limma.Rcheck/tests_i386/limma-Tests.Rout.save
R version 4.0.0 (2020-04-24) -- "Arbor Day"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(limma)
> options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE)
>
> set.seed(0); u <- runif(100)
>
> ### strsplit2
>
> x <- c("ab;cd;efg","abc;def","z","")
> strsplit2(x,split=";")
[,1] [,2] [,3]
[1,] "ab" "cd" "efg"
[2,] "abc" "def" ""
[3,] "z" "" ""
[4,] "" "" ""
>
> ### removeext
>
> removeExt(c("slide1.spot","slide.2.spot"))
[1] "slide1" "slide.2"
> removeExt(c("slide1.spot","slide"))
[1] "slide1.spot" "slide"
>
> ### printorder
>
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4)
$printorder
[1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1
[55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19
[73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37
[91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7
[109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25
[127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43
[145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49
[199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55
[253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73
[271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91
[289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61
[307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79
[325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49
[343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103
[397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109
[451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127
[469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97
[487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115
[505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133
[523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103
[541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145
[631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163
[649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181
[667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151
[685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169
[703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187
[721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[757] 186 185 184 183 182 181 192 191 190 189 188 187
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$plate.r
[1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3
[51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2
[101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
[151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8
[201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
[226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7
[251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
[276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6
[301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
[326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
[601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15
[626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
[651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14
[676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
[701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13
[726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
[751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
$plate.c
[1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15
[26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3
[51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14
[76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2
[101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13
[126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1
[151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18
[176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6
[201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17
[226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5
[251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16
[276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4
[301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21
[326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9
[351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20
[376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8
[401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19
[426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7
[451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24
[476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12
[501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23
[526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11
[551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22
[576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10
[601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3
[626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15
[651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2
[676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14
[701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1
[726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13
[751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22
$plateposition
[1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05"
[10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07"
[19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14"
[28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16"
[37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23"
[46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01"
[55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08"
[64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10"
[73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17"
[82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19"
[91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02"
[100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04"
[109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11"
[118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13"
[127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20"
[136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22"
[145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05"
[154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07"
[163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14"
[172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16"
[181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23"
[190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01"
[199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08"
[208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10"
[217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17"
[226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19"
[235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02"
[244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04"
[253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11"
[262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13"
[271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20"
[280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22"
[289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05"
[298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07"
[307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14"
[316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16"
[325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23"
[334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01"
[343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08"
[352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10"
[361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17"
[370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19"
[379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02"
[388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04"
[397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11"
[406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13"
[415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20"
[424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22"
[433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05"
[442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07"
[451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14"
[460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16"
[469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23"
[478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01"
[487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08"
[496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10"
[505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17"
[514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19"
[523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02"
[532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04"
[541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11"
[550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13"
[559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20"
[568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22"
[577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05"
[586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07"
[595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14"
[604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16"
[613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23"
[622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01"
[631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08"
[640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10"
[649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17"
[658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19"
[667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02"
[676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04"
[685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11"
[694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13"
[703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20"
[712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22"
[721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05"
[730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07"
[739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14"
[748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16"
[757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23"
[766] "p1M23" "p1M22" "p1M22"
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6))
$printorder
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2
[51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
[76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4
[101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6
[151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8
[201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10
[251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
[276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12
[301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
[326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
[426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
[476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
[551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1
[626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3
[676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5
[726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
[371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
[556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
[704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$plate.r
[1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4
[26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3
[51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3
[76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2
[101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2
[126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1
[151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5
[176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8
[201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8
[226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7
[251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7
[276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6
[301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10
[326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9
[351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9
[376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12
[401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12
[426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11
[451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15
[476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14
[501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14
[526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13
[551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13
[576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16
[601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3
[626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3
[651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2
[676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2
[701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1
[726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1
[751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13
$plate.c
[1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5
[51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9
[76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13
[101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17
[126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21
[151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6
[201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14
[251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18
[276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
[301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2
[326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6
[351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23
[451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
[476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7
[501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11
[526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4
[626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8
[651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12
[676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16
[701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20
[726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
$plateposition
[1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09"
[10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21"
[19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09"
[28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21"
[37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09"
[46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21"
[55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09"
[64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21"
[73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09"
[82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21"
[91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09"
[100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21"
[109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09"
[118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21"
[127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09"
[136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21"
[145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09"
[154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21"
[163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09"
[172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21"
[181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09"
[190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22"
[199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10"
[208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22"
[217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10"
[226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22"
[235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10"
[244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22"
[253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10"
[262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22"
[271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10"
[280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22"
[289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10"
[298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22"
[307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10"
[316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22"
[325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10"
[334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22"
[343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10"
[352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22"
[361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10"
[370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22"
[379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11"
[388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23"
[397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11"
[406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23"
[415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11"
[424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23"
[433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11"
[442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23"
[451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11"
[460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23"
[469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11"
[478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23"
[487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11"
[496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23"
[505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11"
[514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23"
[523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11"
[532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23"
[541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11"
[550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23"
[559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11"
[568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23"
[577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12"
[586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24"
[595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12"
[604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24"
[613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12"
[622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24"
[631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12"
[640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24"
[649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12"
[658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24"
[667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12"
[676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24"
[685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12"
[694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24"
[703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12"
[712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24"
[721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12"
[730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24"
[739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12"
[748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24"
[757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12"
[766] "p2M16" "p2M20" "p2M24"
>
> ### merge.rglist
>
> R <- G <- matrix(11:14,4,2)
> rownames(R) <- rownames(G) <- c("a","a","b","c")
> RG1 <- new("RGList",list(R=R,G=G))
> R <- G <- matrix(21:24,4,2)
> rownames(R) <- rownames(G) <- c("b","a","a","c")
> RG2 <- new("RGList",list(R=R,G=G))
> merge(RG1,RG2)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
$G
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
> merge(RG2,RG1)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
$G
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
>
> ### background correction
>
> RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2)))
> backgroundCorrect(RG)
An object of class "RGList"
$R
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
$G
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
> backgroundCorrect(RG, method="half")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, method="minimum")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, offset=5)
An object of class "RGList"
$R
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
$G
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
>
> ### loessFit
>
> x <- 1:100
> y <- rnorm(100)
> out <- loessFit(y,x)
> f1 <- quantile(out$fitted)
> r1 <- quantile(out$residuals)
> w <- rep(1,100)
> w[1:50] <- 0.5
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f2 <- quantile(out$fitted)
> r2 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="locfit")
> f3 <- quantile(out$fitted)
> r3 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="loess")
> f4 <- quantile(out$fitted)
> r4 <- quantile(out$residuals)
> w <- rep(1,100)
> w[2*(1:50)] <- 0
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f5 <- quantile(out$fitted)
> r5 <- quantile(out$residuals)
> data.frame(f1,f2,f3,f4,f5)
f1 f2 f3 f4 f5
0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292
25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318
50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879
75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396
100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274
> data.frame(r1,r2,r3,r4,r5)
r1 r2 r3 r4 r5
0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633
25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756
50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517
75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830
100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835
>
> ### normalizeWithinArrays
>
> RG <- new("RGList",list())
> RG$R <- matrix(rexp(100*2),100,2)
> RG$G <- matrix(rexp(100*2),100,2)
> RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000
1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223
Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000
1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223
Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295
> MA <- normalizeWithinArrays(RGb,method="loess")
> summary(MA$M)
V1 V2
Min. :-5.88044 Min. :-5.66985
1st Qu.:-1.18483 1st Qu.:-1.57014
Median :-0.21632 Median : 0.04823
Mean : 0.03487 Mean :-0.05481
3rd Qu.: 1.49669 3rd Qu.: 1.45113
Max. : 7.07324 Max. : 6.19744
> #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline")
> #MA$M[1:5,]
> #MA <- normalizeWithinArrays(mouse.data, mouse.setup)
> #MA$M[1:5,]
>
> ### normalizeBetweenArrays
>
> MA2 <- normalizeBetweenArrays(MA,method="scale")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
> MA2 <- normalizeBetweenArrays(MA,method="quantile")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
>
> ### unwrapdups
>
> M <- matrix(1:12,6,2)
> unwrapdups(M,ndups=1)
[,1] [,2]
[1,] 1 7
[2,] 2 8
[3,] 3 9
[4,] 4 10
[5,] 5 11
[6,] 6 12
> unwrapdups(M,ndups=2)
[,1] [,2] [,3] [,4]
[1,] 1 2 7 8
[2,] 3 4 9 10
[3,] 5 6 11 12
> unwrapdups(M,ndups=3)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 7 8 9
[2,] 4 5 6 10 11 12
> unwrapdups(M,ndups=2,spacing=3)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
>
> ### trigammaInverse
>
> trigammaInverse(c(1e-6,NA,5,1e6))
[1] 1.000000e+06 NA 4.961687e-01 1.000001e-03
>
> ### lmFit, eBayes, topTable
>
> M <- matrix(rnorm(10*6,sd=0.3),10,6)
> rownames(M) <- LETTERS[1:10]
> M[1,1:3] <- M[1,1:3] + 2
> design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1))
> contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1))
> fit <- lmFit(M,design)
> fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix))
> topTable(fit2)
First3 Last3 Last3.First3 AveExpr F P.Value
A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23
D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02
F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01
G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01
H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01
J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01
C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01
B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01
E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01
I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01
adj.P.Val
A 7.727200e-22
D 3.758388e-01
F 3.758388e-01
G 4.992756e-01
H 6.361019e-01
J 7.338379e-01
C 7.382414e-01
B 7.382414e-01
E 9.268088e-01
I 9.401792e-01
> topTable(fit2,coef=3,resort.by="logFC")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="p")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,sort.by="logFC",resort.by="t")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="B")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,lfc=1)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5,sort.by="none")
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> contrasts.fit(fit[1:3,],contrast.matrix[,0])
An object of class "MArrayLM"
$coefficients
A
B
C
$rank
[1] 2
$assign
NULL
$qr
$qr
First3Arrays Last3Arrays
[1,] -1.7320508 0.0000000
[2,] 0.5773503 -1.7320508
[3,] 0.5773503 0.0000000
[4,] 0.0000000 0.5773503
[5,] 0.0000000 0.5773503
[6,] 0.0000000 0.5773503
$qraux
[1] 1.57735 1.00000
$pivot
[1] 1 2
$tol
[1] 1e-07
$rank
[1] 2
$df.residual
[1] 4 4 4
$sigma
A B C
0.3299787 0.3323336 0.2315815
$cov.coefficients
<0 x 0 matrix>
$stdev.unscaled
A
B
C
$pivot
[1] 1 2
$Amean
A B C
0.918135675 0.007732271 0.014295836
$method
[1] "ls"
$design
First3Arrays Last3Arrays
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 0 1
[5,] 0 1
[6,] 0 1
$contrasts
[1,]
[2,]
> fit$coefficients[1,1] <- NA
> contrasts.fit(fit[1:3,],contrast.matrix)$coefficients
First3 Last3 Last3-First3
A NA 0.06025114 NA
B -0.1198283 0.13529287 0.2551212
C -0.1223678 0.15095948 0.2733273
>
> designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1)))
> out <- selectModel(M,designlist)
> table(out$pref)
Null Two Three
5 3 2
>
> ### marray object
>
> #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE)))
> #if(gotmarray) {
> # data(swirl)
> # snorm = maNorm(swirl)
> # fit <- lmFit(snorm, design = c(1,-1,-1,1))
> # fit <- eBayes(fit)
> # topTable(fit,resort.by="AveExpr")
> #}
>
> ### duplicateCorrelation
>
> cor.out <- duplicateCorrelation(M)
> cor.out$consensus.correlation
[1] -0.09290714
> cor.out$atanh.correlations
[1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118
>
> ### gls.series
>
> fit <- gls.series(M,design,correlation=cor.out$cor)
> fit$coefficients
First3Arrays Last3Arrays
[1,] 0.82809594 0.09777201
[2,] -0.08845425 0.27111909
[3,] -0.07175836 -0.11287397
[4,] 0.06955100 0.06852328
[5,] 0.08348330 0.05535668
> fit$stdev.unscaled
First3Arrays Last3Arrays
[1,] 0.3888215 0.3888215
[2,] 0.3888215 0.3888215
[3,] 0.3888215 0.3888215
[4,] 0.3888215 0.3888215
[5,] 0.3888215 0.3888215
> fit$sigma
[1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473
> fit$df.residual
[1] 10 10 10 10 10
>
> ### mrlm
>
> fit <- mrlm(M,design)
Warning message:
In rlm.default(x = X, y = y, weights = w, ...) :
'rlm' failed to converge in 20 steps
> fit$coefficients
First3Arrays Last3Arrays
A 1.75138894 0.06025114
B -0.11982833 0.10322039
C -0.09302502 0.15095948
D -0.05454069 0.33700045
E 0.07927938 0.10434934
F -0.16249607 -0.34010852
G 0.30852468 -0.06873462
H -0.16942269 0.24392984
I -0.04720963 0.03996397
J 0.21417623 -0.05679272
> fit$stdev.unscaled
First3Arrays Last3Arrays
A 0.5933418 0.5773503
B 0.5773503 0.6096497
C 0.6017444 0.5773503
D 0.5773503 0.6266021
E 0.6307703 0.5773503
F 0.5773503 0.5846707
G 0.5773503 0.5773503
H 0.5773503 0.6544564
I 0.5773503 0.5773503
J 0.5773503 0.6689776
> fit$sigma
[1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945
[8] 0.2267556 0.3537469 0.2172409
> fit$df.residual
[1] 4 4 4 4 4 4 4 4 4 4
>
> # Similar to Mette Langaas 19 May 2004
> set.seed(123)
> narrays <- 9
> ngenes <- 5
> mu <- 0
> alpha <- 2
> beta <- -2
> epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays)
> X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1))
> dimnames(X) <- list(1:9,c("mu","alpha","beta"))
> yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3]
> ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon
> ymat[5,1:2] <- NA
> fit <- lmFit(ymat,design=X)
> test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1))
> dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta"))
> fit2 <- contrasts.fit(fit,contrasts=test.contr)
> eBayes(fit2)
An object of class "MArrayLM"
$coefficients
alpha-beta mu+alpha mu+beta
[1,] 3.537333 1.677465 -1.859868
[2,] 4.355578 2.372554 -1.983024
[3,] 3.197645 1.053584 -2.144061
[4,] 2.697734 1.611443 -1.086291
[5,] 3.502304 2.051995 -1.450309
$stdev.unscaled
alpha-beta mu+alpha mu+beta
[1,] 0.8164966 0.5773503 0.5773503
[2,] 0.8164966 0.5773503 0.5773503
[3,] 0.8164966 0.5773503 0.5773503
[4,] 0.8164966 0.5773503 0.5773503
[5,] 1.1547005 0.8368633 0.8368633
$sigma
[1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509
$df.residual
[1] 6 6 6 6 4
$cov.coefficients
alpha-beta mu+alpha mu+beta
alpha-beta 0.6666667 3.333333e-01 -3.333333e-01
mu+alpha 0.3333333 3.333333e-01 5.551115e-17
mu+beta -0.3333333 5.551115e-17 3.333333e-01
$pivot
[1] 1 2 3
$rank
[1] 3
$Amean
[1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593
$method
[1] "ls"
$design
mu alpha beta
1 1 0 0
2 1 0 0
3 1 0 0
4 1 1 0
5 1 1 0
6 1 1 0
7 1 0 1
8 1 0 1
9 1 0 1
$contrasts
alpha-beta mu+alpha mu+beta
mu 0 1 1
alpha 1 1 0
beta -1 0 1
$df.prior
[1] 9.306153
$s2.prior
[1] 0.923179
$var.prior
[1] 17.33142 17.33142 12.26855
$proportion
[1] 0.01
$s2.post
[1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980
$t
alpha-beta mu+alpha mu+beta
[1,] 3.847656 2.580411 -2.860996
[2,] 6.637308 5.113018 -4.273553
[3,] 3.692066 1.720376 -3.500994
[4,] 3.464003 2.926234 -1.972606
[5,] 3.175181 2.566881 -1.814221
$df.total
[1] 15.30615 15.30615 15.30615 15.30615 13.30615
$p.value
alpha-beta mu+alpha mu+beta
[1,] 1.529450e-03 0.0206493481 0.0117123495
[2,] 7.144893e-06 0.0001195844 0.0006385076
[3,] 2.109270e-03 0.1055117477 0.0031325769
[4,] 3.381970e-03 0.0102514264 0.0668844448
[5,] 7.124839e-03 0.0230888584 0.0922478630
$lods
alpha-beta mu+alpha mu+beta
[1,] -1.013417 -3.702133 -3.0332393
[2,] 3.981496 1.283349 -0.2615911
[3,] -1.315036 -5.168621 -1.7864101
[4,] -1.757103 -3.043209 -4.6191869
[5,] -2.257358 -3.478267 -4.5683738
$F
[1] 7.421911 22.203107 7.608327 6.227010 5.060579
$F.p.value
[1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02
>
> ### uniquegenelist
>
> uniquegenelist(letters[1:8],ndups=2)
[1] "a" "c" "e" "g"
> uniquegenelist(letters[1:8],ndups=2,spacing=2)
[1] "a" "b" "e" "f"
>
> ### classifyTests
>
> tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE)
> classifyTestsF(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 0 0
[3,] -1 -1 1
[4,] 0 0 0
> classifyTestsF(tstat,fstat.only=TRUE)
[1] 8.333333 2.083333 4.000000 1.000000
attr(,"df1")
[1] 3
attr(,"df2")
[1] Inf
> limma:::.classifyTestsP(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 1 0
[3,] 0 0 0
[4,] 0 0 0
>
> ### avereps
>
> x <- matrix(rnorm(8*3),8,3)
> colnames(x) <- c("S1","S2","S3")
> rownames(x) <- c("b","a","a","c","c","b","b","b")
> avereps(x)
S1 S2 S3
b -0.2353018 0.5220094 0.2302895
a -0.4347701 0.6453498 -0.6758914
c 0.3482980 -0.4820695 -0.3841313
>
> ### roast
>
> y <- matrix(rnorm(100*4),100,4)
> sigma <- sqrt(2/rchisq(100,df=7))
> y <- y*sigma
> design <- cbind(Intercept=1,Group=c(0,0,1,1))
> iset1 <- 1:5
> y[iset1,3:4] <- y[iset1,3:4]+3
> iset2 <- 6:10
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.997999500
Up 1 0.002250563
UpOrDown 1 0.004500000
Mixed 1 0.004500000
> roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1))
Active.Prop P.Value
Down 0 0.998749687
Up 1 0.001500375
UpOrDown 1 0.003000000
Mixed 1 0.003000000
> w <- matrix(runif(100*4),100,4)
> roast(y=y,iset1,design,contrast=2,weights=w)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0055 0.0105 0.0055 0.0105
set2 5 0 0 Up 0.2025 0.2025 0.4715 0.4715
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0050 0.0095 0.005 0.0095
set2 5 0 0 Up 0.6845 0.6845 0.642 0.6420
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w)
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0030 0.0055 0.003 0.0055
set2 5 0 0.2 Down 0.9615 0.9615 0.496 0.4960
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0025 0.0045 0.0025 0.0045
set2 5 0 0.2 Down 0.8930 0.8930 0.4380 0.4380
> fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 Up 0.001568924 0.003137848 0.0001156464 0.0002312929
set2 5 Down 0.932105219 0.932105219 0.4315499569 0.4315499569
> rownames(y) <- paste0("Gene",1:100)
> iset1A <- rownames(y)[1:5]
> fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue PValue.Mixed
set1 5 Up 0.001568924 0.0001156464
>
> ### camera
>
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.001050253
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue FDR
set1 5 -0.2481655 Up 0.0009047749 0.00180955
set2 5 0.1719094 Down 0.9068364378 0.90683644
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1))
NGenes Direction PValue
set1 5 Up 1.105329e-10
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2)
NGenes Direction PValue FDR
set1 5 Up 7.334400e-12 1.466880e-11
set2 5 Down 8.677115e-01 8.677115e-01
> camera(y=y,iset1A,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### with EList arg
>
> y <- new("EList",list(E=y))
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.0009047749
> camera(y=y,iset1,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### eBayes with trend
>
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831
Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071
Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702
Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874
Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835
Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204
Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642
Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860
Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571
Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317
> fit$df.prior
[1] 9.098442
> fit$s2.prior
Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8
0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098
Gene9 Gene10 Gene11 Gene12 Gene13 Gene14 Gene15 Gene16
0.2985145 0.2832520 0.3232434 0.3279710 0.2816081 0.2943502 0.3127994 0.2894802
Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24
0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541
Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32
0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510
Gene33 Gene34 Gene35 Gene36 Gene37 Gene38 Gene39 Gene40
0.2988244 0.3450090 0.3048596 0.3089086 0.3104534 0.4551549 0.3220008 0.2813286
Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48
0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003
Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56
0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157
Gene57 Gene58 Gene59 Gene60 Gene61 Gene62 Gene63 Gene64
0.2955317 0.2815907 0.2919420 0.2849675 0.3540805 0.3491713 0.2975019 0.2939325
Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72
0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850
Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80
0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294
Gene81 Gene82 Gene83 Gene84 Gene85 Gene86 Gene87 Gene88
0.3413700 0.2946268 0.3029565 0.2920284 0.2926205 0.2818046 0.3425116 0.2882936
Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96
0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784
Gene97 Gene98 Gene99 Gene100
0.2846345 0.2819651 0.3137551 0.2856081
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2335 0.2603 0.2997 0.3375 0.3655 0.7812
>
> y$E[1,1] <- NA
> y$E[1,3] <- NA
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915
Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583
Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813
Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324
Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957
Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584
Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597
Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576
Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439
Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731
> fit$df.residual[1]
[1] 0
> fit$df.prior
[1] 8.971891
> fit$s2.prior
[1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052
[8] 0.3074225 0.2985517 0.2786374 0.3267121 0.3316013 0.2766404 0.2932679
[15] 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412
[22] 0.2761282 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204
[29] 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 0.3483845 0.3062977
[36] 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311
[43] 0.2776653 0.3201314 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262
[50] 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 0.2870975
[57] 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804
[64] 0.2927300 0.2987764 0.3301406 0.3437962 0.3430762 0.2761729 0.2763094
[71] 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441
[78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616
[85] 0.2910320 0.2769211 0.3459946 0.2859057 0.2935193 0.3097398 0.2865663
[92] 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484
[99] 0.3164981 0.2817725
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2296 0.2581 0.3003 0.3453 0.3652 0.9158
>
> ### eBayes with robust
>
> fitr <- lmFit(y,design)
> fitr <- eBayes(fitr,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.717 9.244 9.244 9.194 9.244 9.244
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 7.108463 1.752774e-05 0.001752774 3.3517310
Gene3 3.488703 1.03931081 5.041209 3.526138e-04 0.017630688 0.4056329
Gene4 2.696676 1.74060725 4.697690 6.150508e-04 0.020501693 -0.1463315
Gene5 2.387967 1.63066783 3.451807 5.245019e-03 0.131125480 -2.2678836
Gene1 2.638272 1.47993643 3.317593 8.651142e-03 0.173022847 -2.4400000
Gene33 -1.492317 -0.07525287 -2.716431 1.970991e-02 0.297950865 -3.5553166
Gene95 -1.907074 1.26297763 -2.685067 2.085656e-02 0.297950865 -3.6094982
Gene80 -1.839760 -0.32802306 -2.535926 2.727440e-02 0.340929958 -3.8653107
Gene39 1.366141 -0.27360750 2.469570 3.071854e-02 0.341317083 -3.9779817
Gene50 1.034777 0.01608433 1.973040 7.357960e-02 0.632875126 -4.7877548
> fitr <- eBayes(fitr,trend=TRUE,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.809 8.972 8.972 8.949 8.972 8.972
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.754160 0.0005999064 0.05999064 -0.0218247
Gene3 3.488703 1.03931081 3.761219 0.0031618743 0.15809372 -1.6338257
Gene4 2.696676 1.74060725 3.292262 0.0071993347 0.23997782 -2.4295326
Gene33 -1.492317 -0.07525287 -3.063180 0.0108203134 0.27050784 -2.8211394
Gene50 1.034777 0.01608433 2.645717 0.0228036320 0.38815282 -3.5304767
Gene5 2.387967 1.63066783 2.633901 0.0232891695 0.38815282 -3.5503445
Gene1 2.638272 1.47993643 2.204116 0.0550613420 0.58959402 -4.0334169
Gene80 -1.839760 -0.32802306 -2.332729 0.0397331916 0.56761702 -4.0496640
Gene39 1.366141 -0.27360750 2.210665 0.0492211477 0.58959402 -4.2469578
Gene95 -1.907074 1.26297763 -2.106861 0.0589594023 0.58959402 -4.4117140
>
> ### voom
>
> y <- matrix(rpois(100*4,lambda=20),100,4)
> design <- cbind(Int=1,x=c(0,0,1,1))
> v <- voom(y,design)
> names(v)
[1] "E" "weights" "design" "targets"
> summary(v$E)
V1 V2 V3 V4
Min. :12.38 Min. :12.32 Min. :12.17 Min. :12.08
1st Qu.:13.11 1st Qu.:13.05 1st Qu.:13.11 1st Qu.:13.03
Median :13.34 Median :13.28 Median :13.35 Median :13.35
Mean :13.29 Mean :13.29 Mean :13.28 Mean :13.28
3rd Qu.:13.48 3rd Qu.:13.54 3rd Qu.:13.48 3rd Qu.:13.50
Max. :14.01 Max. :13.95 Max. :14.03 Max. :14.05
> summary(v$weights)
V1 V2 V3 V4
Min. : 7.729 Min. : 7.729 Min. : 7.729 Min. : 7.729
1st Qu.:13.859 1st Qu.:15.067 1st Qu.:14.254 1st Qu.:13.592
Median :15.913 Median :16.621 Median :16.081 Median :16.028
Mean :16.773 Mean :18.525 Mean :18.472 Mean :17.112
3rd Qu.:18.214 3rd Qu.:20.002 3rd Qu.:18.475 3rd Qu.:18.398
Max. :34.331 Max. :34.331 Max. :34.331 Max. :34.331
>
> ### goana
>
> EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266",
+ "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346",
+ "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957",
+ "135","1350","1351","135112","135114","135138","135152","135154","1352","135228",
+ "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357",
+ "1358","135892","1359","135924","135935","135941","135946","135948","136","1360",
+ "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332",
+ "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991",
+ "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376",
+ "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964")
> go <- goana(fit,FDR=0.8,geneid=EB)
> topGO(go,number=10,truncate.term=30)
Term Ont N Up Down P.Up
GO:0032502 developmental process BP 26 4 7 0.914470437
GO:0070062 extracellular exosome CC 8 0 4 1.000000000
GO:0043230 extracellular organelle CC 8 0 4 1.000000000
GO:1903561 extracellular vesicle CC 8 0 4 1.000000000
GO:0032501 multicellular organismal pr... BP 30 6 7 0.762808313
GO:0098609 cell-cell adhesion BP 5 4 0 0.009503355
GO:0097190 apoptotic signaling pathway BP 3 3 0 0.010952381
GO:0031252 cell leading edge CC 3 3 0 0.010952381
GO:0010942 positive regulation of cell... BP 3 3 0 0.010952381
GO:0048856 anatomical structure develo... BP 25 4 6 0.894659283
P.Down
GO:0032502 0.002720775
GO:0070062 0.003047199
GO:0043230 0.003047199
GO:1903561 0.003047199
GO:0032501 0.007313910
GO:0098609 1.000000000
GO:0097190 1.000000000
GO:0031252 1.000000000
GO:0010942 1.000000000
GO:0048856 0.014492712
> topGO(go,number=10,truncate.term=30,sort="down")
Term Ont N Up Down P.Up P.Down
GO:0032502 developmental process BP 26 4 7 0.9144704 0.002720775
GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199
GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199
GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199
GO:0032501 multicellular organismal pr... BP 30 6 7 0.7628083 0.007313910
GO:0048856 anatomical structure develo... BP 25 4 6 0.8946593 0.014492712
GO:0031982 vesicle CC 18 1 5 0.9946677 0.015552466
GO:0051604 protein maturation BP 7 1 3 0.8497705 0.020760307
GO:0016485 protein processing BP 7 1 3 0.8497705 0.020760307
GO:0007275 multicellular organism deve... BP 20 3 5 0.8982815 0.025464546
>
> proc.time()
user system elapsed
2.60 0.32 2.95
|
limma.Rcheck/tests_x64/limma-Tests.Rout.save
R version 4.0.0 (2020-04-24) -- "Arbor Day"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(limma)
> options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE)
>
> set.seed(0); u <- runif(100)
>
> ### strsplit2
>
> x <- c("ab;cd;efg","abc;def","z","")
> strsplit2(x,split=";")
[,1] [,2] [,3]
[1,] "ab" "cd" "efg"
[2,] "abc" "def" ""
[3,] "z" "" ""
[4,] "" "" ""
>
> ### removeext
>
> removeExt(c("slide1.spot","slide.2.spot"))
[1] "slide1" "slide.2"
> removeExt(c("slide1.spot","slide"))
[1] "slide1.spot" "slide"
>
> ### printorder
>
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4)
$printorder
[1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1
[55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19
[73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37
[91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7
[109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25
[127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43
[145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49
[199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55
[253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73
[271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91
[289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61
[307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79
[325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49
[343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103
[397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109
[451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127
[469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97
[487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115
[505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133
[523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103
[541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145
[631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163
[649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181
[667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151
[685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169
[703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187
[721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[757] 186 185 184 183 182 181 192 191 190 189 188 187
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$plate.r
[1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3
[51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2
[101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
[151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8
[201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
[226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7
[251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
[276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6
[301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
[326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
[601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15
[626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
[651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14
[676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
[701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13
[726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
[751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
$plate.c
[1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15
[26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3
[51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14
[76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2
[101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13
[126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1
[151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18
[176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6
[201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17
[226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5
[251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16
[276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4
[301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21
[326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9
[351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20
[376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8
[401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19
[426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7
[451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24
[476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12
[501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23
[526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11
[551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22
[576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10
[601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3
[626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15
[651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2
[676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14
[701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1
[726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13
[751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22
$plateposition
[1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05"
[10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07"
[19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14"
[28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16"
[37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23"
[46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01"
[55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08"
[64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10"
[73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17"
[82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19"
[91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02"
[100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04"
[109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11"
[118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13"
[127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20"
[136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22"
[145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05"
[154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07"
[163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14"
[172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16"
[181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23"
[190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01"
[199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08"
[208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10"
[217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17"
[226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19"
[235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02"
[244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04"
[253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11"
[262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13"
[271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20"
[280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22"
[289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05"
[298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07"
[307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14"
[316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16"
[325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23"
[334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01"
[343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08"
[352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10"
[361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17"
[370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19"
[379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02"
[388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04"
[397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11"
[406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13"
[415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20"
[424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22"
[433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05"
[442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07"
[451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14"
[460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16"
[469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23"
[478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01"
[487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08"
[496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10"
[505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17"
[514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19"
[523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02"
[532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04"
[541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11"
[550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13"
[559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20"
[568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22"
[577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05"
[586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07"
[595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14"
[604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16"
[613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23"
[622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01"
[631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08"
[640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10"
[649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17"
[658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19"
[667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02"
[676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04"
[685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11"
[694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13"
[703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20"
[712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22"
[721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05"
[730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07"
[739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14"
[748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16"
[757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23"
[766] "p1M23" "p1M22" "p1M22"
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6))
$printorder
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2
[51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
[76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4
[101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6
[151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8
[201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10
[251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
[276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12
[301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
[326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
[426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
[476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
[551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1
[626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3
[676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5
[726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
[371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
[556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
[704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$plate.r
[1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4
[26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3
[51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3
[76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2
[101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2
[126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1
[151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5
[176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8
[201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8
[226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7
[251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7
[276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6
[301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10
[326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9
[351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9
[376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12
[401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12
[426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11
[451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15
[476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14
[501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14
[526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13
[551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13
[576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16
[601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3
[626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3
[651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2
[676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2
[701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1
[726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1
[751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13
$plate.c
[1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5
[51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9
[76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13
[101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17
[126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21
[151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6
[201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14
[251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18
[276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
[301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2
[326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6
[351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23
[451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
[476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7
[501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11
[526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4
[626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8
[651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12
[676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16
[701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20
[726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
$plateposition
[1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09"
[10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21"
[19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09"
[28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21"
[37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09"
[46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21"
[55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09"
[64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21"
[73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09"
[82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21"
[91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09"
[100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21"
[109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09"
[118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21"
[127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09"
[136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21"
[145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09"
[154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21"
[163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09"
[172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21"
[181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09"
[190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22"
[199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10"
[208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22"
[217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10"
[226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22"
[235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10"
[244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22"
[253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10"
[262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22"
[271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10"
[280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22"
[289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10"
[298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22"
[307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10"
[316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22"
[325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10"
[334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22"
[343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10"
[352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22"
[361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10"
[370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22"
[379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11"
[388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23"
[397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11"
[406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23"
[415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11"
[424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23"
[433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11"
[442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23"
[451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11"
[460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23"
[469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11"
[478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23"
[487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11"
[496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23"
[505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11"
[514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23"
[523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11"
[532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23"
[541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11"
[550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23"
[559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11"
[568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23"
[577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12"
[586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24"
[595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12"
[604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24"
[613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12"
[622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24"
[631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12"
[640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24"
[649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12"
[658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24"
[667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12"
[676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24"
[685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12"
[694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24"
[703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12"
[712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24"
[721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12"
[730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24"
[739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12"
[748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24"
[757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12"
[766] "p2M16" "p2M20" "p2M24"
>
> ### merge.rglist
>
> R <- G <- matrix(11:14,4,2)
> rownames(R) <- rownames(G) <- c("a","a","b","c")
> RG1 <- new("RGList",list(R=R,G=G))
> R <- G <- matrix(21:24,4,2)
> rownames(R) <- rownames(G) <- c("b","a","a","c")
> RG2 <- new("RGList",list(R=R,G=G))
> merge(RG1,RG2)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
$G
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
> merge(RG2,RG1)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
$G
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
>
> ### background correction
>
> RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2)))
> backgroundCorrect(RG)
An object of class "RGList"
$R
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
$G
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
> backgroundCorrect(RG, method="half")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, method="minimum")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, offset=5)
An object of class "RGList"
$R
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
$G
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
>
> ### loessFit
>
> x <- 1:100
> y <- rnorm(100)
> out <- loessFit(y,x)
> f1 <- quantile(out$fitted)
> r1 <- quantile(out$residuals)
> w <- rep(1,100)
> w[1:50] <- 0.5
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f2 <- quantile(out$fitted)
> r2 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="locfit")
> f3 <- quantile(out$fitted)
> r3 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="loess")
> f4 <- quantile(out$fitted)
> r4 <- quantile(out$residuals)
> w <- rep(1,100)
> w[2*(1:50)] <- 0
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f5 <- quantile(out$fitted)
> r5 <- quantile(out$residuals)
> data.frame(f1,f2,f3,f4,f5)
f1 f2 f3 f4 f5
0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292
25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318
50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879
75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396
100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274
> data.frame(r1,r2,r3,r4,r5)
r1 r2 r3 r4 r5
0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633
25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756
50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517
75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830
100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835
>
> ### normalizeWithinArrays
>
> RG <- new("RGList",list())
> RG$R <- matrix(rexp(100*2),100,2)
> RG$G <- matrix(rexp(100*2),100,2)
> RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000
1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223
Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000
1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223
Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295
> MA <- normalizeWithinArrays(RGb,method="loess")
> summary(MA$M)
V1 V2
Min. :-5.88044 Min. :-5.66985
1st Qu.:-1.18483 1st Qu.:-1.57014
Median :-0.21632 Median : 0.04823
Mean : 0.03487 Mean :-0.05481
3rd Qu.: 1.49669 3rd Qu.: 1.45113
Max. : 7.07324 Max. : 6.19744
> #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline")
> #MA$M[1:5,]
> #MA <- normalizeWithinArrays(mouse.data, mouse.setup)
> #MA$M[1:5,]
>
> ### normalizeBetweenArrays
>
> MA2 <- normalizeBetweenArrays(MA,method="scale")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
> MA2 <- normalizeBetweenArrays(MA,method="quantile")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
>
> ### unwrapdups
>
> M <- matrix(1:12,6,2)
> unwrapdups(M,ndups=1)
[,1] [,2]
[1,] 1 7
[2,] 2 8
[3,] 3 9
[4,] 4 10
[5,] 5 11
[6,] 6 12
> unwrapdups(M,ndups=2)
[,1] [,2] [,3] [,4]
[1,] 1 2 7 8
[2,] 3 4 9 10
[3,] 5 6 11 12
> unwrapdups(M,ndups=3)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 7 8 9
[2,] 4 5 6 10 11 12
> unwrapdups(M,ndups=2,spacing=3)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
>
> ### trigammaInverse
>
> trigammaInverse(c(1e-6,NA,5,1e6))
[1] 1.000000e+06 NA 4.961687e-01 1.000001e-03
>
> ### lmFit, eBayes, topTable
>
> M <- matrix(rnorm(10*6,sd=0.3),10,6)
> rownames(M) <- LETTERS[1:10]
> M[1,1:3] <- M[1,1:3] + 2
> design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1))
> contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1))
> fit <- lmFit(M,design)
> fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix))
> topTable(fit2)
First3 Last3 Last3.First3 AveExpr F P.Value
A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23
D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02
F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01
G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01
H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01
J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01
C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01
B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01
E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01
I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01
adj.P.Val
A 7.727200e-22
D 3.758388e-01
F 3.758388e-01
G 4.992756e-01
H 6.361019e-01
J 7.338379e-01
C 7.382414e-01
B 7.382414e-01
E 9.268088e-01
I 9.401792e-01
> topTable(fit2,coef=3,resort.by="logFC")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="p")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,sort.by="logFC",resort.by="t")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="B")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,lfc=1)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5,sort.by="none")
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> contrasts.fit(fit[1:3,],contrast.matrix[,0])
An object of class "MArrayLM"
$coefficients
A
B
C
$rank
[1] 2
$assign
NULL
$qr
$qr
First3Arrays Last3Arrays
[1,] -1.7320508 0.0000000
[2,] 0.5773503 -1.7320508
[3,] 0.5773503 0.0000000
[4,] 0.0000000 0.5773503
[5,] 0.0000000 0.5773503
[6,] 0.0000000 0.5773503
$qraux
[1] 1.57735 1.00000
$pivot
[1] 1 2
$tol
[1] 1e-07
$rank
[1] 2
$df.residual
[1] 4 4 4
$sigma
A B C
0.3299787 0.3323336 0.2315815
$cov.coefficients
<0 x 0 matrix>
$stdev.unscaled
A
B
C
$pivot
[1] 1 2
$Amean
A B C
0.918135675 0.007732271 0.014295836
$method
[1] "ls"
$design
First3Arrays Last3Arrays
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 0 1
[5,] 0 1
[6,] 0 1
$contrasts
[1,]
[2,]
> fit$coefficients[1,1] <- NA
> contrasts.fit(fit[1:3,],contrast.matrix)$coefficients
First3 Last3 Last3-First3
A NA 0.06025114 NA
B -0.1198283 0.13529287 0.2551212
C -0.1223678 0.15095948 0.2733273
>
> designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1)))
> out <- selectModel(M,designlist)
> table(out$pref)
Null Two Three
5 3 2
>
> ### marray object
>
> #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE)))
> #if(gotmarray) {
> # data(swirl)
> # snorm = maNorm(swirl)
> # fit <- lmFit(snorm, design = c(1,-1,-1,1))
> # fit <- eBayes(fit)
> # topTable(fit,resort.by="AveExpr")
> #}
>
> ### duplicateCorrelation
>
> cor.out <- duplicateCorrelation(M)
> cor.out$consensus.correlation
[1] -0.09290714
> cor.out$atanh.correlations
[1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118
>
> ### gls.series
>
> fit <- gls.series(M,design,correlation=cor.out$cor)
> fit$coefficients
First3Arrays Last3Arrays
[1,] 0.82809594 0.09777201
[2,] -0.08845425 0.27111909
[3,] -0.07175836 -0.11287397
[4,] 0.06955100 0.06852328
[5,] 0.08348330 0.05535668
> fit$stdev.unscaled
First3Arrays Last3Arrays
[1,] 0.3888215 0.3888215
[2,] 0.3888215 0.3888215
[3,] 0.3888215 0.3888215
[4,] 0.3888215 0.3888215
[5,] 0.3888215 0.3888215
> fit$sigma
[1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473
> fit$df.residual
[1] 10 10 10 10 10
>
> ### mrlm
>
> fit <- mrlm(M,design)
Warning message:
In rlm.default(x = X, y = y, weights = w, ...) :
'rlm' failed to converge in 20 steps
> fit$coefficients
First3Arrays Last3Arrays
A 1.75138894 0.06025114
B -0.11982833 0.10322039
C -0.09302502 0.15095948
D -0.05454069 0.33700045
E 0.07927938 0.10434934
F -0.16249607 -0.34010852
G 0.30852468 -0.06873462
H -0.16942269 0.24392984
I -0.04720963 0.03996397
J 0.21417623 -0.05679272
> fit$stdev.unscaled
First3Arrays Last3Arrays
A 0.5933418 0.5773503
B 0.5773503 0.6096497
C 0.6017444 0.5773503
D 0.5773503 0.6266021
E 0.6307703 0.5773503
F 0.5773503 0.5846707
G 0.5773503 0.5773503
H 0.5773503 0.6544564
I 0.5773503 0.5773503
J 0.5773503 0.6689776
> fit$sigma
[1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945
[8] 0.2267556 0.3537469 0.2172409
> fit$df.residual
[1] 4 4 4 4 4 4 4 4 4 4
>
> # Similar to Mette Langaas 19 May 2004
> set.seed(123)
> narrays <- 9
> ngenes <- 5
> mu <- 0
> alpha <- 2
> beta <- -2
> epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays)
> X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1))
> dimnames(X) <- list(1:9,c("mu","alpha","beta"))
> yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3]
> ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon
> ymat[5,1:2] <- NA
> fit <- lmFit(ymat,design=X)
> test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1))
> dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta"))
> fit2 <- contrasts.fit(fit,contrasts=test.contr)
> eBayes(fit2)
An object of class "MArrayLM"
$coefficients
alpha-beta mu+alpha mu+beta
[1,] 3.537333 1.677465 -1.859868
[2,] 4.355578 2.372554 -1.983024
[3,] 3.197645 1.053584 -2.144061
[4,] 2.697734 1.611443 -1.086291
[5,] 3.502304 2.051995 -1.450309
$stdev.unscaled
alpha-beta mu+alpha mu+beta
[1,] 0.8164966 0.5773503 0.5773503
[2,] 0.8164966 0.5773503 0.5773503
[3,] 0.8164966 0.5773503 0.5773503
[4,] 0.8164966 0.5773503 0.5773503
[5,] 1.1547005 0.8368633 0.8368633
$sigma
[1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509
$df.residual
[1] 6 6 6 6 4
$cov.coefficients
alpha-beta mu+alpha mu+beta
alpha-beta 0.6666667 3.333333e-01 -3.333333e-01
mu+alpha 0.3333333 3.333333e-01 5.551115e-17
mu+beta -0.3333333 5.551115e-17 3.333333e-01
$pivot
[1] 1 2 3
$rank
[1] 3
$Amean
[1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593
$method
[1] "ls"
$design
mu alpha beta
1 1 0 0
2 1 0 0
3 1 0 0
4 1 1 0
5 1 1 0
6 1 1 0
7 1 0 1
8 1 0 1
9 1 0 1
$contrasts
alpha-beta mu+alpha mu+beta
mu 0 1 1
alpha 1 1 0
beta -1 0 1
$df.prior
[1] 9.306153
$s2.prior
[1] 0.923179
$var.prior
[1] 17.33142 17.33142 12.26855
$proportion
[1] 0.01
$s2.post
[1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980
$t
alpha-beta mu+alpha mu+beta
[1,] 3.847656 2.580411 -2.860996
[2,] 6.637308 5.113018 -4.273553
[3,] 3.692066 1.720376 -3.500994
[4,] 3.464003 2.926234 -1.972606
[5,] 3.175181 2.566881 -1.814221
$df.total
[1] 15.30615 15.30615 15.30615 15.30615 13.30615
$p.value
alpha-beta mu+alpha mu+beta
[1,] 1.529450e-03 0.0206493481 0.0117123495
[2,] 7.144893e-06 0.0001195844 0.0006385076
[3,] 2.109270e-03 0.1055117477 0.0031325769
[4,] 3.381970e-03 0.0102514264 0.0668844448
[5,] 7.124839e-03 0.0230888584 0.0922478630
$lods
alpha-beta mu+alpha mu+beta
[1,] -1.013417 -3.702133 -3.0332393
[2,] 3.981496 1.283349 -0.2615911
[3,] -1.315036 -5.168621 -1.7864101
[4,] -1.757103 -3.043209 -4.6191869
[5,] -2.257358 -3.478267 -4.5683738
$F
[1] 7.421911 22.203107 7.608327 6.227010 5.060579
$F.p.value
[1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02
>
> ### uniquegenelist
>
> uniquegenelist(letters[1:8],ndups=2)
[1] "a" "c" "e" "g"
> uniquegenelist(letters[1:8],ndups=2,spacing=2)
[1] "a" "b" "e" "f"
>
> ### classifyTests
>
> tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE)
> classifyTestsF(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 0 0
[3,] -1 -1 1
[4,] 0 0 0
> classifyTestsF(tstat,fstat.only=TRUE)
[1] 8.333333 2.083333 4.000000 1.000000
attr(,"df1")
[1] 3
attr(,"df2")
[1] Inf
> limma:::.classifyTestsP(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 1 0
[3,] 0 0 0
[4,] 0 0 0
>
> ### avereps
>
> x <- matrix(rnorm(8*3),8,3)
> colnames(x) <- c("S1","S2","S3")
> rownames(x) <- c("b","a","a","c","c","b","b","b")
> avereps(x)
S1 S2 S3
b -0.2353018 0.5220094 0.2302895
a -0.4347701 0.6453498 -0.6758914
c 0.3482980 -0.4820695 -0.3841313
>
> ### roast
>
> y <- matrix(rnorm(100*4),100,4)
> sigma <- sqrt(2/rchisq(100,df=7))
> y <- y*sigma
> design <- cbind(Intercept=1,Group=c(0,0,1,1))
> iset1 <- 1:5
> y[iset1,3:4] <- y[iset1,3:4]+3
> iset2 <- 6:10
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.997999500
Up 1 0.002250563
UpOrDown 1 0.004500000
Mixed 1 0.004500000
> roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1))
Active.Prop P.Value
Down 0 0.998749687
Up 1 0.001500375
UpOrDown 1 0.003000000
Mixed 1 0.003000000
> w <- matrix(runif(100*4),100,4)
> roast(y=y,iset1,design,contrast=2,weights=w)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0055 0.0105 0.0055 0.0105
set2 5 0 0 Up 0.2025 0.2025 0.4715 0.4715
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0050 0.0095 0.005 0.0095
set2 5 0 0 Up 0.6845 0.6845 0.642 0.6420
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w)
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0030 0.0055 0.003 0.0055
set2 5 0 0.2 Down 0.9615 0.9615 0.496 0.4960
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0025 0.0045 0.0025 0.0045
set2 5 0 0.2 Down 0.8930 0.8930 0.4380 0.4380
> fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 Up 0.001568924 0.003137848 0.0001156464 0.0002312929
set2 5 Down 0.932105219 0.932105219 0.4315499569 0.4315499569
> rownames(y) <- paste0("Gene",1:100)
> iset1A <- rownames(y)[1:5]
> fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue PValue.Mixed
set1 5 Up 0.001568924 0.0001156464
>
> ### camera
>
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.001050253
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue FDR
set1 5 -0.2481655 Up 0.0009047749 0.00180955
set2 5 0.1719094 Down 0.9068364378 0.90683644
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1))
NGenes Direction PValue
set1 5 Up 1.105329e-10
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2)
NGenes Direction PValue FDR
set1 5 Up 7.334400e-12 1.466880e-11
set2 5 Down 8.677115e-01 8.677115e-01
> camera(y=y,iset1A,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### with EList arg
>
> y <- new("EList",list(E=y))
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.0009047749
> camera(y=y,iset1,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### eBayes with trend
>
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831
Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071
Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702
Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874
Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835
Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204
Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642
Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860
Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571
Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317
> fit$df.prior
[1] 9.098442
> fit$s2.prior
Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8
0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098
Gene9 Gene10 Gene11 Gene12 Gene13 Gene14 Gene15 Gene16
0.2985145 0.2832520 0.3232434 0.3279710 0.2816081 0.2943502 0.3127994 0.2894802
Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24
0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541
Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32
0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510
Gene33 Gene34 Gene35 Gene36 Gene37 Gene38 Gene39 Gene40
0.2988244 0.3450090 0.3048596 0.3089086 0.3104534 0.4551549 0.3220008 0.2813286
Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48
0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003
Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56
0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157
Gene57 Gene58 Gene59 Gene60 Gene61 Gene62 Gene63 Gene64
0.2955317 0.2815907 0.2919420 0.2849675 0.3540805 0.3491713 0.2975019 0.2939325
Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72
0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850
Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80
0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294
Gene81 Gene82 Gene83 Gene84 Gene85 Gene86 Gene87 Gene88
0.3413700 0.2946268 0.3029565 0.2920284 0.2926205 0.2818046 0.3425116 0.2882936
Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96
0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784
Gene97 Gene98 Gene99 Gene100
0.2846345 0.2819651 0.3137551 0.2856081
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2335 0.2603 0.2997 0.3375 0.3655 0.7812
>
> y$E[1,1] <- NA
> y$E[1,3] <- NA
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915
Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583
Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813
Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324
Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957
Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584
Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597
Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576
Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439
Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731
> fit$df.residual[1]
[1] 0
> fit$df.prior
[1] 8.971891
> fit$s2.prior
[1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052
[8] 0.3074225 0.2985517 0.2786374 0.3267121 0.3316013 0.2766404 0.2932679
[15] 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412
[22] 0.2761282 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204
[29] 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 0.3483845 0.3062977
[36] 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311
[43] 0.2776653 0.3201314 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262
[50] 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 0.2870975
[57] 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804
[64] 0.2927300 0.2987764 0.3301406 0.3437962 0.3430762 0.2761729 0.2763094
[71] 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441
[78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616
[85] 0.2910320 0.2769211 0.3459946 0.2859057 0.2935193 0.3097398 0.2865663
[92] 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484
[99] 0.3164981 0.2817725
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2296 0.2581 0.3003 0.3453 0.3652 0.9158
>
> ### eBayes with robust
>
> fitr <- lmFit(y,design)
> fitr <- eBayes(fitr,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.717 9.244 9.244 9.194 9.244 9.244
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 7.108463 1.752774e-05 0.001752774 3.3517310
Gene3 3.488703 1.03931081 5.041209 3.526138e-04 0.017630688 0.4056329
Gene4 2.696676 1.74060725 4.697690 6.150508e-04 0.020501693 -0.1463315
Gene5 2.387967 1.63066783 3.451807 5.245019e-03 0.131125480 -2.2678836
Gene1 2.638272 1.47993643 3.317593 8.651142e-03 0.173022847 -2.4400000
Gene33 -1.492317 -0.07525287 -2.716431 1.970991e-02 0.297950865 -3.5553166
Gene95 -1.907074 1.26297763 -2.685067 2.085656e-02 0.297950865 -3.6094982
Gene80 -1.839760 -0.32802306 -2.535926 2.727440e-02 0.340929958 -3.8653107
Gene39 1.366141 -0.27360750 2.469570 3.071854e-02 0.341317083 -3.9779817
Gene50 1.034777 0.01608433 1.973040 7.357960e-02 0.632875126 -4.7877548
> fitr <- eBayes(fitr,trend=TRUE,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.809 8.972 8.972 8.949 8.972 8.972
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.754160 0.0005999064 0.05999064 -0.0218247
Gene3 3.488703 1.03931081 3.761219 0.0031618743 0.15809372 -1.6338257
Gene4 2.696676 1.74060725 3.292262 0.0071993347 0.23997782 -2.4295326
Gene33 -1.492317 -0.07525287 -3.063180 0.0108203134 0.27050784 -2.8211394
Gene50 1.034777 0.01608433 2.645717 0.0228036320 0.38815282 -3.5304767
Gene5 2.387967 1.63066783 2.633901 0.0232891695 0.38815282 -3.5503445
Gene1 2.638272 1.47993643 2.204116 0.0550613420 0.58959402 -4.0334169
Gene80 -1.839760 -0.32802306 -2.332729 0.0397331916 0.56761702 -4.0496640
Gene39 1.366141 -0.27360750 2.210665 0.0492211477 0.58959402 -4.2469578
Gene95 -1.907074 1.26297763 -2.106861 0.0589594023 0.58959402 -4.4117140
>
> ### voom
>
> y <- matrix(rpois(100*4,lambda=20),100,4)
> design <- cbind(Int=1,x=c(0,0,1,1))
> v <- voom(y,design)
> names(v)
[1] "E" "weights" "design" "targets"
> summary(v$E)
V1 V2 V3 V4
Min. :12.38 Min. :12.32 Min. :12.17 Min. :12.08
1st Qu.:13.11 1st Qu.:13.05 1st Qu.:13.11 1st Qu.:13.03
Median :13.34 Median :13.28 Median :13.35 Median :13.35
Mean :13.29 Mean :13.29 Mean :13.28 Mean :13.28
3rd Qu.:13.48 3rd Qu.:13.54 3rd Qu.:13.48 3rd Qu.:13.50
Max. :14.01 Max. :13.95 Max. :14.03 Max. :14.05
> summary(v$weights)
V1 V2 V3 V4
Min. : 7.729 Min. : 7.729 Min. : 7.729 Min. : 7.729
1st Qu.:13.859 1st Qu.:15.067 1st Qu.:14.254 1st Qu.:13.592
Median :15.913 Median :16.621 Median :16.081 Median :16.028
Mean :16.773 Mean :18.525 Mean :18.472 Mean :17.112
3rd Qu.:18.214 3rd Qu.:20.002 3rd Qu.:18.475 3rd Qu.:18.398
Max. :34.331 Max. :34.331 Max. :34.331 Max. :34.331
>
> ### goana
>
> EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266",
+ "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346",
+ "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957",
+ "135","1350","1351","135112","135114","135138","135152","135154","1352","135228",
+ "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357",
+ "1358","135892","1359","135924","135935","135941","135946","135948","136","1360",
+ "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332",
+ "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991",
+ "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376",
+ "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964")
> go <- goana(fit,FDR=0.8,geneid=EB)
> topGO(go,number=10,truncate.term=30)
Term Ont N Up Down P.Up
GO:0032502 developmental process BP 26 4 7 0.914470437
GO:0070062 extracellular exosome CC 8 0 4 1.000000000
GO:0043230 extracellular organelle CC 8 0 4 1.000000000
GO:1903561 extracellular vesicle CC 8 0 4 1.000000000
GO:0032501 multicellular organismal pr... BP 30 6 7 0.762808313
GO:0098609 cell-cell adhesion BP 5 4 0 0.009503355
GO:0097190 apoptotic signaling pathway BP 3 3 0 0.010952381
GO:0031252 cell leading edge CC 3 3 0 0.010952381
GO:0010942 positive regulation of cell... BP 3 3 0 0.010952381
GO:0048856 anatomical structure develo... BP 25 4 6 0.894659283
P.Down
GO:0032502 0.002720775
GO:0070062 0.003047199
GO:0043230 0.003047199
GO:1903561 0.003047199
GO:0032501 0.007313910
GO:0098609 1.000000000
GO:0097190 1.000000000
GO:0031252 1.000000000
GO:0010942 1.000000000
GO:0048856 0.014492712
> topGO(go,number=10,truncate.term=30,sort="down")
Term Ont N Up Down P.Up P.Down
GO:0032502 developmental process BP 26 4 7 0.9144704 0.002720775
GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199
GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199
GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199
GO:0032501 multicellular organismal pr... BP 30 6 7 0.7628083 0.007313910
GO:0048856 anatomical structure develo... BP 25 4 6 0.8946593 0.014492712
GO:0031982 vesicle CC 18 1 5 0.9946677 0.015552466
GO:0051604 protein maturation BP 7 1 3 0.8497705 0.020760307
GO:0016485 protein processing BP 7 1 3 0.8497705 0.020760307
GO:0007275 multicellular organism deve... BP 20 3 5 0.8982815 0.025464546
>
> proc.time()
user system elapsed
2.60 0.32 2.95
|
limma.Rcheck/tests_i386/limma-Tests.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(limma)
> options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE)
>
> set.seed(0); u <- runif(100)
>
> ### strsplit2
>
> x <- c("ab;cd;efg","abc;def","z","")
> strsplit2(x,split=";")
[,1] [,2] [,3]
[1,] "ab" "cd" "efg"
[2,] "abc" "def" ""
[3,] "z" "" ""
[4,] "" "" ""
>
> ### removeext
>
> removeExt(c("slide1.spot","slide.2.spot"))
[1] "slide1" "slide.2"
> removeExt(c("slide1.spot","slide"))
[1] "slide1.spot" "slide"
>
> ### printorder
>
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4)
$printorder
[1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1
[55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19
[73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37
[91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7
[109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25
[127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43
[145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49
[199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55
[253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73
[271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91
[289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61
[307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79
[325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49
[343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103
[397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109
[451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127
[469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97
[487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115
[505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133
[523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103
[541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145
[631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163
[649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181
[667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151
[685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169
[703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187
[721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[757] 186 185 184 183 182 181 192 191 190 189 188 187
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$plate.r
[1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3
[51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2
[101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
[151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8
[201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
[226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7
[251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
[276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6
[301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
[326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
[601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15
[626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
[651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14
[676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
[701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13
[726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
[751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
$plate.c
[1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15
[26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3
[51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14
[76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2
[101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13
[126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1
[151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18
[176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6
[201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17
[226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5
[251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16
[276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4
[301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21
[326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9
[351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20
[376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8
[401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19
[426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7
[451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24
[476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12
[501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23
[526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11
[551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22
[576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10
[601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3
[626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15
[651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2
[676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14
[701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1
[726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13
[751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22
$plateposition
[1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05"
[10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07"
[19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14"
[28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16"
[37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23"
[46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01"
[55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08"
[64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10"
[73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17"
[82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19"
[91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02"
[100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04"
[109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11"
[118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13"
[127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20"
[136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22"
[145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05"
[154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07"
[163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14"
[172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16"
[181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23"
[190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01"
[199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08"
[208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10"
[217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17"
[226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19"
[235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02"
[244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04"
[253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11"
[262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13"
[271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20"
[280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22"
[289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05"
[298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07"
[307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14"
[316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16"
[325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23"
[334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01"
[343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08"
[352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10"
[361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17"
[370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19"
[379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02"
[388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04"
[397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11"
[406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13"
[415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20"
[424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22"
[433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05"
[442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07"
[451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14"
[460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16"
[469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23"
[478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01"
[487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08"
[496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10"
[505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17"
[514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19"
[523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02"
[532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04"
[541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11"
[550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13"
[559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20"
[568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22"
[577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05"
[586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07"
[595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14"
[604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16"
[613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23"
[622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01"
[631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08"
[640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10"
[649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17"
[658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19"
[667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02"
[676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04"
[685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11"
[694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13"
[703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20"
[712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22"
[721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05"
[730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07"
[739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14"
[748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16"
[757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23"
[766] "p1M23" "p1M22" "p1M22"
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6))
$printorder
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2
[51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
[76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4
[101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6
[151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8
[201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10
[251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
[276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12
[301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
[326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
[426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
[476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
[551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1
[626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3
[676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5
[726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
[371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
[556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
[704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$plate.r
[1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4
[26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3
[51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3
[76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2
[101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2
[126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1
[151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5
[176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8
[201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8
[226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7
[251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7
[276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6
[301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10
[326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9
[351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9
[376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12
[401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12
[426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11
[451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15
[476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14
[501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14
[526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13
[551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13
[576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16
[601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3
[626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3
[651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2
[676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2
[701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1
[726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1
[751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13
$plate.c
[1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5
[51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9
[76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13
[101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17
[126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21
[151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6
[201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14
[251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18
[276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
[301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2
[326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6
[351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23
[451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
[476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7
[501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11
[526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4
[626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8
[651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12
[676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16
[701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20
[726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
$plateposition
[1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09"
[10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21"
[19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09"
[28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21"
[37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09"
[46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21"
[55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09"
[64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21"
[73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09"
[82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21"
[91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09"
[100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21"
[109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09"
[118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21"
[127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09"
[136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21"
[145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09"
[154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21"
[163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09"
[172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21"
[181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09"
[190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22"
[199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10"
[208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22"
[217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10"
[226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22"
[235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10"
[244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22"
[253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10"
[262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22"
[271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10"
[280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22"
[289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10"
[298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22"
[307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10"
[316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22"
[325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10"
[334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22"
[343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10"
[352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22"
[361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10"
[370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22"
[379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11"
[388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23"
[397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11"
[406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23"
[415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11"
[424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23"
[433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11"
[442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23"
[451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11"
[460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23"
[469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11"
[478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23"
[487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11"
[496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23"
[505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11"
[514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23"
[523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11"
[532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23"
[541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11"
[550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23"
[559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11"
[568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23"
[577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12"
[586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24"
[595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12"
[604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24"
[613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12"
[622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24"
[631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12"
[640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24"
[649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12"
[658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24"
[667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12"
[676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24"
[685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12"
[694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24"
[703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12"
[712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24"
[721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12"
[730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24"
[739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12"
[748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24"
[757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12"
[766] "p2M16" "p2M20" "p2M24"
>
> ### merge.rglist
>
> R <- G <- matrix(11:14,4,2)
> rownames(R) <- rownames(G) <- c("a","a","b","c")
> RG1 <- new("RGList",list(R=R,G=G))
> R <- G <- matrix(21:24,4,2)
> rownames(R) <- rownames(G) <- c("b","a","a","c")
> RG2 <- new("RGList",list(R=R,G=G))
> merge(RG1,RG2)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
$G
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
> merge(RG2,RG1)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
$G
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
>
> ### background correction
>
> RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2)))
> backgroundCorrect(RG)
An object of class "RGList"
$R
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
$G
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
> backgroundCorrect(RG, method="half")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, method="minimum")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, offset=5)
An object of class "RGList"
$R
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
$G
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
>
> ### loessFit
>
> x <- 1:100
> y <- rnorm(100)
> out <- loessFit(y,x)
> f1 <- quantile(out$fitted)
> r1 <- quantile(out$residuals)
> w <- rep(1,100)
> w[1:50] <- 0.5
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f2 <- quantile(out$fitted)
> r2 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="locfit")
> f3 <- quantile(out$fitted)
> r3 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="loess")
> f4 <- quantile(out$fitted)
> r4 <- quantile(out$residuals)
> w <- rep(1,100)
> w[2*(1:50)] <- 0
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f5 <- quantile(out$fitted)
> r5 <- quantile(out$residuals)
> data.frame(f1,f2,f3,f4,f5)
f1 f2 f3 f4 f5
0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292
25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318
50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879
75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396
100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274
> data.frame(r1,r2,r3,r4,r5)
r1 r2 r3 r4 r5
0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633
25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756
50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517
75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830
100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835
>
> ### normalizeWithinArrays
>
> RG <- new("RGList",list())
> RG$R <- matrix(rexp(100*2),100,2)
> RG$G <- matrix(rexp(100*2),100,2)
> RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000
1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223
Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000
1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223
Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295
> MA <- normalizeWithinArrays(RGb,method="loess")
> summary(MA$M)
V1 V2
Min. :-5.88044 Min. :-5.66985
1st Qu.:-1.18483 1st Qu.:-1.57014
Median :-0.21632 Median : 0.04823
Mean : 0.03487 Mean :-0.05481
3rd Qu.: 1.49669 3rd Qu.: 1.45113
Max. : 7.07324 Max. : 6.19744
> #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline")
> #MA$M[1:5,]
> #MA <- normalizeWithinArrays(mouse.data, mouse.setup)
> #MA$M[1:5,]
>
> ### normalizeBetweenArrays
>
> MA2 <- normalizeBetweenArrays(MA,method="scale")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
> MA2 <- normalizeBetweenArrays(MA,method="quantile")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
>
> ### unwrapdups
>
> M <- matrix(1:12,6,2)
> unwrapdups(M,ndups=1)
[,1] [,2]
[1,] 1 7
[2,] 2 8
[3,] 3 9
[4,] 4 10
[5,] 5 11
[6,] 6 12
> unwrapdups(M,ndups=2)
[,1] [,2] [,3] [,4]
[1,] 1 2 7 8
[2,] 3 4 9 10
[3,] 5 6 11 12
> unwrapdups(M,ndups=3)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 7 8 9
[2,] 4 5 6 10 11 12
> unwrapdups(M,ndups=2,spacing=3)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
>
> ### trigammaInverse
>
> trigammaInverse(c(1e-6,NA,5,1e6))
[1] 1.000000e+06 NA 4.961687e-01 1.000001e-03
>
> ### lmFit, eBayes, topTable
>
> M <- matrix(rnorm(10*6,sd=0.3),10,6)
> rownames(M) <- LETTERS[1:10]
> M[1,1:3] <- M[1,1:3] + 2
> design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1))
> contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1))
> fit <- lmFit(M,design)
> fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix))
> topTable(fit2)
First3 Last3 Last3.First3 AveExpr F P.Value
A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23
D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02
F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01
G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01
H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01
J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01
C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01
B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01
E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01
I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01
adj.P.Val
A 7.727200e-22
D 3.758388e-01
F 3.758388e-01
G 4.992756e-01
H 6.361019e-01
J 7.338379e-01
C 7.382414e-01
B 7.382414e-01
E 9.268088e-01
I 9.401792e-01
> topTable(fit2,coef=3,resort.by="logFC")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="p")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,sort.by="logFC",resort.by="t")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="B")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,lfc=1)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5,sort.by="none")
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> contrasts.fit(fit[1:3,],contrast.matrix[,0])
An object of class "MArrayLM"
$coefficients
A
B
C
$rank
[1] 2
$assign
NULL
$qr
$qr
First3Arrays Last3Arrays
[1,] -1.7320508 0.0000000
[2,] 0.5773503 -1.7320508
[3,] 0.5773503 0.0000000
[4,] 0.0000000 0.5773503
[5,] 0.0000000 0.5773503
[6,] 0.0000000 0.5773503
$qraux
[1] 1.57735 1.00000
$pivot
[1] 1 2
$tol
[1] 1e-07
$rank
[1] 2
$df.residual
[1] 4 4 4
$sigma
A B C
0.3299787 0.3323336 0.2315815
$cov.coefficients
<0 x 0 matrix>
$stdev.unscaled
A
B
C
$pivot
[1] 1 2
$Amean
A B C
0.918135675 0.007732271 0.014295836
$method
[1] "ls"
$design
First3Arrays Last3Arrays
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 0 1
[5,] 0 1
[6,] 0 1
$contrasts
[1,]
[2,]
> fit$coefficients[1,1] <- NA
> contrasts.fit(fit[1:3,],contrast.matrix)$coefficients
First3 Last3 Last3-First3
A NA 0.06025114 NA
B -0.1198283 0.13529287 0.2551212
C -0.1223678 0.15095948 0.2733273
>
> designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1)))
> out <- selectModel(M,designlist)
> table(out$pref)
Null Two Three
5 3 2
>
> ### marray object
>
> #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE)))
> #if(gotmarray) {
> # data(swirl)
> # snorm = maNorm(swirl)
> # fit <- lmFit(snorm, design = c(1,-1,-1,1))
> # fit <- eBayes(fit)
> # topTable(fit,resort.by="AveExpr")
> #}
>
> ### duplicateCorrelation
>
> cor.out <- duplicateCorrelation(M)
> cor.out$consensus.correlation
[1] -0.09290714
> cor.out$atanh.correlations
[1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118
>
> ### gls.series
>
> fit <- gls.series(M,design,correlation=cor.out$cor)
> fit$coefficients
First3Arrays Last3Arrays
[1,] 0.82809594 0.09777201
[2,] -0.08845425 0.27111909
[3,] -0.07175836 -0.11287397
[4,] 0.06955100 0.06852328
[5,] 0.08348330 0.05535668
> fit$stdev.unscaled
First3Arrays Last3Arrays
[1,] 0.3888215 0.3888215
[2,] 0.3888215 0.3888215
[3,] 0.3888215 0.3888215
[4,] 0.3888215 0.3888215
[5,] 0.3888215 0.3888215
> fit$sigma
[1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473
> fit$df.residual
[1] 10 10 10 10 10
>
> ### mrlm
>
> fit <- mrlm(M,design)
Warning message:
In rlm.default(x = X, y = y, weights = w, ...) :
'rlm' failed to converge in 20 steps
> fit$coefficients
First3Arrays Last3Arrays
A 1.75138894 0.06025114
B -0.11982833 0.10322039
C -0.09302502 0.15095948
D -0.05454069 0.33700045
E 0.07927938 0.10434934
F -0.16249607 -0.34010852
G 0.30852468 -0.06873462
H -0.16942269 0.24392984
I -0.04720963 0.03996397
J 0.21417623 -0.05679272
> fit$stdev.unscaled
First3Arrays Last3Arrays
A 0.5933418 0.5773503
B 0.5773503 0.6096497
C 0.6017444 0.5773503
D 0.5773503 0.6266021
E 0.6307703 0.5773503
F 0.5773503 0.5846707
G 0.5773503 0.5773503
H 0.5773503 0.6544564
I 0.5773503 0.5773503
J 0.5773503 0.6689776
> fit$sigma
[1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945
[8] 0.2267556 0.3537469 0.2172409
> fit$df.residual
[1] 4 4 4 4 4 4 4 4 4 4
>
> # Similar to Mette Langaas 19 May 2004
> set.seed(123)
> narrays <- 9
> ngenes <- 5
> mu <- 0
> alpha <- 2
> beta <- -2
> epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays)
> X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1))
> dimnames(X) <- list(1:9,c("mu","alpha","beta"))
> yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3]
> ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon
> ymat[5,1:2] <- NA
> fit <- lmFit(ymat,design=X)
> test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1))
> dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta"))
> fit2 <- contrasts.fit(fit,contrasts=test.contr)
> eBayes(fit2)
An object of class "MArrayLM"
$coefficients
alpha-beta mu+alpha mu+beta
[1,] 3.537333 1.677465 -1.859868
[2,] 4.355578 2.372554 -1.983024
[3,] 3.197645 1.053584 -2.144061
[4,] 2.697734 1.611443 -1.086291
[5,] 3.502304 2.051995 -1.450309
$stdev.unscaled
alpha-beta mu+alpha mu+beta
[1,] 0.8164966 0.5773503 0.5773503
[2,] 0.8164966 0.5773503 0.5773503
[3,] 0.8164966 0.5773503 0.5773503
[4,] 0.8164966 0.5773503 0.5773503
[5,] 1.1547005 0.8368633 0.8368633
$sigma
[1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509
$df.residual
[1] 6 6 6 6 4
$cov.coefficients
alpha-beta mu+alpha mu+beta
alpha-beta 0.6666667 3.333333e-01 -3.333333e-01
mu+alpha 0.3333333 3.333333e-01 5.551115e-17
mu+beta -0.3333333 5.551115e-17 3.333333e-01
$pivot
[1] 1 2 3
$rank
[1] 3
$Amean
[1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593
$method
[1] "ls"
$design
mu alpha beta
1 1 0 0
2 1 0 0
3 1 0 0
4 1 1 0
5 1 1 0
6 1 1 0
7 1 0 1
8 1 0 1
9 1 0 1
$contrasts
alpha-beta mu+alpha mu+beta
mu 0 1 1
alpha 1 1 0
beta -1 0 1
$df.prior
[1] 9.306153
$s2.prior
[1] 0.923179
$var.prior
[1] 17.33142 17.33142 12.26855
$proportion
[1] 0.01
$s2.post
[1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980
$t
alpha-beta mu+alpha mu+beta
[1,] 3.847656 2.580411 -2.860996
[2,] 6.637308 5.113018 -4.273553
[3,] 3.692066 1.720376 -3.500994
[4,] 3.464003 2.926234 -1.972606
[5,] 3.175181 2.566881 -1.814221
$df.total
[1] 15.30615 15.30615 15.30615 15.30615 13.30615
$p.value
alpha-beta mu+alpha mu+beta
[1,] 1.529450e-03 0.0206493481 0.0117123495
[2,] 7.144893e-06 0.0001195844 0.0006385076
[3,] 2.109270e-03 0.1055117477 0.0031325769
[4,] 3.381970e-03 0.0102514264 0.0668844448
[5,] 7.124839e-03 0.0230888584 0.0922478630
$lods
alpha-beta mu+alpha mu+beta
[1,] -1.013417 -3.702133 -3.0332393
[2,] 3.981496 1.283349 -0.2615911
[3,] -1.315036 -5.168621 -1.7864101
[4,] -1.757103 -3.043209 -4.6191869
[5,] -2.257358 -3.478267 -4.5683738
$F
[1] 7.421911 22.203107 7.608327 6.227010 5.060579
$F.p.value
[1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02
>
> ### uniquegenelist
>
> uniquegenelist(letters[1:8],ndups=2)
[1] "a" "c" "e" "g"
> uniquegenelist(letters[1:8],ndups=2,spacing=2)
[1] "a" "b" "e" "f"
>
> ### classifyTests
>
> tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE)
> classifyTestsF(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 0 0
[3,] -1 -1 1
[4,] 0 0 0
> classifyTestsF(tstat,fstat.only=TRUE)
[1] 8.333333 2.083333 4.000000 1.000000
attr(,"df1")
[1] 3
attr(,"df2")
[1] Inf
> limma:::.classifyTestsP(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 1 0
[3,] 0 0 0
[4,] 0 0 0
>
> ### avereps
>
> x <- matrix(rnorm(8*3),8,3)
> colnames(x) <- c("S1","S2","S3")
> rownames(x) <- c("b","a","a","c","c","b","b","b")
> avereps(x)
S1 S2 S3
b -0.2353018 0.5220094 0.2302895
a -0.4347701 0.6453498 -0.6758914
c 0.3482980 -0.4820695 -0.3841313
>
> ### roast
>
> y <- matrix(rnorm(100*4),100,4)
> sigma <- sqrt(2/rchisq(100,df=7))
> y <- y*sigma
> design <- cbind(Intercept=1,Group=c(0,0,1,1))
> iset1 <- 1:5
> y[iset1,3:4] <- y[iset1,3:4]+3
> iset2 <- 6:10
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.997999500
Up 1 0.002250563
UpOrDown 1 0.004500000
Mixed 1 0.004500000
> roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1))
Active.Prop P.Value
Down 0 0.998749687
Up 1 0.001500375
UpOrDown 1 0.003000000
Mixed 1 0.003000000
> w <- matrix(runif(100*4),100,4)
> roast(y=y,iset1,design,contrast=2,weights=w)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0055 0.0105 0.0055 0.0105
set2 5 0 0 Up 0.2025 0.2025 0.4715 0.4715
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0050 0.0095 0.005 0.0095
set2 5 0 0 Up 0.6845 0.6845 0.642 0.6420
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w)
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0030 0.0055 0.003 0.0055
set2 5 0 0.2 Down 0.9615 0.9615 0.496 0.4960
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0025 0.0045 0.0025 0.0045
set2 5 0 0.2 Down 0.8930 0.8930 0.4380 0.4380
> fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 Up 0.001568924 0.003137848 0.0001156464 0.0002312929
set2 5 Down 0.932105219 0.932105219 0.4315499569 0.4315499569
> rownames(y) <- paste0("Gene",1:100)
> iset1A <- rownames(y)[1:5]
> fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue PValue.Mixed
set1 5 Up 0.001568924 0.0001156464
>
> ### camera
>
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.001050253
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue FDR
set1 5 -0.2481655 Up 0.0009047749 0.00180955
set2 5 0.1719094 Down 0.9068364378 0.90683644
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1))
NGenes Direction PValue
set1 5 Up 1.105329e-10
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2)
NGenes Direction PValue FDR
set1 5 Up 7.334400e-12 1.466880e-11
set2 5 Down 8.677115e-01 8.677115e-01
> camera(y=y,iset1A,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### with EList arg
>
> y <- new("EList",list(E=y))
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.0009047749
> camera(y=y,iset1,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### eBayes with trend
>
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831
Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071
Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702
Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874
Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835
Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204
Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642
Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860
Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571
Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317
> fit$df.prior
[1] 9.098442
> fit$s2.prior
Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8
0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098
Gene9 Gene10 Gene11 Gene12 Gene13 Gene14 Gene15 Gene16
0.2985145 0.2832520 0.3232434 0.3279710 0.2816081 0.2943502 0.3127994 0.2894802
Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24
0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541
Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32
0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510
Gene33 Gene34 Gene35 Gene36 Gene37 Gene38 Gene39 Gene40
0.2988244 0.3450090 0.3048596 0.3089086 0.3104534 0.4551549 0.3220008 0.2813286
Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48
0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003
Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56
0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157
Gene57 Gene58 Gene59 Gene60 Gene61 Gene62 Gene63 Gene64
0.2955317 0.2815907 0.2919420 0.2849675 0.3540805 0.3491713 0.2975019 0.2939325
Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72
0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850
Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80
0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294
Gene81 Gene82 Gene83 Gene84 Gene85 Gene86 Gene87 Gene88
0.3413700 0.2946268 0.3029565 0.2920284 0.2926205 0.2818046 0.3425116 0.2882936
Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96
0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784
Gene97 Gene98 Gene99 Gene100
0.2846345 0.2819651 0.3137551 0.2856081
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2335 0.2603 0.2997 0.3375 0.3655 0.7812
>
> y$E[1,1] <- NA
> y$E[1,3] <- NA
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915
Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583
Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813
Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324
Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957
Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584
Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597
Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576
Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439
Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731
> fit$df.residual[1]
[1] 0
> fit$df.prior
[1] 8.971891
> fit$s2.prior
[1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052
[8] 0.3074225 0.2985517 0.2786374 0.3267121 0.3316013 0.2766404 0.2932679
[15] 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412
[22] 0.2761282 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204
[29] 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 0.3483845 0.3062977
[36] 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311
[43] 0.2776653 0.3201314 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262
[50] 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 0.2870975
[57] 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804
[64] 0.2927300 0.2987764 0.3301406 0.3437962 0.3430762 0.2761729 0.2763094
[71] 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441
[78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616
[85] 0.2910320 0.2769211 0.3459946 0.2859057 0.2935193 0.3097398 0.2865663
[92] 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484
[99] 0.3164981 0.2817725
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2296 0.2581 0.3003 0.3453 0.3652 0.9158
>
> ### eBayes with robust
>
> fitr <- lmFit(y,design)
> fitr <- eBayes(fitr,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.717 9.244 9.244 9.194 9.244 9.244
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 7.108463 1.752774e-05 0.001752774 3.3517310
Gene3 3.488703 1.03931081 5.041209 3.526138e-04 0.017630688 0.4056329
Gene4 2.696676 1.74060725 4.697690 6.150508e-04 0.020501693 -0.1463315
Gene5 2.387967 1.63066783 3.451807 5.245019e-03 0.131125480 -2.2678836
Gene1 2.638272 1.47993643 3.317593 8.651142e-03 0.173022847 -2.4400000
Gene33 -1.492317 -0.07525287 -2.716431 1.970991e-02 0.297950865 -3.5553166
Gene95 -1.907074 1.26297763 -2.685067 2.085656e-02 0.297950865 -3.6094982
Gene80 -1.839760 -0.32802306 -2.535926 2.727440e-02 0.340929958 -3.8653107
Gene39 1.366141 -0.27360750 2.469570 3.071854e-02 0.341317083 -3.9779817
Gene50 1.034777 0.01608433 1.973040 7.357960e-02 0.632875126 -4.7877548
> fitr <- eBayes(fitr,trend=TRUE,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.809 8.972 8.972 8.949 8.972 8.972
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.754160 0.0005999064 0.05999064 -0.0218247
Gene3 3.488703 1.03931081 3.761219 0.0031618743 0.15809372 -1.6338257
Gene4 2.696676 1.74060725 3.292262 0.0071993347 0.23997782 -2.4295326
Gene33 -1.492317 -0.07525287 -3.063180 0.0108203134 0.27050784 -2.8211394
Gene50 1.034777 0.01608433 2.645717 0.0228036320 0.38815282 -3.5304767
Gene5 2.387967 1.63066783 2.633901 0.0232891695 0.38815282 -3.5503445
Gene1 2.638272 1.47993643 2.204116 0.0550613420 0.58959402 -4.0334169
Gene80 -1.839760 -0.32802306 -2.332729 0.0397331916 0.56761702 -4.0496640
Gene39 1.366141 -0.27360750 2.210665 0.0492211477 0.58959402 -4.2469578
Gene95 -1.907074 1.26297763 -2.106861 0.0589594023 0.58959402 -4.4117140
>
> ### voom
>
> y <- matrix(rpois(100*4,lambda=20),100,4)
> design <- cbind(Int=1,x=c(0,0,1,1))
> v <- voom(y,design)
> names(v)
[1] "E" "weights" "design" "targets"
> summary(v$E)
V1 V2 V3 V4
Min. :12.38 Min. :12.32 Min. :12.17 Min. :12.08
1st Qu.:13.11 1st Qu.:13.05 1st Qu.:13.11 1st Qu.:13.03
Median :13.34 Median :13.28 Median :13.35 Median :13.35
Mean :13.29 Mean :13.29 Mean :13.28 Mean :13.28
3rd Qu.:13.48 3rd Qu.:13.54 3rd Qu.:13.48 3rd Qu.:13.50
Max. :14.01 Max. :13.95 Max. :14.03 Max. :14.05
> summary(v$weights)
V1 V2 V3 V4
Min. : 7.729 Min. : 7.729 Min. : 7.729 Min. : 7.729
1st Qu.:13.859 1st Qu.:15.067 1st Qu.:14.254 1st Qu.:13.592
Median :15.913 Median :16.621 Median :16.081 Median :16.028
Mean :16.773 Mean :18.525 Mean :18.472 Mean :17.112
3rd Qu.:18.214 3rd Qu.:20.002 3rd Qu.:18.475 3rd Qu.:18.398
Max. :34.331 Max. :34.331 Max. :34.331 Max. :34.331
>
> ### goana
>
> EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266",
+ "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346",
+ "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957",
+ "135","1350","1351","135112","135114","135138","135152","135154","1352","135228",
+ "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357",
+ "1358","135892","1359","135924","135935","135941","135946","135948","136","1360",
+ "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332",
+ "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991",
+ "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376",
+ "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964")
> go <- goana(fit,FDR=0.8,geneid=EB)
> topGO(go,number=10,truncate.term=30)
Term Ont N Up Down P.Up
GO:0032502 developmental process BP 26 4 7 0.914470437
GO:0070062 extracellular exosome CC 8 0 4 1.000000000
GO:0043230 extracellular organelle CC 8 0 4 1.000000000
GO:1903561 extracellular vesicle CC 8 0 4 1.000000000
GO:0032501 multicellular organismal pr... BP 30 6 7 0.762808313
GO:0098609 cell-cell adhesion BP 5 4 0 0.009503355
GO:0097190 apoptotic signaling pathway BP 3 3 0 0.010952381
GO:0031252 cell leading edge CC 3 3 0 0.010952381
GO:0010942 positive regulation of cell... BP 3 3 0 0.010952381
GO:0048856 anatomical structure develo... BP 25 4 6 0.894659283
P.Down
GO:0032502 0.002720775
GO:0070062 0.003047199
GO:0043230 0.003047199
GO:1903561 0.003047199
GO:0032501 0.007313910
GO:0098609 1.000000000
GO:0097190 1.000000000
GO:0031252 1.000000000
GO:0010942 1.000000000
GO:0048856 0.014492712
> topGO(go,number=10,truncate.term=30,sort="down")
Term Ont N Up Down P.Up P.Down
GO:0032502 developmental process BP 26 4 7 0.9144704 0.002720775
GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199
GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199
GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199
GO:0032501 multicellular organismal pr... BP 30 6 7 0.7628083 0.007313910
GO:0048856 anatomical structure develo... BP 25 4 6 0.8946593 0.014492712
GO:0031982 vesicle CC 18 1 5 0.9946677 0.015552466
GO:0051604 protein maturation BP 7 1 3 0.8497705 0.020760307
GO:0016485 protein processing BP 7 1 3 0.8497705 0.020760307
GO:0007275 multicellular organism deve... BP 20 3 5 0.8982815 0.025464546
>
> proc.time()
user system elapsed
4.96 0.34 5.31
|
|
|
limma.Rcheck/tests_x64/limma-Tests.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(limma)
> options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE)
>
> set.seed(0); u <- runif(100)
>
> ### strsplit2
>
> x <- c("ab;cd;efg","abc;def","z","")
> strsplit2(x,split=";")
[,1] [,2] [,3]
[1,] "ab" "cd" "efg"
[2,] "abc" "def" ""
[3,] "z" "" ""
[4,] "" "" ""
>
> ### removeext
>
> removeExt(c("slide1.spot","slide.2.spot"))
[1] "slide1" "slide.2"
> removeExt(c("slide1.spot","slide"))
[1] "slide1.spot" "slide"
>
> ### printorder
>
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4)
$printorder
[1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1
[55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19
[73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37
[91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7
[109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25
[127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43
[145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
[163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
[181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49
[199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55
[253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73
[271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91
[289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61
[307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79
[325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49
[343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
[361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
[379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103
[397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109
[451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127
[469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97
[487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115
[505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133
[523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103
[541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
[559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
[577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145
[631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163
[649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181
[667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151
[685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169
[703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187
[721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
[739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
[757] 186 185 184 183 182 181 192 191 190 189 188 187
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$plate.r
[1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3
[51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2
[101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
[151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8
[201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
[226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7
[251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
[276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6
[301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
[326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
[426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
[476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
[601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15
[626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
[651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14
[676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
[701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13
[726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
[751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
$plate.c
[1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15
[26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3
[51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14
[76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2
[101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13
[126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1
[151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18
[176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6
[201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17
[226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5
[251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16
[276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4
[301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21
[326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9
[351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20
[376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8
[401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19
[426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7
[451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24
[476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12
[501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23
[526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11
[551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22
[576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10
[601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3
[626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15
[651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2
[676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14
[701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1
[726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13
[751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22
$plateposition
[1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05"
[10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07"
[19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14"
[28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16"
[37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23"
[46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01"
[55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08"
[64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10"
[73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17"
[82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19"
[91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02"
[100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04"
[109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11"
[118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13"
[127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20"
[136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22"
[145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05"
[154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07"
[163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14"
[172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16"
[181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23"
[190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01"
[199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08"
[208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10"
[217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17"
[226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19"
[235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02"
[244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04"
[253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11"
[262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13"
[271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20"
[280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22"
[289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05"
[298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07"
[307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14"
[316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16"
[325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23"
[334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01"
[343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08"
[352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10"
[361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17"
[370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19"
[379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02"
[388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04"
[397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11"
[406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13"
[415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20"
[424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22"
[433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05"
[442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07"
[451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14"
[460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16"
[469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23"
[478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01"
[487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08"
[496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10"
[505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17"
[514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19"
[523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02"
[532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04"
[541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11"
[550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13"
[559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20"
[568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22"
[577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05"
[586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07"
[595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14"
[604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16"
[613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23"
[622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01"
[631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08"
[640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10"
[649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17"
[658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19"
[667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02"
[676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04"
[685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11"
[694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13"
[703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20"
[712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22"
[721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05"
[730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07"
[739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14"
[748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16"
[757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23"
[766] "p1M23" "p1M22" "p1M22"
> printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6))
$printorder
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2
[51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
[76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4
[101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6
[151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8
[201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10
[251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
[276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12
[301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
[326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
[426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
[476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
[551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1
[626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3
[676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5
[726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
$plate
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
[371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
[556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
[704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$plate.r
[1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4
[26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3
[51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3
[76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2
[101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2
[126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1
[151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5
[176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8
[201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8
[226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7
[251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7
[276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6
[301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10
[326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9
[351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9
[376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12
[401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12
[426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11
[451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15
[476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14
[501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14
[526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13
[551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13
[576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16
[601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3
[626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3
[651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2
[676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2
[701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1
[726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1
[751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13
$plate.c
[1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5
[51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9
[76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13
[101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17
[126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21
[151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
[176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6
[201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14
[251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18
[276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
[301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2
[326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6
[351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
[376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23
[451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
[476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7
[501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11
[526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
[551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
[576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4
[626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8
[651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12
[676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16
[701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20
[726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
[751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
$plateposition
[1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09"
[10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21"
[19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09"
[28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21"
[37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09"
[46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21"
[55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09"
[64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21"
[73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09"
[82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21"
[91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09"
[100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21"
[109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09"
[118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21"
[127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09"
[136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21"
[145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09"
[154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21"
[163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09"
[172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21"
[181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09"
[190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22"
[199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10"
[208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22"
[217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10"
[226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22"
[235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10"
[244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22"
[253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10"
[262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22"
[271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10"
[280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22"
[289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10"
[298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22"
[307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10"
[316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22"
[325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10"
[334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22"
[343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10"
[352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22"
[361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10"
[370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22"
[379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11"
[388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23"
[397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11"
[406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23"
[415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11"
[424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23"
[433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11"
[442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23"
[451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11"
[460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23"
[469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11"
[478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23"
[487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11"
[496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23"
[505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11"
[514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23"
[523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11"
[532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23"
[541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11"
[550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23"
[559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11"
[568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23"
[577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12"
[586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24"
[595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12"
[604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24"
[613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12"
[622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24"
[631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12"
[640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24"
[649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12"
[658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24"
[667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12"
[676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24"
[685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12"
[694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24"
[703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12"
[712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24"
[721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12"
[730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24"
[739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12"
[748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24"
[757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12"
[766] "p2M16" "p2M20" "p2M24"
>
> ### merge.rglist
>
> R <- G <- matrix(11:14,4,2)
> rownames(R) <- rownames(G) <- c("a","a","b","c")
> RG1 <- new("RGList",list(R=R,G=G))
> R <- G <- matrix(21:24,4,2)
> rownames(R) <- rownames(G) <- c("b","a","a","c")
> RG2 <- new("RGList",list(R=R,G=G))
> merge(RG1,RG2)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
$G
[,1] [,2] [,3] [,4]
a 11 11 22 22
a 12 12 23 23
b 13 13 21 21
c 14 14 24 24
> merge(RG2,RG1)
An object of class "RGList"
$R
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
$G
[,1] [,2] [,3] [,4]
b 21 21 13 13
a 22 22 11 11
a 23 23 12 12
c 24 24 14 14
>
> ### background correction
>
> RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2)))
> backgroundCorrect(RG)
An object of class "RGList"
$R
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
$G
[,1]
[1,] -1
[2,] 0
[3,] 1
[4,] 2
> backgroundCorrect(RG, method="half")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, method="minimum")
An object of class "RGList"
$R
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
$G
[,1]
[1,] 0.5
[2,] 0.5
[3,] 1.0
[4,] 2.0
> backgroundCorrect(RG, offset=5)
An object of class "RGList"
$R
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
$G
[,1]
[1,] 4
[2,] 5
[3,] 6
[4,] 7
>
> ### loessFit
>
> x <- 1:100
> y <- rnorm(100)
> out <- loessFit(y,x)
> f1 <- quantile(out$fitted)
> r1 <- quantile(out$residuals)
> w <- rep(1,100)
> w[1:50] <- 0.5
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f2 <- quantile(out$fitted)
> r2 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="locfit")
> f3 <- quantile(out$fitted)
> r3 <- quantile(out$residuals)
> out <- loessFit(y,x,weights=w,method="loess")
> f4 <- quantile(out$fitted)
> r4 <- quantile(out$residuals)
> w <- rep(1,100)
> w[2*(1:50)] <- 0
> out <- loessFit(y,x,weights=w,method="weightedLowess")
> f5 <- quantile(out$fitted)
> r5 <- quantile(out$residuals)
> data.frame(f1,f2,f3,f4,f5)
f1 f2 f3 f4 f5
0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292
25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318
50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879
75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396
100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274
> data.frame(r1,r2,r3,r4,r5)
r1 r2 r3 r4 r5
0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633
25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756
50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517
75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830
100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835
>
> ### normalizeWithinArrays
>
> RG <- new("RGList",list())
> RG$R <- matrix(rexp(100*2),100,2)
> RG$G <- matrix(rexp(100*2),100,2)
> RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2)
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000
1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223
Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295
> RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle")
Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected
> summary(cbind(RGb$R,RGb$G))
V1 V2 V3 V4
Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000
1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953
Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223
Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324
3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221
Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295
> MA <- normalizeWithinArrays(RGb,method="loess")
> summary(MA$M)
V1 V2
Min. :-5.88044 Min. :-5.66985
1st Qu.:-1.18483 1st Qu.:-1.57014
Median :-0.21632 Median : 0.04823
Mean : 0.03487 Mean :-0.05481
3rd Qu.: 1.49669 3rd Qu.: 1.45113
Max. : 7.07324 Max. : 6.19744
> #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline")
> #MA$M[1:5,]
> #MA <- normalizeWithinArrays(mouse.data, mouse.setup)
> #MA$M[1:5,]
>
> ### normalizeBetweenArrays
>
> MA2 <- normalizeBetweenArrays(MA,method="scale")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
> MA2 <- normalizeBetweenArrays(MA,method="quantile")
> MA$M[1:5,]
[,1] [,2]
[1,] -1.1689588 4.5558123
[2,] 0.8971363 0.3296544
[3,] 2.8247439 1.4249960
[4,] -1.8533240 0.4804851
[5,] 1.9158459 -5.5087631
> MA$A[1:5,]
[,1] [,2]
[1,] -2.48465011 -2.4041550
[2,] -0.79230447 -0.9002250
[3,] -0.76237200 0.2071043
[4,] 0.09281027 -1.3880965
[5,] 0.22385828 -3.0855818
>
> ### unwrapdups
>
> M <- matrix(1:12,6,2)
> unwrapdups(M,ndups=1)
[,1] [,2]
[1,] 1 7
[2,] 2 8
[3,] 3 9
[4,] 4 10
[5,] 5 11
[6,] 6 12
> unwrapdups(M,ndups=2)
[,1] [,2] [,3] [,4]
[1,] 1 2 7 8
[2,] 3 4 9 10
[3,] 5 6 11 12
> unwrapdups(M,ndups=3)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 7 8 9
[2,] 4 5 6 10 11 12
> unwrapdups(M,ndups=2,spacing=3)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
>
> ### trigammaInverse
>
> trigammaInverse(c(1e-6,NA,5,1e6))
[1] 1.000000e+06 NA 4.961687e-01 1.000001e-03
>
> ### lmFit, eBayes, topTable
>
> M <- matrix(rnorm(10*6,sd=0.3),10,6)
> rownames(M) <- LETTERS[1:10]
> M[1,1:3] <- M[1,1:3] + 2
> design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1))
> contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1))
> fit <- lmFit(M,design)
> fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix))
> topTable(fit2)
First3 Last3 Last3.First3 AveExpr F P.Value
A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23
D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02
F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01
G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01
H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01
J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01
C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01
B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01
E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01
I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01
adj.P.Val
A 7.727200e-22
D 3.758388e-01
F 3.758388e-01
G 4.992756e-01
H 6.361019e-01
J 7.338379e-01
C 7.382414e-01
B 7.382414e-01
E 9.268088e-01
I 9.401792e-01
> topTable(fit2,coef=3,resort.by="logFC")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="p")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,sort.by="logFC",resort.by="t")
logFC AveExpr t P.Value adj.P.Val B
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
> topTable(fit2,coef=3,resort.by="B")
logFC AveExpr t P.Value adj.P.Val B
A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631
D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150
G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625
H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971
C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399
B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202
F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541
J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563
I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117
E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601
> topTable(fit2,coef=3,lfc=1)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5)
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> topTable(fit2,coef=3,p.value=0.2,lfc=0.5,sort.by="none")
logFC AveExpr t P.Value adj.P.Val B
A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063
> contrasts.fit(fit[1:3,],contrast.matrix[,0])
An object of class "MArrayLM"
$coefficients
A
B
C
$rank
[1] 2
$assign
NULL
$qr
$qr
First3Arrays Last3Arrays
[1,] -1.7320508 0.0000000
[2,] 0.5773503 -1.7320508
[3,] 0.5773503 0.0000000
[4,] 0.0000000 0.5773503
[5,] 0.0000000 0.5773503
[6,] 0.0000000 0.5773503
$qraux
[1] 1.57735 1.00000
$pivot
[1] 1 2
$tol
[1] 1e-07
$rank
[1] 2
$df.residual
[1] 4 4 4
$sigma
A B C
0.3299787 0.3323336 0.2315815
$cov.coefficients
<0 x 0 matrix>
$stdev.unscaled
A
B
C
$pivot
[1] 1 2
$Amean
A B C
0.918135675 0.007732271 0.014295836
$method
[1] "ls"
$design
First3Arrays Last3Arrays
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 0 1
[5,] 0 1
[6,] 0 1
$contrasts
[1,]
[2,]
> fit$coefficients[1,1] <- NA
> contrasts.fit(fit[1:3,],contrast.matrix)$coefficients
First3 Last3 Last3-First3
A NA 0.06025114 NA
B -0.1198283 0.13529287 0.2551212
C -0.1223678 0.15095948 0.2733273
>
> designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1)))
> out <- selectModel(M,designlist)
> table(out$pref)
Null Two Three
5 3 2
>
> ### marray object
>
> #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE)))
> #if(gotmarray) {
> # data(swirl)
> # snorm = maNorm(swirl)
> # fit <- lmFit(snorm, design = c(1,-1,-1,1))
> # fit <- eBayes(fit)
> # topTable(fit,resort.by="AveExpr")
> #}
>
> ### duplicateCorrelation
>
> cor.out <- duplicateCorrelation(M)
> cor.out$consensus.correlation
[1] -0.09290714
> cor.out$atanh.correlations
[1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118
>
> ### gls.series
>
> fit <- gls.series(M,design,correlation=cor.out$cor)
> fit$coefficients
First3Arrays Last3Arrays
[1,] 0.82809594 0.09777201
[2,] -0.08845425 0.27111909
[3,] -0.07175836 -0.11287397
[4,] 0.06955100 0.06852328
[5,] 0.08348330 0.05535668
> fit$stdev.unscaled
First3Arrays Last3Arrays
[1,] 0.3888215 0.3888215
[2,] 0.3888215 0.3888215
[3,] 0.3888215 0.3888215
[4,] 0.3888215 0.3888215
[5,] 0.3888215 0.3888215
> fit$sigma
[1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473
> fit$df.residual
[1] 10 10 10 10 10
>
> ### mrlm
>
> fit <- mrlm(M,design)
Warning message:
In rlm.default(x = X, y = y, weights = w, ...) :
'rlm' failed to converge in 20 steps
> fit$coefficients
First3Arrays Last3Arrays
A 1.75138894 0.06025114
B -0.11982833 0.10322039
C -0.09302502 0.15095948
D -0.05454069 0.33700045
E 0.07927938 0.10434934
F -0.16249607 -0.34010852
G 0.30852468 -0.06873462
H -0.16942269 0.24392984
I -0.04720963 0.03996397
J 0.21417623 -0.05679272
> fit$stdev.unscaled
First3Arrays Last3Arrays
A 0.5933418 0.5773503
B 0.5773503 0.6096497
C 0.6017444 0.5773503
D 0.5773503 0.6266021
E 0.6307703 0.5773503
F 0.5773503 0.5846707
G 0.5773503 0.5773503
H 0.5773503 0.6544564
I 0.5773503 0.5773503
J 0.5773503 0.6689776
> fit$sigma
[1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945
[8] 0.2267556 0.3537469 0.2172409
> fit$df.residual
[1] 4 4 4 4 4 4 4 4 4 4
>
> # Similar to Mette Langaas 19 May 2004
> set.seed(123)
> narrays <- 9
> ngenes <- 5
> mu <- 0
> alpha <- 2
> beta <- -2
> epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays)
> X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1))
> dimnames(X) <- list(1:9,c("mu","alpha","beta"))
> yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3]
> ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon
> ymat[5,1:2] <- NA
> fit <- lmFit(ymat,design=X)
> test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1))
> dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta"))
> fit2 <- contrasts.fit(fit,contrasts=test.contr)
> eBayes(fit2)
An object of class "MArrayLM"
$coefficients
alpha-beta mu+alpha mu+beta
[1,] 3.537333 1.677465 -1.859868
[2,] 4.355578 2.372554 -1.983024
[3,] 3.197645 1.053584 -2.144061
[4,] 2.697734 1.611443 -1.086291
[5,] 3.502304 2.051995 -1.450309
$stdev.unscaled
alpha-beta mu+alpha mu+beta
[1,] 0.8164966 0.5773503 0.5773503
[2,] 0.8164966 0.5773503 0.5773503
[3,] 0.8164966 0.5773503 0.5773503
[4,] 0.8164966 0.5773503 0.5773503
[5,] 1.1547005 0.8368633 0.8368633
$sigma
[1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509
$df.residual
[1] 6 6 6 6 4
$cov.coefficients
alpha-beta mu+alpha mu+beta
alpha-beta 0.6666667 3.333333e-01 -3.333333e-01
mu+alpha 0.3333333 3.333333e-01 5.551115e-17
mu+beta -0.3333333 5.551115e-17 3.333333e-01
$pivot
[1] 1 2 3
$rank
[1] 3
$Amean
[1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593
$method
[1] "ls"
$design
mu alpha beta
1 1 0 0
2 1 0 0
3 1 0 0
4 1 1 0
5 1 1 0
6 1 1 0
7 1 0 1
8 1 0 1
9 1 0 1
$contrasts
alpha-beta mu+alpha mu+beta
mu 0 1 1
alpha 1 1 0
beta -1 0 1
$df.prior
[1] 9.306153
$s2.prior
[1] 0.923179
$var.prior
[1] 17.33142 17.33142 12.26855
$proportion
[1] 0.01
$s2.post
[1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980
$t
alpha-beta mu+alpha mu+beta
[1,] 3.847656 2.580411 -2.860996
[2,] 6.637308 5.113018 -4.273553
[3,] 3.692066 1.720376 -3.500994
[4,] 3.464003 2.926234 -1.972606
[5,] 3.175181 2.566881 -1.814221
$df.total
[1] 15.30615 15.30615 15.30615 15.30615 13.30615
$p.value
alpha-beta mu+alpha mu+beta
[1,] 1.529450e-03 0.0206493481 0.0117123495
[2,] 7.144893e-06 0.0001195844 0.0006385076
[3,] 2.109270e-03 0.1055117477 0.0031325769
[4,] 3.381970e-03 0.0102514264 0.0668844448
[5,] 7.124839e-03 0.0230888584 0.0922478630
$lods
alpha-beta mu+alpha mu+beta
[1,] -1.013417 -3.702133 -3.0332393
[2,] 3.981496 1.283349 -0.2615911
[3,] -1.315036 -5.168621 -1.7864101
[4,] -1.757103 -3.043209 -4.6191869
[5,] -2.257358 -3.478267 -4.5683738
$F
[1] 7.421911 22.203107 7.608327 6.227010 5.060579
$F.p.value
[1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02
>
> ### uniquegenelist
>
> uniquegenelist(letters[1:8],ndups=2)
[1] "a" "c" "e" "g"
> uniquegenelist(letters[1:8],ndups=2,spacing=2)
[1] "a" "b" "e" "f"
>
> ### classifyTests
>
> tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE)
> classifyTestsF(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 0 0
[3,] -1 -1 1
[4,] 0 0 0
> classifyTestsF(tstat,fstat.only=TRUE)
[1] 8.333333 2.083333 4.000000 1.000000
attr(,"df1")
[1] 3
attr(,"df2")
[1] Inf
> limma:::.classifyTestsP(tstat)
TestResults matrix
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 1 0
[3,] 0 0 0
[4,] 0 0 0
>
> ### avereps
>
> x <- matrix(rnorm(8*3),8,3)
> colnames(x) <- c("S1","S2","S3")
> rownames(x) <- c("b","a","a","c","c","b","b","b")
> avereps(x)
S1 S2 S3
b -0.2353018 0.5220094 0.2302895
a -0.4347701 0.6453498 -0.6758914
c 0.3482980 -0.4820695 -0.3841313
>
> ### roast
>
> y <- matrix(rnorm(100*4),100,4)
> sigma <- sqrt(2/rchisq(100,df=7))
> y <- y*sigma
> design <- cbind(Intercept=1,Group=c(0,0,1,1))
> iset1 <- 1:5
> y[iset1,3:4] <- y[iset1,3:4]+3
> iset2 <- 6:10
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.997999500
Up 1 0.002250563
UpOrDown 1 0.004500000
Mixed 1 0.004500000
> roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1))
Active.Prop P.Value
Down 0 0.998749687
Up 1 0.001500375
UpOrDown 1 0.003000000
Mixed 1 0.003000000
> w <- matrix(runif(100*4),100,4)
> roast(y=y,iset1,design,contrast=2,weights=w)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0055 0.0105 0.0055 0.0105
set2 5 0 0 Up 0.2025 0.2025 0.4715 0.4715
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1 Up 0.0050 0.0095 0.005 0.0095
set2 5 0 0 Up 0.6845 0.6845 0.642 0.6420
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w)
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0030 0.0055 0.003 0.0055
set2 5 0 0.2 Down 0.9615 0.9615 0.496 0.4960
> mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 0 1.0 Up 0.0025 0.0045 0.0025 0.0045
set2 5 0 0.2 Down 0.8930 0.8930 0.4380 0.4380
> fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue FDR PValue.Mixed FDR.Mixed
set1 5 Up 0.001568924 0.003137848 0.0001156464 0.0002312929
set2 5 Down 0.932105219 0.932105219 0.4315499569 0.4315499569
> rownames(y) <- paste0("Gene",1:100)
> iset1A <- rownames(y)[1:5]
> fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1))
NGenes Direction PValue PValue.Mixed
set1 5 Up 0.001568924 0.0001156464
>
> ### camera
>
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.001050253
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue FDR
set1 5 -0.2481655 Up 0.0009047749 0.00180955
set2 5 0.1719094 Down 0.9068364378 0.90683644
> camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1))
NGenes Direction PValue
set1 5 Up 1.105329e-10
> camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2)
NGenes Direction PValue FDR
set1 5 Up 7.334400e-12 1.466880e-11
set2 5 Down 8.677115e-01 8.677115e-01
> camera(y=y,iset1A,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### with EList arg
>
> y <- new("EList",list(E=y))
> roast(y=y,iset1,design,contrast=2)
Active.Prop P.Value
Down 0 0.996999250
Up 1 0.003250813
UpOrDown 1 0.006500000
Mixed 1 0.006500000
> camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA)
NGenes Correlation Direction PValue
set1 5 -0.2481655 Up 0.0009047749
> camera(y=y,iset1,design,contrast=2)
NGenes Direction PValue
set1 5 Up 7.3344e-12
>
> ### eBayes with trend
>
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831
Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071
Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702
Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874
Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835
Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204
Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642
Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860
Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571
Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317
> fit$df.prior
[1] 9.098442
> fit$s2.prior
Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8
0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098
Gene9 Gene10 Gene11 Gene12 Gene13 Gene14 Gene15 Gene16
0.2985145 0.2832520 0.3232434 0.3279710 0.2816081 0.2943502 0.3127994 0.2894802
Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24
0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541
Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32
0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510
Gene33 Gene34 Gene35 Gene36 Gene37 Gene38 Gene39 Gene40
0.2988244 0.3450090 0.3048596 0.3089086 0.3104534 0.4551549 0.3220008 0.2813286
Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48
0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003
Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56
0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157
Gene57 Gene58 Gene59 Gene60 Gene61 Gene62 Gene63 Gene64
0.2955317 0.2815907 0.2919420 0.2849675 0.3540805 0.3491713 0.2975019 0.2939325
Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72
0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850
Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80
0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294
Gene81 Gene82 Gene83 Gene84 Gene85 Gene86 Gene87 Gene88
0.3413700 0.2946268 0.3029565 0.2920284 0.2926205 0.2818046 0.3425116 0.2882936
Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96
0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784
Gene97 Gene98 Gene99 Gene100
0.2846345 0.2819651 0.3137551 0.2856081
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2335 0.2603 0.2997 0.3375 0.3655 0.7812
>
> y$E[1,1] <- NA
> y$E[1,3] <- NA
> fit <- lmFit(y,design)
> fit <- eBayes(fit,trend=TRUE)
> topTable(fit,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915
Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583
Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813
Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324
Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957
Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584
Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597
Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576
Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439
Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731
> fit$df.residual[1]
[1] 0
> fit$df.prior
[1] 8.971891
> fit$s2.prior
[1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052
[8] 0.3074225 0.2985517 0.2786374 0.3267121 0.3316013 0.2766404 0.2932679
[15] 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412
[22] 0.2761282 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204
[29] 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 0.3483845 0.3062977
[36] 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311
[43] 0.2776653 0.3201314 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262
[50] 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 0.2870975
[57] 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804
[64] 0.2927300 0.2987764 0.3301406 0.3437962 0.3430762 0.2761729 0.2763094
[71] 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441
[78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616
[85] 0.2910320 0.2769211 0.3459946 0.2859057 0.2935193 0.3097398 0.2865663
[92] 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484
[99] 0.3164981 0.2817725
> summary(fit$s2.post)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2296 0.2581 0.3003 0.3453 0.3652 0.9158
>
> ### eBayes with robust
>
> fitr <- lmFit(y,design)
> fitr <- eBayes(fitr,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.717 9.244 9.244 9.194 9.244 9.244
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 7.108463 1.752774e-05 0.001752774 3.3517310
Gene3 3.488703 1.03931081 5.041209 3.526138e-04 0.017630688 0.4056329
Gene4 2.696676 1.74060725 4.697690 6.150508e-04 0.020501693 -0.1463315
Gene5 2.387967 1.63066783 3.451807 5.245019e-03 0.131125480 -2.2678836
Gene1 2.638272 1.47993643 3.317593 8.651142e-03 0.173022847 -2.4400000
Gene33 -1.492317 -0.07525287 -2.716431 1.970991e-02 0.297950865 -3.5553166
Gene95 -1.907074 1.26297763 -2.685067 2.085656e-02 0.297950865 -3.6094982
Gene80 -1.839760 -0.32802306 -2.535926 2.727440e-02 0.340929958 -3.8653107
Gene39 1.366141 -0.27360750 2.469570 3.071854e-02 0.341317083 -3.9779817
Gene50 1.034777 0.01608433 1.973040 7.357960e-02 0.632875126 -4.7877548
> fitr <- eBayes(fitr,trend=TRUE,robust=TRUE)
> summary(fitr$df.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.809 8.972 8.972 8.949 8.972 8.972
> topTable(fitr,coef=2)
logFC AveExpr t P.Value adj.P.Val B
Gene2 3.729512 1.73488969 4.754160 0.0005999064 0.05999064 -0.0218247
Gene3 3.488703 1.03931081 3.761219 0.0031618743 0.15809372 -1.6338257
Gene4 2.696676 1.74060725 3.292262 0.0071993347 0.23997782 -2.4295326
Gene33 -1.492317 -0.07525287 -3.063180 0.0108203134 0.27050784 -2.8211394
Gene50 1.034777 0.01608433 2.645717 0.0228036320 0.38815282 -3.5304767
Gene5 2.387967 1.63066783 2.633901 0.0232891695 0.38815282 -3.5503445
Gene1 2.638272 1.47993643 2.204116 0.0550613420 0.58959402 -4.0334169
Gene80 -1.839760 -0.32802306 -2.332729 0.0397331916 0.56761702 -4.0496640
Gene39 1.366141 -0.27360750 2.210665 0.0492211477 0.58959402 -4.2469578
Gene95 -1.907074 1.26297763 -2.106861 0.0589594023 0.58959402 -4.4117140
>
> ### voom
>
> y <- matrix(rpois(100*4,lambda=20),100,4)
> design <- cbind(Int=1,x=c(0,0,1,1))
> v <- voom(y,design)
> names(v)
[1] "E" "weights" "design" "targets"
> summary(v$E)
V1 V2 V3 V4
Min. :12.38 Min. :12.32 Min. :12.17 Min. :12.08
1st Qu.:13.11 1st Qu.:13.05 1st Qu.:13.11 1st Qu.:13.03
Median :13.34 Median :13.28 Median :13.35 Median :13.35
Mean :13.29 Mean :13.29 Mean :13.28 Mean :13.28
3rd Qu.:13.48 3rd Qu.:13.54 3rd Qu.:13.48 3rd Qu.:13.50
Max. :14.01 Max. :13.95 Max. :14.03 Max. :14.05
> summary(v$weights)
V1 V2 V3 V4
Min. : 7.729 Min. : 7.729 Min. : 7.729 Min. : 7.729
1st Qu.:13.859 1st Qu.:15.067 1st Qu.:14.254 1st Qu.:13.592
Median :15.913 Median :16.621 Median :16.081 Median :16.028
Mean :16.773 Mean :18.525 Mean :18.472 Mean :17.112
3rd Qu.:18.214 3rd Qu.:20.002 3rd Qu.:18.475 3rd Qu.:18.398
Max. :34.331 Max. :34.331 Max. :34.331 Max. :34.331
>
> ### goana
>
> EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266",
+ "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346",
+ "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957",
+ "135","1350","1351","135112","135114","135138","135152","135154","1352","135228",
+ "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357",
+ "1358","135892","1359","135924","135935","135941","135946","135948","136","1360",
+ "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332",
+ "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991",
+ "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376",
+ "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964")
> go <- goana(fit,FDR=0.8,geneid=EB)
> topGO(go,number=10,truncate.term=30)
Term Ont N Up Down P.Up
GO:0032502 developmental process BP 26 4 7 0.914470437
GO:0070062 extracellular exosome CC 8 0 4 1.000000000
GO:0043230 extracellular organelle CC 8 0 4 1.000000000
GO:1903561 extracellular vesicle CC 8 0 4 1.000000000
GO:0032501 multicellular organismal pr... BP 30 6 7 0.762808313
GO:0098609 cell-cell adhesion BP 5 4 0 0.009503355
GO:0097190 apoptotic signaling pathway BP 3 3 0 0.010952381
GO:0031252 cell leading edge CC 3 3 0 0.010952381
GO:0010942 positive regulation of cell... BP 3 3 0 0.010952381
GO:0048856 anatomical structure develo... BP 25 4 6 0.894659283
P.Down
GO:0032502 0.002720775
GO:0070062 0.003047199
GO:0043230 0.003047199
GO:1903561 0.003047199
GO:0032501 0.007313910
GO:0098609 1.000000000
GO:0097190 1.000000000
GO:0031252 1.000000000
GO:0010942 1.000000000
GO:0048856 0.014492712
> topGO(go,number=10,truncate.term=30,sort="down")
Term Ont N Up Down P.Up P.Down
GO:0032502 developmental process BP 26 4 7 0.9144704 0.002720775
GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199
GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199
GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199
GO:0032501 multicellular organismal pr... BP 30 6 7 0.7628083 0.007313910
GO:0048856 anatomical structure develo... BP 25 4 6 0.8946593 0.014492712
GO:0031982 vesicle CC 18 1 5 0.9946677 0.015552466
GO:0051604 protein maturation BP 7 1 3 0.8497705 0.020760307
GO:0016485 protein processing BP 7 1 3 0.8497705 0.020760307
GO:0007275 multicellular organism deve... BP 20 3 5 0.8982815 0.025464546
>
> proc.time()
user system elapsed
4.21 0.23 4.45
|