Back to Multiple platform build/check report for BioC 3.11
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

CHECK report for sigaR on machv2

This page was generated on 2020-10-17 11:59:37 -0400 (Sat, 17 Oct 2020).

TO THE DEVELOPERS/MAINTAINERS OF THE sigaR PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
Package 1649/1905HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
sigaR 1.36.0
Wessel N. van Wieringen
Snapshot Date: 2020-10-16 14:40:19 -0400 (Fri, 16 Oct 2020)
URL: https://git.bioconductor.org/packages/sigaR
Branch: RELEASE_3_11
Last Commit: 8ccdc76
Last Changed Date: 2020-04-27 14:27:59 -0400 (Mon, 27 Apr 2020)
malbec2 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  ERROR 
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK  ERROR  NA 
machv2 macOS 10.14.6 Mojave / x86_64  OK  OK [ ERROR ] OK 

Summary

Package: sigaR
Version: 1.36.0
Command: /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:sigaR.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings sigaR_1.36.0.tar.gz
StartedAt: 2020-10-17 05:19:51 -0400 (Sat, 17 Oct 2020)
EndedAt: 2020-10-17 05:21:55 -0400 (Sat, 17 Oct 2020)
EllapsedTime: 124.1 seconds
RetCode: 1
Status:  ERROR 
CheckDir: sigaR.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:sigaR.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings sigaR_1.36.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.11-bioc/meat/sigaR.Rcheck’
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘sigaR/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘sigaR’ version ‘1.36.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘sigaR’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... NOTE
There are ::: calls to the package's namespace in its code. A package
  almost never needs to use ::: for its own objects:
  ‘.alphabivariate’ ‘.alphaest’ ‘.pretest’
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... ERROR
Running examples in ‘sigaR-Ex.R’ failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: RCMestimation
> ### Title: Fitting of the random coefficients model.
> ### Aliases: RCMestimation
> 
> ### ** Examples
> 
> # load data
> data(pollackCN16)
> data(pollackGE16)
> 
> # select features belonging to a region
> ids <- getSegFeatures(20, pollackCN16)
perform input checks... 
> 
> # extract segmented log2 ratios of the region
> X <- t(segmented(pollackCN16)[ids[1], , drop=FALSE])
> 
> # extract segmented log2 ratios of the region
> Y <- exprs(pollackGE16)[ids,]
> 
> # center the expression data (row-wise)
> Y <- t(Y - apply(Y, 1, mean))
> 
> # specify the linear constraint matrix
> R <- matrix(1, nrow=1)
> 
> # fit the random coefficients model to the random data
> RCMresults <- RCMestimation(Y, X, R)
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
sigaR
 --- call from context --- 
RCMestimation(Y, X, R)
 --- call from argument --- 
if (as.character(class(Y)) != "matrix") {
    stop("Input (Y) is of wrong class.")
}
 --- R stacktrace ---
where 1: RCMestimation(Y, X, R)

 --- value of length: 2 type: logical ---
[1] FALSE  TRUE
 --- function from context --- 
function (Y, X, R, hypothesis = "H2", shrinkType = "none", estType = "normal", 
    corType = "unif", maxNoIt = 100, minSuccDist = 0.005, verbose = FALSE) 
{
    RCMmlH2 <- function(Y, X, R, maxNoIt, minSuccDist, shrinkType = "none", 
        estType = "normal", corType = "unif") {
        QPest.RCM <- function(cov.mat, ed.Om2, X, Y.as.vec, R, 
            R.dual, weights, np) {
            mat.calc.1 <- function(ev.cov, ed.Om2, X, weights) {
                QPmat1 <- matrix(0, ncol = dim(X)[2], nrow = dim(X)[2])
                for (i in 1:length(ed.Om2$values)) {
                  QPmat1 <- QPmat1 + (1/(ev.cov[1] + ed.Om2$values[i])) * 
                    (t((matrix(1, nrow = length(ev.cov[-1]), 
                      ncol = 1) %x% X)) %*% (matrix(ev.cov[-1] %x% 
                      ed.Om2$vectors[, i], ncol = 1) * matrix(weights, 
                      ncol = 1)) %*% (t((matrix(ev.cov[-1] %x% 
                      ed.Om2$vectors[, i], ncol = 1) * matrix(weights, 
                      ncol = 1))) %*% ((matrix(1, nrow = length(ev.cov[-1]), 
                      ncol = 1) %x% X))))
                }
                return(QPmat1)
            }
            mat.calc.2 <- function(ev.cov, ed.Om2, X, Y.as.vec, 
                weights) {
                QPmat2 <- matrix(0, ncol = 1, nrow = dim(X)[2])
                for (i in 1:length(ed.Om2$values)) {
                  QPmat2 <- QPmat2 + (1/(ev.cov[1] + ed.Om2$values[i])) * 
                    (t((matrix(1, nrow = length(ev.cov[-1]), 
                      ncol = 1) %x% X)) %*% (matrix(ev.cov[-1] %x% 
                      ed.Om2$vectors[, i], ncol = 1) * matrix(weights, 
                      ncol = 1))) %*% (t(matrix(ev.cov[-1] %x% 
                      ed.Om2$vectors[, i], ncol = 1) * matrix(weights, 
                      ncol = 1)) %*% Y.as.vec)
                }
                return(QPmat2)
            }
            ed.cov <- eigen(cov.mat, symmetric = TRUE)
            ed.cov <- rbind(ed.cov$values, ed.cov$vectors)
            if (np == 1) {
                slh.mat1 <- matrix(mean(apply(ed.cov, 2, mat.calc.1, 
                  ed.Om2, X, weights)), ncol = dim(X)[2])
                slh.mat2 <- matrix(mean(apply(ed.cov, 2, mat.calc.2, 
                  ed.Om2, X, Y.as.vec, weights)), ncol = 1)
            }
            if (np > 1) {
                slh.mat1 <- matrix(apply(t(apply(ed.cov, 2, mat.calc.1, 
                  ed.Om2, X, weights)), 2, mean), ncol = dim(X)[2])
                slh.mat2 <- matrix(apply(t(apply(ed.cov, 2, mat.calc.2, 
                  ed.Om2, X, Y.as.vec, weights)), 2, mean), ncol = 1)
            }
            Dmat <- R %*% solve(slh.mat1) %*% t(R)
            dvec <- R %*% solve(slh.mat1) %*% slh.mat2
            qp.sol <- solve.QP(Dmat, -dvec, R.dual, bvec)
            lambda <- matrix(qp.sol$solution, ncol = 1)
            betas.conc <- solve(slh.mat1) %*% slh.mat2 + solve(slh.mat1) %*% 
                t(R) %*% lambda
            return(as.numeric(betas.conc))
        }
        cov.mat.par.ests <- cov.par.estimation(projectY2Xcomp(Y, 
            X), dim(Y)[1], dim(Y)[2], estType, corType)
        betas <- rep(0, dim(X)[2])
        sigma2s <- cov.mat.par.ests$sigma2s
        shrink.par <- shrink.par.calculation(sigma2s, dim(Y)[2], 
            shrinkType)
        sigma2s <- (1 - shrink.par) * sigma2s + shrink.par * 
            mean(sigma2s)
        tau2s <- rep(0, dim(X)[2])
        rho <- cov.mat.par.ests$rho
        if (rho < 0) {
            warning("The estimate of rho is negative. To ensure the positive definiteness of the covariance matrix, it is set to zero in the remainder.")
            rho <- 0
        }
        X.circ <- matrix(rep(1, dim(Y)[1]), ncol = 1) %x% X
        Y.as.vec <- matrix(as.numeric(t(Y)), ncol = 1)
        R.dual <- diag(rep(1, dim(R)[1]))
        bvec <- rep(0, dim(R)[1])
        for (i1 in 1:maxNoIt) {
            if (verbose) {
                cat(paste("ML estimation: iteration ", i1, " of ", 
                  maxNoIt, sep = ""), "\n")
            }
            cov.mat <- .covMatConstruction(sigma2s, rho, corType)
            tau.mat <- matrix(0, nrow = length(as.numeric(tau2s)), 
                ncol = length(as.numeric(tau2s)))
            diag(tau.mat) <- as.numeric(tau2s)
            Omega.mat.2 <- X %*% tau.mat %*% t(X)
            ed.Om2 <- eigen(Omega.mat.2, symmetric = TRUE)
            betas.old <- betas
            weights <- matrix(1, ncol = 1, nrow = length(Y.as.vec))
            betas <- QPest.RCM(cov.mat, ed.Om2, X, Y.as.vec, 
                R, R.dual, weights, dim(X)[2])
            Y.res <- matrix(Y.as.vec - X.circ %*% matrix(betas, 
                ncol = 1), nrow = dim(Y)[1], byrow = TRUE)
            Y.res <- Y.res - matrix(apply(Y.res, 1, mean), ncol = dim(Y.res)[2], 
                nrow = dim(Y.res)[1], byrow = FALSE)
            tau.estimator <- function(gen.res, Xmat) {
                solve(t(Xmat) %*% Xmat) %*% t(Xmat) %*% matrix(gen.res, 
                  ncol = 1) %*% t(matrix(gen.res, ncol = 1)) %*% 
                  Xmat %*% solve(t(Xmat) %*% Xmat)
            }
            tau2s.old <- tau2s
            if (dim(X)[2] == 1) {
                tau2s <- apply(Y.res, 1, tau.estimator, Xmat = X)
                tau2s <- tau2s - sigma2s * solve(t(X) %*% X)
                tau2s <- mean(tau2s)
                if (tau2s < 0) {
                  tau2s <- 0
                }
            }
            else {
                tau2s <- apply(Y.res, 1, tau.estimator, Xmat = X)
                tau2s.per.gene <- function(st, Xmat, np) {
                  return(diag(matrix(st[-1], ncol = np) - st[1] * 
                    solve(t(Xmat) %*% Xmat)))
                }
                tau2s <- apply(rbind(sigma2s, tau2s), 2, tau2s.per.gene, 
                  Xmat = X, np = dim(X)[2])
                tau2s <- apply(tau2s, 1, mean)
                tau2s[(tau2s < 0)] <- 0
            }
            if (estType == "robust") {
                weights <- matrix(as.numeric(t(obs.weights(Y.res, 
                  dim(Y)[1], dim(Y)[2], shrink.par))), ncol = 1)
                rm(Y.res)
                cov.mat <- .covMatConstruction(sigma2s, rho, 
                  corType)
                tau.mat <- matrix(0, nrow = length(as.numeric(tau2s)), 
                  ncol = length(as.numeric(tau2s)))
                diag(tau.mat) <- as.numeric(tau2s)
                Omega.mat.2 <- X %*% tau.mat %*% t(X)
                ed.Om2 <- eigen(Omega.mat.2, symmetric = TRUE)
                betas <- QPest.RCM(cov.mat, ed.Om2, X, Y.as.vec, 
                  R, R.dual, weights, dim(X)[2])
                Y.res <- matrix(Y.as.vec - X.circ %*% matrix(betas, 
                  ncol = 1), nrow = dim(Y)[1], byrow = TRUE)
                Y.res <- Y.res - matrix(apply(Y.res, 1, mean), 
                  ncol = dim(Y.res)[2], nrow = dim(Y.res)[1], 
                  byrow = FALSE)
                tau.estimatorR <- function(gen.res, Xmat, ns) {
                  solve(t(Xmat) %*% Xmat) %*% t(Xmat) %*% matrix(sqrt(gen.res[(ns + 
                    1):(2 * ns)]) * gen.res[1:ns], ncol = 1) %*% 
                    t(matrix(sqrt(gen.res[(ns + 1):(2 * ns)]) * 
                      gen.res[1:ns], ncol = 1)) %*% Xmat %*% 
                    solve(t(Xmat) %*% Xmat)
                }
                weights <- matrix(weights, nrow = dim(Y)[1], 
                  byrow = TRUE)
                betasPerGene <- apply(Y, 1, lm.uc, Xmat = X, 
                  estType = "robust", mad.times = 4)
                betasResiduals <- betasPerGene - betas
                if (dim(X)[2] == 1) {
                  weights <- obs.weights.betas(betasResiduals, 
                    mad.times = 5)
                  tau2s <- sum(weights * (betasResiduals)^2)/length(sigma2s) - 
                    sum(sigma2s * solve(t(X) %*% X))/length(sigma2s)
                  tau2s[(tau2s < 0)] <- 0
                }
                else {
                  tau2s <- apply(cbind(Y.res, weights), 1, tau.estimatorR, 
                    Xmat = X, dim(Y)[2])
                  tau2s.per.gene <- function(st, Xmat, np) {
                    return(diag(matrix(st[-1], ncol = np) - st[1] * 
                      solve(t(Xmat) %*% Xmat)))
                  }
                  tau2s <- apply(rbind(sigma2s, tau2s), 2, tau2s.per.gene, 
                    Xmat = X, np = dim(X)[2])
                  tau2s <- apply(tau2s, 1, mean)
                  tau2s[(tau2s < 0)] <- 0
                }
            }
            if (max(abs(c(as.numeric(betas), sqrt(tau2s)) - c(as.numeric(betas.old), 
                sqrt(tau2s.old)))) < minSuccDist) {
                break
            }
        }
        estRes <- new("rcmFit", betas = as.numeric(round(betas, 
            digits = 5)), tau2s = round(tau2s, digits = 10), 
            sigma2s = as.numeric(round(sigma2s, digits = 5)), 
            rho = round(rho, digits = 5), shrinkage = round(shrink.par, 
                digits = 5), av.sigma2s = round(mean(sigma2s), 
                digits = 5), loglik = 1, corType = corType, X = X)
        estRes@loglik <- .RCMloss(estRes, Y)
        return(estRes)
    }
    RCMmlH0orH1 <- function(Y, X, R, shrinkType = "none", estType, 
        corType, hypothesis) {
        cov.mat.par.ests <- cov.par.estimation(projectY2Xcomp(Y, 
            X), dim(Y)[1], dim(Y)[2], estType, corType)
        betas <- rep(0, dim(X)[2])
        sigma2s <- cov.mat.par.ests$sigma2s
        shrink.par <- shrink.par.calculation(sigma2s, dim(Y)[2], 
            shrinkType)
        sigma2s <- (1 - shrink.par) * sigma2s + shrink.par * 
            mean(sigma2s)
        rho <- cov.mat.par.ests$rho
        X.circ <- matrix(rep(1, dim(Y)[1]), ncol = 1) %x% X
        Y.as.vec <- matrix(as.numeric(t(Y)), ncol = 1)
        R.star.dual <- diag(rep(1, dim(R)[1]))
        bvec <- rep(0, dim(R)[1])
        if (hypothesis == "H0") {
            cov.mat.inv <- solve(.covMatConstruction(sigma2s, 
                rho, corType))
            slh.mat1 <- (matrix(1, ncol = dim(Y)[1], nrow = 1) %*% 
                cov.mat.inv %*% matrix(1, nrow = dim(Y)[1], ncol = 1)) %x% 
                (t(X) %*% X)
            slh.mat2 <- ((matrix(1, ncol = dim(Y)[1], nrow = 1) %*% 
                cov.mat.inv) %x% t(X)) %*% Y.as.vec
            beta.unconstr <- solve(slh.mat1) %*% slh.mat2
            beta.eqconstr <- beta.unconstr - solve(slh.mat1) %*% 
                (t(R) %*% solve(R %*% solve(slh.mat1) %*% t(R)) %*% 
                  R %*% beta.unconstr)
            betas <- matrix(beta.eqconstr, ncol = dim(X)[2], 
                byrow = TRUE)
        }
        if (hypothesis == "H1") {
            cov.mat.inv <- solve(.covMatConstruction(sigma2s, 
                rho, corType))
            slh.mat <- solve((matrix(1, ncol = dim(Y)[1], nrow = 1) %*% 
                cov.mat.inv %*% matrix(1, nrow = dim(Y)[1], ncol = 1)) %x% 
                (t(X) %*% X))
            Dmat <- R %*% slh.mat %*% t(R)
            dvec <- -R %*% slh.mat %*% ((matrix(1, ncol = dim(Y)[1], 
                nrow = 1) %*% cov.mat.inv) %x% t(X)) %*% Y.as.vec
            qp.sol <- solve.QP(Dmat, dvec, R.star.dual, bvec)
            lambda <- matrix(qp.sol$solution, ncol = 1)
            betas <- slh.mat %*% ((matrix(1, ncol = dim(Y)[1], 
                nrow = 1) %*% cov.mat.inv) %x% t(X)) %*% Y.as.vec + 
                slh.mat %*% t(R) %*% lambda
            betas <- matrix(betas, ncol = dim(X)[2], byrow = TRUE)
        }
        if (estType == "robust") {
            res.mat.star <- matrix(Y.as.vec - X.circ %*% as.numeric(t(betas)), 
                nrow = dim(Y)[1], byrow = TRUE)
            weights <- matrix(as.numeric(t(obs.weights(res.mat.star, 
                dim(Y)[1], dim(Y)[2], shrink.par))), ncol = 1)
            X.circ <- matrix(sqrt(weights), ncol = dim(X)[2], 
                nrow = dim(Y)[2] * dim(Y)[1]) * X.circ
            ed.cov <- eigen(cov.mat.inv, symmetric = TRUE)
            ed.cov <- rbind(ed.cov$values, ed.cov$vectors)
            WY <- sqrt(weights) * Y.as.vec
            if (dim(X)[2] == 1) {
                slh.mat1 <- matrix(sum(apply(ed.cov, 2, slh.mat.weighted.one, 
                  WX.circ = X.circ, ns = dim(Y)[2])), ncol = dim(X)[2])
                if (hypothesis == "H1") {
                  slh.mat1 <- solve(slh.mat1)
                }
                slh.mat2 <- matrix(sum(apply(ed.cov, 2, slh.mat.weighted.two, 
                  WX.circ = X.circ, WY = WY, ns = dim(Y)[2])), 
                  nrow = dim(X)[2])
            }
            else {
                slh.mat1 <- matrix(rowSums(apply(ed.cov, 2, slh.mat.weighted.one, 
                  WX.circ = X.circ, ns = dim(Y)[2])), ncol = dim(X)[2])
                if (hypothesis == "H1") {
                  slh.mat1 <- solve(slh.mat1)
                }
                slh.mat2 <- matrix(rowSums(apply(ed.cov, 2, slh.mat.weighted.two, 
                  WX.circ = X.circ, WY = WY, ns = dim(Y)[2])), 
                  nrow = dim(X)[2])
            }
            rm(ed.cov)
            if (hypothesis == "H0") {
                beta.unconstr <- solve(slh.mat1) %*% slh.mat2
                beta.eqconstr <- beta.unconstr - solve(slh.mat1) %*% 
                  (t(R) %*% solve(R %*% solve(slh.mat1) %*% t(R)) %*% 
                    R %*% beta.unconstr)
                betas <- matrix(beta.eqconstr, ncol = dim(X)[2], 
                  byrow = TRUE)
            }
            if (hypothesis == "H1") {
                Dmat <- R %*% slh.mat1 %*% t(R)
                dvec <- -R %*% slh.mat1 %*% slh.mat2
                qp.sol <- solve.QP(Dmat, dvec, R.star.dual, bvec)
                lambda <- matrix(qp.sol$solution, ncol = 1)
                betas <- slh.mat1 %*% slh.mat2 + slh.mat1 %*% 
                  t(R) %*% lambda
                betas <- matrix(betas, ncol = dim(X)[2], byrow = TRUE)
            }
        }
        estRes <- new("rcmFit", betas = as.numeric(round(betas, 
            digits = 5)), tau2s = rep(0, length(betas)), sigma2s = as.numeric(round(sigma2s, 
            digits = 5)), rho = round(rho, digits = 5), shrinkage = round(shrink.par, 
            digits = 5), av.sigma2s = round(mean(sigma2s), digits = 5), 
            loglik = 1, corType = corType, X = X)
        estRes@loglik <- .RCMloss(estRes, Y)
        return(estRes)
    }
    projectY2Xcomp <- function(Y, X) {
        Uorth <- Null(svd(X)$u)
        Porth <- Uorth %*% solve(t(Uorth) %*% Uorth) %*% t(Uorth)
        return(t(Porth %*% t(Y)))
    }
    slh.mat.weighted.one <- function(ev.cov, WX.circ, ns) {
        junk <- 0
        for (k in 1:ns) {
            ev.unit <- matrix(0, ncol = 1, nrow = ns)
            ev.unit[k, 1] <- 1
            junk <- junk + ev.cov[1] * t(WX.circ) %*% (ev.cov[-1] %x% 
                ev.unit) %*% t(t(WX.circ) %*% (ev.cov[-1] %x% 
                ev.unit))
        }
        return(junk)
    }
    slh.mat.weighted.two <- function(ev.cov, WX.circ, WY, ns) {
        junk <- 0
        for (k in 1:ns) {
            ev.unit <- matrix(0, ncol = 1, nrow = ns)
            ev.unit[k, 1] <- 1
            junk <- junk + ev.cov[1] * t(WX.circ) %*% (ev.cov[-1] %x% 
                ev.unit) %*% (t(ev.cov[-1] %x% ev.unit) %*% WY)
        }
        return(junk)
    }
    shrink.par.calculation <- function(sigma2s, ns, shrinkType) {
        if (shrinkType == "none") {
            shrink.par <- 0
        }
        if (shrinkType == "full") {
            shrink.par <- 1
        }
        if (shrinkType == "opt") {
            teller <- (2 * length(sigma2s) - 3) * sum(sigma2s^2)/((ns - 
                1) * length(sigma2s))
            noemer <- sum((sigma2s - mean(sigma2s))^2) + (2 * 
                length(sigma2s) - 4) * sum(sigma2s^2)/((ns - 
                1) * length(sigma2s))
            shrink.par <- max(0, min(1, teller/noemer))
        }
        return(shrink.par)
    }
    cov.par.estimation <- function(res.mat, ng, ns, estType = "robust", 
        corType = "unif") {
        if (corType == "unif") {
            if (estType == "normal") {
                res.mat <- res.mat - matrix(apply(res.mat, 1, 
                  mean), ncol = dim(res.mat)[2], nrow = dim(res.mat)[1], 
                  byrow = FALSE)
                res.inprods.mat <- res.mat %*% t(res.mat)
                rho <- (sum(res.inprods.mat[upper.tri(res.inprods.mat)])/(ng * 
                  (ng - 1)/2)/(sum(diag(res.inprods.mat))/ng))
                sigma2s <- diag(res.inprods.mat)/(ns)
            }
            if (estType == "robust") {
                sigma2s <- apply(res.mat, 1, mad)^2
                cov.sum <- function(j, ng, X) {
                  sum(apply(X[(j + 1):ng, , drop = FALSE], 1, 
                    function(x, y) {
                      (mad(x + y))^2 - (mad(x - y))^2
                    }, X[j, ]))
                }
                cov <- sum(sapply(c(1:(ng - 1)), cov.sum, ng = ng, 
                  res.mat))
                rho <- (2 * cov/(4 * ng * (ng - 1)))/mean(sigma2s)
            }
        }
        if (corType == "ar1") {
            if (estType == "normal") {
                res.mat <- res.mat - matrix(apply(res.mat, 1, 
                  mean), ncol = dim(res.mat)[2], nrow = dim(res.mat)[1], 
                  byrow = FALSE)
                res.inprods.mat <- res.mat %*% t(res.mat)
                sigma2s <- diag(res.inprods.mat)/(ns)
                noemer <- (sum(diag(res.inprods.mat))/ng)
                res.inprods.mat <- res.inprods.mat[-ng, -1]
                rho <- (sum(diag(res.inprods.mat))/(ng - 1)/noemer)
            }
            if (estType == "robust") {
                sigma2s <- apply(res.mat, 1, mad)^2
                cov.sum <- function(j, ng, X) {
                  sum(apply(X[j + 1, , drop = FALSE], 1, function(x, 
                    y) {
                    (mad(x + y))^2 - (mad(x - y))^2
                  }, X[j, ]))
                }
                cov <- sum(sapply(c(1:(ng - 1)), cov.sum, ng = ng, 
                  res.mat))
                rho <- (cov/(4 * (ng - 1)))/mean(sigma2s)
            }
        }
        cov.pars <- list()
        cov.pars$rho <- rho
        cov.pars$sigma2s <- sigma2s
        return(cov.pars)
    }
    obs.weights.betas <- function(res.mat, mad.times = 5) {
        res.mat <- res.mat - median(res.mat)
        mads <- mad(res.mat)
        res.mat <- res.mat * 1/(mad.times * mads)
        res.mat[abs(res.mat) > 1] <- 1
        weights <- (1 - res.mat^2)^2
        return(weights)
    }
    obs.weights <- function(res.mat, ng, ns, shrink.par = 0, 
        mad.times = 5) {
        res.mat <- res.mat - apply(res.mat, 1, median)
        mads <- apply(res.mat, 1, mad)
        mads <- (1 - shrink.par) * mads + shrink.par * mean(mads)
        res.mat <- t(apply(cbind(res.mat, mads), 1, function(x, 
            mad.times) {
            spread <- x[length(x)]
            x <- x[-length(x)]
            x[abs(x) > mad.times * spread] <- mad.times * spread
            return(x)
        }, mad.times))
        res.mat <- res.mat * matrix(1/(mad.times * mads), ncol = ns, 
            nrow = ng, byrow = FALSE)
        weights <- (1 - res.mat^2)^2
        return(weights)
    }
    lm.uc <- function(Y, Xmat, estType, mad.times = 3) {
        sigma <- 1
        cov.mat.inv <- 1/sigma * diag(rep(1, length(Y)))
        betas <- solve(t(Xmat) %*% cov.mat.inv %*% Xmat) %*% 
            t(Xmat) %*% cov.mat.inv %*% Y
        if (estType == "robust") {
            residuals <- Y - X %*% betas
            res.mad <- mad(residuals)
            residuals[residuals > mad.times * res.mad] <- mad.times * 
                res.mad
            weights <- (1 - (residuals/(mad.times * mad(residuals)))^2)^2
            betas <- solve(t(Xmat) %*% diag(sqrt(as.numeric(weights))) %*% 
                cov.mat.inv %*% diag(sqrt(as.numeric(weights))) %*% 
                Xmat) %*% t(Xmat) %*% cov.mat.inv %*% Y
        }
        return(betas)
    }
    if (as.character(class(Y)) != "matrix") {
        stop("Input (Y) is of wrong class.")
    }
    if (sum(is.na(Y)) != 0) {
        stop("Y contains missings.")
    }
    if (as.character(class(X)) != "matrix") {
        stop("Input (X) is of wrong class.")
    }
    if (sum(is.na(X)) != 0) {
        stop("X contains missings.")
    }
    if (as.character(class(R)) != "matrix") {
        stop("Input (R) is of wrong class.")
    }
    if (sum(is.na(R)) != 0) {
        stop("R contains missings.")
    }
    if (!(as.character(class(maxNoIt)) == "numeric" | as.character(class(maxNoIt)) == 
        "integer")) {
        stop("Input (maxNoIt) is of wrong class.")
    }
    if (as.character(class(minSuccDist)) != "numeric") {
        stop("Input (minSuccDist) is of wrong class.")
    }
    if (as.character(class(corType)) != "character") {
        stop("Input (corType) is of wrong class.")
    }
    if (as.character(class(estType)) != "character") {
        stop("Input (estType) is of wrong class.")
    }
    if (as.character(class(shrinkType)) != "character") {
        stop("Input (shrinkType) is of wrong class.")
    }
    if (as.character(class(hypothesis)) != "character") {
        stop("Input (hypothesis) is of wrong class.")
    }
    if (dim(Y)[1] < 2) {
        stop("This is a multivariate procedure, provide a multivariate data set.")
    }
    if (!(corType %in% c("unif", "ar1"))) {
        stop("corType parameter ill-specified.")
    }
    if (!(estType %in% c("normal", "robust"))) {
        stop("estType parameter ill-specified.")
    }
    if (!(shrinkType %in% c("none", "opt", "full"))) {
        stop("shrinkType parameter ill-specified.")
    }
    if (!(hypothesis %in% c("H0", "H1", "H2"))) {
        stop("hypothesis parameter ill-specified.")
    }
    if (dim(Y)[1] != dim(X)[1]) {
        stop("Dimension mismatch between expression and design matrix.")
    }
    if (dim(X)[2] != dim(R)[2]) {
        stop("Dimension mismatch between constraint and design matrix.")
    }
    if (minSuccDist <= 0) {
        stop("Stopping criterion incorrect.")
    }
    if (maxNoIt < 1) {
        stop("Maximum number of iterations smaller than 1.")
    }
    Y <- t(Y)
    if (hypothesis == "H0") {
        return(RCMmlH0orH1(Y, X, R, shrinkType = shrinkType, 
            estType = estType, corType = corType, hypothesis = hypothesis))
    }
    if (hypothesis == "H1") {
        return(RCMmlH0orH1(Y, X, R, shrinkType = shrinkType, 
            estType = estType, corType = corType, hypothesis = hypothesis))
    }
    if (hypothesis == "H2") {
        return(RCMmlH2(Y, X, R, maxNoIt, minSuccDist, shrinkType = shrinkType, 
            estType = estType, corType = corType))
    }
}
<bytecode: 0x7fbf94d7baa8>
<environment: namespace:sigaR>
 --- function search by body ---
Function RCMestimation in namespace sigaR has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 ERROR, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.11-bioc/meat/sigaR.Rcheck/00check.log’
for details.


Installation output

sigaR.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD INSTALL sigaR
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.0/Resources/library’
* installing *source* package ‘sigaR’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (sigaR)

Tests output


Example timings

sigaR.Rcheck/sigaR-Ex.timings

nameusersystemelapsed
CNGEheatmaps1.1680.0261.195
ExpressionSet2order0.0170.0030.019
ExpressionSet2subset0.0200.0020.022
ExpressionSet2weightedSubset0.3250.0030.329