iterations in 0.01 seconds) Iteration 950: error is 0.023049 (50 iterations in 0.00 seconds) Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds) Fitting performed in 0.08 seconds. Getting the 500 most variable genes Performing PCA Read the 48 x 48 data matrix successfully! OpenMP is working. 1 threads. Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000 Computing input similarities... Building tree... Done in 0.00 seconds (sparsity = 0.497396)! Learning embedding... Iteration 50: error is 51.120058 (50 iterations in 0.00 seconds) Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds) Iteration 150: error is 48.253052 (50 iterations in 0.02 seconds) Iteration 200: error is 45.889853 (50 iterations in 0.00 seconds) Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds) Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds) Iteration 350: error is 0.747725 (50 iterations in 0.01 seconds) Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds) Iteration 450: error is 0.538093 (50 iterations in 0.00 seconds) Iteration 500: error is 0.719163 (50 iterations in 0.00 seconds) Iteration 550: error is 0.660301 (50 iterations in 0.02 seconds) Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds) Iteration 650: error is 0.323845 (50 iterations in 0.00 seconds) Iteration 700: error is 0.172424 (50 iterations in 0.00 seconds) Iteration 750: error is 0.113369 (50 iterations in 0.00 seconds) Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds) Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds) Iteration 900: error is 0.024178 (50 iterations in 0.01 seconds) Iteration 950: error is 0.023049 (50 iterations in 0.00 seconds) Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds) Fitting performed in 0.06 seconds. Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 527 most variable genes Getting the 100 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.990 1 2 0.00310 2 Getting the 100 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.990 1 2 0.00310 2 Getting the 100 most variable genes Getting the 5 most variable genes Getting the 5 most variable genes == testthat results =========================================================== [ OK: 157 | SKIPPED: 0 | WARNINGS: 13 | FAILED: 0 ] > > proc.time() user system elapsed 172.07 6.92 194.51 |
tidybulk.Rcheck/tests_x64/testthat.Rout R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(tidybulk) Attaching package: 'tidybulk' The following object is masked from 'package:stats': filter > > test_check("tidybulk") Getting the 5 most variable genes | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 251 Number of edges: 8484 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5329 Number of communities: 4 Elapsed time: 0 seconds | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 251 Number of edges: 8484 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5329 Number of communities: 4 Elapsed time: 0 seconds | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 251 Number of edges: 8484 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.5329 Number of communities: 4 Elapsed time: 0 seconds Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Performing PCA Read the 48 x 48 data matrix successfully! OpenMP is working. 1 threads. Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000 Computing input similarities... Building tree... Done in 0.00 seconds (sparsity = 0.497396)! Learning embedding... Iteration 50: error is 51.120058 (50 iterations in 0.02 seconds) Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds) Iteration 150: error is 48.253052 (50 iterations in 0.00 seconds) Iteration 200: error is 45.889853 (50 iterations in 0.01 seconds) Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds) Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds) Iteration 350: error is 0.747725 (50 iterations in 0.02 seconds) Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds) Iteration 450: error is 0.538093 (50 iterations in 0.00 seconds) Iteration 500: error is 0.719163 (50 iterations in 0.02 seconds) Iteration 550: error is 0.660301 (50 iterations in 0.00 seconds) Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds) Iteration 650: error is 0.323845 (50 iterations in 0.01 seconds) Iteration 700: error is 0.172424 (50 iterations in 0.00 seconds) Iteration 750: error is 0.113369 (50 iterations in 0.00 seconds) Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds) Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds) Iteration 900: error is 0.024178 (50 iterations in 0.02 seconds) Iteration 950: error is 0.023049 (50 iterations in 0.01 seconds) Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds) Fitting performed in 0.11 seconds. Getting the 500 most variable genes Performing PCA Read the 48 x 48 data matrix successfully! OpenMP is working. 1 threads. Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000 Computing input similarities... Building tree... Done in 0.02 seconds (sparsity = 0.497396)! Learning embedding... Iteration 50: error is 51.120058 (50 iterations in 0.00 seconds) Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds) Iteration 150: error is 48.253052 (50 iterations in 0.00 seconds) Iteration 200: error is 45.889853 (50 iterations in 0.01 seconds) Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds) Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds) Iteration 350: error is 0.747725 (50 iterations in 0.00 seconds) Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds) Iteration 450: error is 0.538093 (50 iterations in 0.02 seconds) Iteration 500: error is 0.719163 (50 iterations in 0.00 seconds) Iteration 550: error is 0.660301 (50 iterations in 0.00 seconds) Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds) Iteration 650: error is 0.323845 (50 iterations in 0.00 seconds) Iteration 700: error is 0.172424 (50 iterations in 0.02 seconds) Iteration 750: error is 0.113369 (50 iterations in 0.00 seconds) Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds) Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds) Iteration 900: error is 0.024178 (50 iterations in 0.01 seconds) Iteration 950: error is 0.023049 (50 iterations in 0.00 seconds) Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds) Fitting performed in 0.06 seconds. Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 500 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.581 1 2 0.257 2 Getting the 527 most variable genes Getting the 100 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.990 1 2 0.00310 2 Getting the 100 most variable genes Fraction of variance explained by the selected principal components # A tibble: 2 x 2 `Fraction of variance` PC <dbl> <int> 1 0.990 1 2 0.00310 2 Getting the 100 most variable genes Getting the 5 most variable genes Getting the 5 most variable genes == testthat results =========================================================== [ OK: 157 | SKIPPED: 0 | WARNINGS: 13 | FAILED: 0 ] > > proc.time() user system elapsed 231.53 3.53 260.17 |
tidybulk.Rcheck/examples_i386/tidybulk-Ex.timings
|
tidybulk.Rcheck/examples_x64/tidybulk-Ex.timings
|