Back to Multiple platform build/check report for BioC 3.11
ABCDEFGHIJKLMNOPQRS[T]UVWXYZ

CHECK report for tidybulk on tokay2

This page was generated on 2020-10-17 11:57:56 -0400 (Sat, 17 Oct 2020).

TO THE DEVELOPERS/MAINTAINERS OF THE tidybulk PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
Package 1797/1905HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
tidybulk 1.0.2
Stefano Mangiola
Snapshot Date: 2020-10-16 14:40:19 -0400 (Fri, 16 Oct 2020)
URL: https://git.bioconductor.org/packages/tidybulk
Branch: RELEASE_3_11
Last Commit: bfa4dd1
Last Changed Date: 2020-06-08 00:40:18 -0400 (Mon, 08 Jun 2020)
malbec2 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  WARNINGS UNNEEDED, same version exists in internal repository
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ WARNINGS ] NA 
machv2 macOS 10.14.6 Mojave / x86_64  OK  OK  WARNINGS  OK UNNEEDED, same version exists in internal repository

Summary

Package: tidybulk
Version: 1.0.2
Command: C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:tidybulk.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings tidybulk_1.0.2.tar.gz
StartedAt: 2020-10-17 08:50:35 -0400 (Sat, 17 Oct 2020)
EndedAt: 2020-10-17 09:04:47 -0400 (Sat, 17 Oct 2020)
EllapsedTime: 852.7 seconds
RetCode: 0
Status:  WARNINGS  
CheckDir: tidybulk.Rcheck
Warnings: 2

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:tidybulk.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings tidybulk_1.0.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.11-bioc/meat/tidybulk.Rcheck'
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'tidybulk/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'tidybulk' version '1.0.2'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'tidybulk' can be installed ... OK
* checking installed package size ... NOTE
  installed size is  7.9Mb
  sub-directories of 1Mb or more:
    data   6.7Mb
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... NOTE
File
  LICENSE
is not mentioned in the DESCRIPTION file.
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... NOTE
package 'methods' is used but not declared
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
.cluster_elements: no visible binding for global variable '.'
.deconvolve_cellularity: no visible binding for global variable
  'X_cibersort'
.deconvolve_cellularity_se: no visible binding for global variable
  'X_cibersort'
.keep_abundant: no visible binding for global variable '.'
.tidybulk_se: no visible binding for global variable '.'
.tidybulk_se: no visible binding for global variable 'feature'
add_scaled_counts_bulk.calcNormFactor: no visible binding for global
  variable 'transcript'
add_scaled_counts_bulk.get_low_expressed: no visible binding for global
  variable 'transcript'
add_scaled_counts_bulk.get_low_expressed: no visible binding for global
  variable '.'
aggregate_duplicated_transcripts_bulk: no visible binding for global
  variable '.abundance_scaled'
aggregate_duplicated_transcripts_bulk: no visible binding for global
  variable 'n_aggr'
as_matrix: no visible binding for global variable 'variable'
check_if_duplicated_genes: no visible binding for global variable
  'transcript'
check_if_duplicated_genes: no visible binding for global variable 'read
  count'
create_tt_from_bam_sam_bulk: no visible binding for global variable '.'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'temp'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'Status'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'counts'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'GeneID'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'genes'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'transcript'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'samples'
create_tt_from_bam_sam_bulk: no visible binding for global variable
  'entrez'
deconvolve_cellularity: no visible binding for global variable
  'X_cibersort'
eliminate_sparse_transcripts: no visible binding for global variable
  'my_n'
entrez_rank_to_gsea: no visible binding for global variable 'gs_cat'
entrez_rank_to_gsea: no visible binding for global variable 'test'
error_if_duplicated_genes: no visible binding for global variable
  'transcript'
error_if_duplicated_genes: no visible binding for global variable 'read
  count'
error_if_log_transformed: no visible binding for global variable 'm'
fill_NA_using_formula: no visible binding for global variable '.'
get_abundance_norm_if_exists: no visible binding for global variable
  '.abundance_scaled'
get_adjusted_counts_for_unwanted_variation_bulk: no visible binding for
  global variable '.'
get_cell_type_proportions: no visible binding for global variable
  'X_cibersort'
get_cell_type_proportions: no visible binding for global variable '.'
get_clusters_SNN_bulk: no visible binding for global variable
  'seurat_clusters'
get_clusters_kmeans_bulk: no visible binding for global variable '.'
get_clusters_kmeans_bulk: no visible binding for global variable
  'cluster'
get_clusters_kmeans_bulk: no visible binding for global variable
  'cluster kmeans'
get_differential_transcript_abundance_bulk: no visible binding for
  global variable '.'
get_differential_transcript_abundance_bulk: no visible binding for
  global variable 'lowly_abundant'
get_reduced_dimensions_MDS_bulk: no visible binding for global variable
  'cmdscale.out'
get_reduced_dimensions_PCA_bulk: no visible binding for global variable
  'sdev'
get_reduced_dimensions_PCA_bulk: no visible binding for global variable
  'name'
get_reduced_dimensions_PCA_bulk: no visible binding for global variable
  'value'
get_reduced_dimensions_PCA_bulk: no visible binding for global variable
  'rotation'
get_reduced_dimensions_TSNE_bulk: no visible binding for global
  variable 'Y'
get_rotated_dimensions: no visible binding for global variable 'value'
get_rotated_dimensions: no visible binding for global variable 'rotated
  dimensions'
get_scaled_counts_bulk: no visible binding for global variable 'med'
get_scaled_counts_bulk: no visible binding for global variable
  'tot_filt'
get_scaled_counts_bulk: no visible binding for global variable '.'
get_scaled_counts_bulk: no visible binding for global variable 'tot'
get_scaled_counts_bulk: no visible binding for global variable
  'multiplier'
get_scaled_counts_bulk: no visible binding for global variable 'x'
get_symbol_from_ensembl: no visible binding for global variable
  'ensembl_id'
get_symbol_from_ensembl: no visible binding for global variable
  'transcript'
get_symbol_from_ensembl: no visible binding for global variable
  'ref_genome'
get_tt_columns: no visible binding for global variable 'tt_columns'
initialise_tt_internals: no visible binding for global variable '.'
remove_redundancy_elements_though_reduced_dimensions: no visible
  binding for global variable 'sample b'
remove_redundancy_elements_though_reduced_dimensions: no visible
  binding for global variable 'sample a'
remove_redundancy_elements_though_reduced_dimensions: no visible
  binding for global variable 'sample 1'
remove_redundancy_elements_though_reduced_dimensions: no visible
  binding for global variable 'sample 2'
remove_redundancy_elements_through_correlation: no visible binding for
  global variable 'rc'
remove_redundancy_elements_through_correlation: no visible binding for
  global variable 'transcript'
remove_redundancy_elements_through_correlation: no visible binding for
  global variable 'correlation'
remove_redundancy_elements_through_correlation: no visible binding for
  global variable 'item1'
scale_design: no visible binding for global variable 'value'
scale_design: no visible binding for global variable 'sample_idx'
scale_design: no visible binding for global variable '(Intercept)'
select_closest_pairs: no visible binding for global variable 'sample 1'
select_closest_pairs: no visible binding for global variable 'sample 2'
symbol_to_entrez: no visible binding for global variable 'entrez'
test_gene_enrichment_bulk_EGSEA: no visible global function definition
  for 'buildIdx'
test_gene_enrichment_bulk_EGSEA: no visible global function definition
  for 'egsea'
test_gene_enrichment_bulk_EGSEA: no visible global function definition
  for 'egsea.base'
test_gene_enrichment_bulk_EGSEA: no visible binding for global variable
  'med.rank'
test_gene_enrichment_bulk_EGSEA: no visible binding for global variable
  'data_base'
test_gene_enrichment_bulk_EGSEA: no visible binding for global variable
  'pathway'
tidybulk_to_SummarizedExperiment: no visible binding for global
  variable '.'
tidybulk_to_SummarizedExperiment: no visible binding for global
  variable 'assay'
tidybulk_to_SummarizedExperiment: no visible binding for global
  variable '.a'
cluster_elements,spec_tbl_df: no visible binding for global variable
  '.'
cluster_elements,tbl_df: no visible binding for global variable '.'
cluster_elements,tidybulk: no visible binding for global variable '.'
deconvolve_cellularity,RangedSummarizedExperiment: no visible binding
  for global variable 'X_cibersort'
deconvolve_cellularity,SummarizedExperiment: no visible binding for
  global variable 'X_cibersort'
deconvolve_cellularity,spec_tbl_df: no visible binding for global
  variable 'X_cibersort'
deconvolve_cellularity,tbl_df: no visible binding for global variable
  'X_cibersort'
deconvolve_cellularity,tidybulk: no visible binding for global variable
  'X_cibersort'
keep_abundant,spec_tbl_df: no visible binding for global variable '.'
keep_abundant,tbl_df: no visible binding for global variable '.'
keep_abundant,tidybulk: no visible binding for global variable '.'
tidybulk,RangedSummarizedExperiment: no visible binding for global
  variable '.'
tidybulk,RangedSummarizedExperiment: no visible binding for global
  variable 'feature'
tidybulk,SummarizedExperiment: no visible binding for global variable
  '.'
tidybulk,SummarizedExperiment: no visible binding for global variable
  'feature'
Undefined global functions or variables:
  (Intercept) . .a .abundance_scaled GeneID Status X_cibersort Y assay
  buildIdx cluster cluster kmeans cmdscale.out correlation counts
  data_base egsea egsea.base ensembl_id entrez feature genes gs_cat
  item1 lowly_abundant m med med.rank multiplier my_n n_aggr name
  pathway rc read count ref_genome rotated dimensions rotation sample 1
  sample 2 sample a sample b sample_idx samples sdev seurat_clusters
  temp test tot tot_filt transcript tt_columns value variable x
Consider adding
  importFrom("base", "sample")
  importFrom("stats", "kmeans")
to your NAMESPACE file.
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... WARNING
Found the following significant warnings:

  Warning: 'msigdbr::msigdbr_show_species' is deprecated.
Deprecated functions may be defunct as soon as of the next release of
R.
See ?Deprecated.
Examples with CPU (user + system) or elapsed time > 5s
                                      user system elapsed
deconvolve_cellularity-methods       67.46   0.66   68.14
test_gene_overrepresentation-methods 35.94   3.82   39.87
adjust_abundance-methods              6.92   0.27    7.19
** running examples for arch 'x64' ... WARNING
Found the following significant warnings:

  Warning: 'msigdbr::msigdbr_show_species' is deprecated.
Deprecated functions may be defunct as soon as of the next release of
R.
See ?Deprecated.
Examples with CPU (user + system) or elapsed time > 5s
                                      user system elapsed
deconvolve_cellularity-methods       72.16   0.50   72.67
test_gene_overrepresentation-methods 38.00   2.16   40.17
adjust_abundance-methods              8.66   0.16    8.81
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'testthat.R'
 OK
** running tests for arch 'x64' ...
  Running 'testthat.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 WARNINGs, 4 NOTEs
See
  'C:/Users/biocbuild/bbs-3.11-bioc/meat/tidybulk.Rcheck/00check.log'
for details.



Installation output

tidybulk.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.11/bioc/src/contrib/tidybulk_1.0.2.tar.gz && rm -rf tidybulk.buildbin-libdir && mkdir tidybulk.buildbin-libdir && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=tidybulk.buildbin-libdir tidybulk_1.0.2.tar.gz && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL tidybulk_1.0.2.zip && rm tidybulk_1.0.2.tar.gz tidybulk_1.0.2.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 4458k  100 4458k    0     0  30.5M      0 --:--:-- --:--:-- --:--:-- 32.2M

install for i386

* installing *source* package 'tidybulk' ...
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
in method for 'tidybulk' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'tidybulk' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'scale_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'scale_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'cluster_elements' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'cluster_elements' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'reduce_dimensions' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'reduce_dimensions' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'rotate_dimensions' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'rotate_dimensions' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'remove_redundancy' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'remove_redundancy' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'adjust_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'adjust_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'aggregate_duplicates' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'aggregate_duplicates' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'deconvolve_cellularity' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'deconvolve_cellularity' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'test_differential_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'test_differential_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'keep_variable' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'keep_variable' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'keep_abundant' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'keep_abundant' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
in method for 'impute_abundance' with signature '"SummarizedExperiment"': no definition for class "SummarizedExperiment"
in method for 'impute_abundance' with signature '"RangedSummarizedExperiment"': no definition for class "RangedSummarizedExperiment"
Note: wrong number of arguments to '!' 
Note: wrong number of arguments to '>' 
Note: wrong number of arguments to '>' 
Note: wrong number of arguments to '<' 
Note: wrong number of arguments to '>' 
Note: wrong number of arguments to '!' 
Note: wrong number of arguments to '<' 
Note: wrong number of arguments to '>' 
Note: wrong number of arguments to '<' 
Note: wrong number of arguments to '<' 
Note: wrong number of arguments to '!' 
Note: wrong number of arguments to '!' 
Note: wrong number of arguments to '^' 
Note: wrong number of arguments to '/' 
Note: wrong number of arguments to 'floor' 
Note: wrong number of arguments to '>' 
Note: wrong number of arguments to '<' 
** help
*** installing help indices
  converting help for package 'tidybulk'
    finding HTML links ... done
    X_cibersort                             html  
    add_attr                                html  
    add_class                               html  
    add_scaled_counts_bulk.calcNormFactor   html  
    add_scaled_counts_bulk.get_low_expressed
                                            html  
    adjust_abundance-methods                html  
    aggregate_duplicated_transcripts_bulk   html  
    aggregate_duplicates-methods            html  
    as_matrix                               html  
    bind                                    html  
    breast_tcga_mini                        html  
    check_if_counts_is_na                   html  
    check_if_duplicated_genes               html  
    check_if_wrong_input                    html  
    cluster_elements-methods                html  
    counts                                  html  
    counts_ensembl                          html  
    counts_mini                             html  
    create_tt_from_bam_sam_bulk             html  
    create_tt_from_tibble_bulk              html  
    deconvolve_cellularity-methods          html  
    distinct                                html  
    dplyr-methods                           html  
    drop_attr                               html  
    drop_class                              html  
    ensembl_symbol_mapping                  html  
    ensembl_to_symbol-methods               html  
    error_if_counts_is_na                   html  
    error_if_duplicated_genes               html  
    error_if_log_transformed                html  
    error_if_wrong_input                    html  
    fill_NA_using_formula                   html  
    fill_NA_with_row_median                 html  
    filter                                  html  
    flybaseIDs                              html  
    full_join                               html  
    get_abundance_norm_if_exists            html  
    get_adjusted_counts_for_unwanted_variation_bulk
                                            html  
    get_cell_type_proportions               html  
    get_clusters_SNN_bulk                   html  
    get_clusters_kmeans_bulk                html  
    get_differential_transcript_abundance_bulk
                                            html  
    get_elements                            html  
    get_elements_features                   html  
    get_elements_features_abundance         html  
    get_reduced_dimensions_MDS_bulk         html  
    get_reduced_dimensions_PCA_bulk         html  
    get_reduced_dimensions_TSNE_bulk        html  
    get_rotated_dimensions                  html  
    get_sample                              html  
    get_sample_counts                       html  
    get_sample_transcript                   html  
    get_sample_transcript_counts            html  
    get_scaled_counts_bulk                  html  
    get_symbol_from_ensembl                 html  
    get_transcript                          html  
    get_x_y_annotation_columns              html  
    group_by                                html  
    ifelse2_pipe                            html  
    ifelse_pipe                             html  
    impute_abundance-methods                html  
    inner_join                              html  
    keep_abundant-methods                   html  
    keep_variable-methods                   html  
    keep_variable_transcripts               html  
    left_join                               html  
    mutate                                  html  
    parse_formula                           html  
    pivot_sample-methods                    html  
    pivot_transcript-methods                html  
    prepend                                 html  
    reduce_dimensions-methods               html  
    reexports                               html  
    remove_redundancy-methods               html  
    remove_redundancy_elements_though_reduced_dimensions
                                            html  
    remove_redundancy_elements_through_correlation
                                            html  
    rename                                  html  
    right_join                              html  
    rotate_dimensions-methods               html  
    rowwise                                 html  
    run_llsr                                html  
    scale_abundance-methods                 html  
    scale_design                            html  
    se                                      html  
    se_mini                                 html  
    select_closest_pairs                    html  
    summarise                               html  
    symbol_to_entrez                        html  
    test_differential_abundance-methods     html  
    test_gene_enrichment-methods            html  
    test_gene_enrichment_bulk_EGSEA         html  
    test_gene_overrepresentation-methods    html  
    tidybulk-methods                        html  
    tidybulk_SAM_BAM-methods                html  
    tidybulk_to_SummarizedExperiment        html  
    tidyr-methods                           html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'tidybulk' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'tidybulk' as tidybulk_1.0.2.zip
* DONE (tidybulk)
* installing to library 'C:/Users/biocbuild/bbs-3.11-bioc/R/library'
package 'tidybulk' successfully unpacked and MD5 sums checked

Tests output

tidybulk.Rcheck/tests_i386/testthat.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(tidybulk)

Attaching package: 'tidybulk'

The following object is masked from 'package:stats':

    filter

> 
> test_check("tidybulk")
Getting the 5 most variable genes

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 251
Number of edges: 8484

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.5329
Number of communities: 4
Elapsed time: 0 seconds

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 251
Number of edges: 8484

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.5329
Number of communities: 4
Elapsed time: 0 seconds

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 251
Number of edges: 8484

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.5329
Number of communities: 4
Elapsed time: 0 seconds
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Performing PCA
Read the 48 x 48 data matrix successfully!
OpenMP is working. 1 threads.
Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000
Computing input similarities...
Building tree...
Done in 0.00 seconds (sparsity = 0.497396)!
Learning embedding...
Iteration 50: error is 51.120058 (50 iterations in 0.00 seconds)
Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds)
Iteration 150: error is 48.253052 (50 iterations in 0.02 seconds)
Iteration 200: error is 45.889853 (50 iterations in 0.00 seconds)
Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds)
Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds)
Iteration 350: error is 0.747725 (50 iterations in 0.01 seconds)
Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds)
Iteration 450: error is 0.538093 (50 iterations in 0.00 seconds)
Iteration 500: error is 0.719163 (50 iterations in 0.00 seconds)
Iteration 550: error is 0.660301 (50 iterations in 0.02 seconds)
Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds)
Iteration 650: error is 0.323845 (50 iterations in 0.00 seconds)
Iteration 700: error is 0.172424 (50 iterations in 0.00 seconds)
Iteration 750: error is 0.113369 (50 iterations in 0.02 seconds)
Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds)
Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds)
Iteration 900: error is 0.024178 (50 iterations in 0.01 seconds)
Iteration 950: error is 0.023049 (50 iterations in 0.00 seconds)
Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds)
Fitting performed in 0.08 seconds.
Getting the 500 most variable genes
Performing PCA
Read the 48 x 48 data matrix successfully!
OpenMP is working. 1 threads.
Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000
Computing input similarities...
Building tree...
Done in 0.00 seconds (sparsity = 0.497396)!
Learning embedding...
Iteration 50: error is 51.120058 (50 iterations in 0.00 seconds)
Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds)
Iteration 150: error is 48.253052 (50 iterations in 0.02 seconds)
Iteration 200: error is 45.889853 (50 iterations in 0.00 seconds)
Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds)
Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds)
Iteration 350: error is 0.747725 (50 iterations in 0.01 seconds)
Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds)
Iteration 450: error is 0.538093 (50 iterations in 0.00 seconds)
Iteration 500: error is 0.719163 (50 iterations in 0.00 seconds)
Iteration 550: error is 0.660301 (50 iterations in 0.02 seconds)
Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds)
Iteration 650: error is 0.323845 (50 iterations in 0.00 seconds)
Iteration 700: error is 0.172424 (50 iterations in 0.00 seconds)
Iteration 750: error is 0.113369 (50 iterations in 0.00 seconds)
Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds)
Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds)
Iteration 900: error is 0.024178 (50 iterations in 0.01 seconds)
Iteration 950: error is 0.023049 (50 iterations in 0.00 seconds)
Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds)
Fitting performed in 0.06 seconds.
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 527 most variable genes
Getting the 100 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                0.990       1
2                0.00310     2
Getting the 100 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                0.990       1
2                0.00310     2
Getting the 100 most variable genes
Getting the 5 most variable genes
Getting the 5 most variable genes
== testthat results  ===========================================================
[ OK: 157 | SKIPPED: 0 | WARNINGS: 13 | FAILED: 0 ]
> 
> proc.time()
   user  system elapsed 
 172.07    6.92  194.51 

tidybulk.Rcheck/tests_x64/testthat.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(tidybulk)

Attaching package: 'tidybulk'

The following object is masked from 'package:stats':

    filter

> 
> test_check("tidybulk")
Getting the 5 most variable genes

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 251
Number of edges: 8484

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.5329
Number of communities: 4
Elapsed time: 0 seconds

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 251
Number of edges: 8484

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.5329
Number of communities: 4
Elapsed time: 0 seconds

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 251
Number of edges: 8484

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.5329
Number of communities: 4
Elapsed time: 0 seconds
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Performing PCA
Read the 48 x 48 data matrix successfully!
OpenMP is working. 1 threads.
Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000
Computing input similarities...
Building tree...
Done in 0.00 seconds (sparsity = 0.497396)!
Learning embedding...
Iteration 50: error is 51.120058 (50 iterations in 0.02 seconds)
Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds)
Iteration 150: error is 48.253052 (50 iterations in 0.00 seconds)
Iteration 200: error is 45.889853 (50 iterations in 0.01 seconds)
Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds)
Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds)
Iteration 350: error is 0.747725 (50 iterations in 0.02 seconds)
Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds)
Iteration 450: error is 0.538093 (50 iterations in 0.00 seconds)
Iteration 500: error is 0.719163 (50 iterations in 0.02 seconds)
Iteration 550: error is 0.660301 (50 iterations in 0.00 seconds)
Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds)
Iteration 650: error is 0.323845 (50 iterations in 0.01 seconds)
Iteration 700: error is 0.172424 (50 iterations in 0.00 seconds)
Iteration 750: error is 0.113369 (50 iterations in 0.00 seconds)
Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds)
Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds)
Iteration 900: error is 0.024178 (50 iterations in 0.02 seconds)
Iteration 950: error is 0.023049 (50 iterations in 0.01 seconds)
Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds)
Fitting performed in 0.11 seconds.
Getting the 500 most variable genes
Performing PCA
Read the 48 x 48 data matrix successfully!
OpenMP is working. 1 threads.
Using no_dims = 2, perplexity = 7.000000, and theta = 0.500000
Computing input similarities...
Building tree...
Done in 0.02 seconds (sparsity = 0.497396)!
Learning embedding...
Iteration 50: error is 51.120058 (50 iterations in 0.00 seconds)
Iteration 100: error is 44.302092 (50 iterations in 0.00 seconds)
Iteration 150: error is 48.253052 (50 iterations in 0.00 seconds)
Iteration 200: error is 45.889853 (50 iterations in 0.01 seconds)
Iteration 250: error is 48.668880 (50 iterations in 0.00 seconds)
Iteration 300: error is 1.050300 (50 iterations in 0.00 seconds)
Iteration 350: error is 0.747725 (50 iterations in 0.00 seconds)
Iteration 400: error is 0.421442 (50 iterations in 0.00 seconds)
Iteration 450: error is 0.538093 (50 iterations in 0.02 seconds)
Iteration 500: error is 0.719163 (50 iterations in 0.00 seconds)
Iteration 550: error is 0.660301 (50 iterations in 0.00 seconds)
Iteration 600: error is 0.336347 (50 iterations in 0.00 seconds)
Iteration 650: error is 0.323845 (50 iterations in 0.00 seconds)
Iteration 700: error is 0.172424 (50 iterations in 0.02 seconds)
Iteration 750: error is 0.113369 (50 iterations in 0.00 seconds)
Iteration 800: error is 0.069809 (50 iterations in 0.00 seconds)
Iteration 850: error is 0.051707 (50 iterations in 0.00 seconds)
Iteration 900: error is 0.024178 (50 iterations in 0.01 seconds)
Iteration 950: error is 0.023049 (50 iterations in 0.00 seconds)
Iteration 1000: error is 0.021362 (50 iterations in 0.00 seconds)
Fitting performed in 0.06 seconds.
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 500 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                  0.581     1
2                  0.257     2
Getting the 527 most variable genes
Getting the 100 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                0.990       1
2                0.00310     2
Getting the 100 most variable genes
Fraction of variance explained by the selected principal components
# A tibble: 2 x 2
  `Fraction of variance`    PC
                   <dbl> <int>
1                0.990       1
2                0.00310     2
Getting the 100 most variable genes
Getting the 5 most variable genes
Getting the 5 most variable genes
== testthat results  ===========================================================
[ OK: 157 | SKIPPED: 0 | WARNINGS: 13 | FAILED: 0 ]
> 
> proc.time()
   user  system elapsed 
 231.53    3.53  260.17 

Example timings

tidybulk.Rcheck/examples_i386/tidybulk-Ex.timings

nameusersystemelapsed
adjust_abundance-methods6.920.277.19
aggregate_duplicates-methods0.360.090.45
as_matrix0.030.000.03
bind0.020.000.02
cluster_elements-methods0.660.140.79
deconvolve_cellularity-methods67.46 0.6668.14
distinct0.020.000.02
dplyr-methods000
ensembl_to_symbol-methods0.800.010.81
filter000
full_join0.140.020.16
group_by000
impute_abundance-methods0.120.000.12
inner_join0.160.030.19
keep_abundant-methods0.080.000.08
keep_variable-methods0.090.000.09
left_join0.110.030.14
mutate0.050.000.05
pivot_sample-methods0.030.000.03
pivot_transcript-methods0.030.000.03
reduce_dimensions-methods0.30.00.3
remove_redundancy-methods0.980.082.02
rename0.030.000.03
right_join0.160.040.20
rotate_dimensions-methods0.230.020.25
rowwise0.030.000.03
scale_abundance-methods0.320.000.31
summarise000
symbol_to_entrez0.530.030.57
test_differential_abundance-methods1.180.021.20
test_gene_enrichment-methods000
test_gene_overrepresentation-methods35.94 3.8239.87
tidybulk-methods000
tidyr-methods0.030.000.04

tidybulk.Rcheck/examples_x64/tidybulk-Ex.timings

nameusersystemelapsed
adjust_abundance-methods8.660.168.81
aggregate_duplicates-methods0.400.030.44
as_matrix0.010.000.02
bind000
cluster_elements-methods0.480.070.57
deconvolve_cellularity-methods72.16 0.5072.67
distinct0.010.000.01
dplyr-methods0.020.000.02
ensembl_to_symbol-methods1.030.041.06
filter000
full_join0.190.060.25
group_by0.010.000.02
impute_abundance-methods0.240.000.23
inner_join0.230.090.33
keep_abundant-methods0.180.000.17
keep_variable-methods0.150.000.16
left_join0.240.000.23
mutate0.090.000.10
pivot_sample-methods0.050.000.04
pivot_transcript-methods0.040.000.05
reduce_dimensions-methods0.50.00.5
remove_redundancy-methods1.030.031.53
rename0.030.000.03
right_join0.220.070.28
rotate_dimensions-methods0.390.000.39
rowwise0.220.010.23
scale_abundance-methods0.50.00.5
summarise0.020.000.02
symbol_to_entrez0.620.000.63
test_differential_abundance-methods1.450.001.45
test_gene_enrichment-methods000
test_gene_overrepresentation-methods38.00 2.1640.17
tidybulk-methods000
tidyr-methods0.020.000.01