Back to Multiple platform build/check report for BioC 3.11
ABCDEFGH[I]JKLMNOPQRSTUVWXYZ

CHECK report for ImpulseDE2 on tokay2

This page was generated on 2020-10-17 11:56:52 -0400 (Sat, 17 Oct 2020).

TO THE DEVELOPERS/MAINTAINERS OF THE ImpulseDE2 PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
Package 873/1905HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
ImpulseDE2 1.12.0
David S Fischer
Snapshot Date: 2020-10-16 14:40:19 -0400 (Fri, 16 Oct 2020)
URL: https://git.bioconductor.org/packages/ImpulseDE2
Branch: RELEASE_3_11
Last Commit: 91c9d49
Last Changed Date: 2020-04-27 15:07:13 -0400 (Mon, 27 Apr 2020)
malbec2 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  ERROR 
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ ERROR ] OK 
machv2 macOS 10.14.6 Mojave / x86_64  OK  OK  ERROR  OK 

Summary

Package: ImpulseDE2
Version: 1.12.0
Command: C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:ImpulseDE2.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings ImpulseDE2_1.12.0.tar.gz
StartedAt: 2020-10-17 05:12:02 -0400 (Sat, 17 Oct 2020)
EndedAt: 2020-10-17 05:16:33 -0400 (Sat, 17 Oct 2020)
EllapsedTime: 271.1 seconds
RetCode: 1
Status:  ERROR  
CheckDir: ImpulseDE2.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:ImpulseDE2.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings ImpulseDE2_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.11-bioc/meat/ImpulseDE2.Rcheck'
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'ImpulseDE2/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'ImpulseDE2' version '1.12.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'ImpulseDE2' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
plotGenes: no visible global function definition for 'error'
plotGenes: no visible binding for global variable 'normCounts'
plotGenes: no visible binding for global variable 'Condition'
plotGenes: no visible binding for global variable 'Batch'
plotGenes: no visible binding for global variable 'value'
plotGenes: no visible binding for global variable 'BatchFit'
Undefined global functions or variables:
  Batch BatchFit Condition error normCounts value
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... ERROR
Running examples in 'ImpulseDE2-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: fitSigmoidModels
> ### Title: Fits sigmoidal models to all genes on all all samples of a
> ###   condition
> ### Aliases: fitSigmoidModels
> 
> ### ** Examples
> 
> lsSimulatedData <- simulateDataSetImpulseDE2(
+ vecTimePointsA   = rep(seq(1,8),3),
+ vecTimePointsB   = NULL,
+ vecBatchesA      = NULL,
+ vecBatchesB      = NULL,
+ scaNConst        = 0,
+ scaNImp          = 20,
+ scaNLin          = 10,
+ scaNSig          = 20)
[1] "Setting no batch structure."
> objectImpulseDE2 <- runImpulseDE2(
+ matCountData    = lsSimulatedData$matObservedCounts, 
+ dfAnnotation    = lsSimulatedData$dfAnnotation,
+ boolCaseCtrl    = FALSE,
+ vecConfounders  = NULL,
+ boolIdentifyTransients = FALSE,
+ scaNProc        = 1 )
ImpulseDE2 for count data, v1.12.0
# Process input
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
ImpulseDE2
 --- call from context --- 
system.time({
    strMessage <- "# Process input"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    if (class(matCountData) == "SummarizedExperiment") {
        matCountData <- assay(matCountData)
    }
    lsProcessedData <- processData(dfAnnotation = dfAnnotation, 
        matCountData = matCountData, boolCaseCtrl = boolCaseCtrl, 
        vecConfounders = vecConfounders, vecDispersionsExternal = vecDispersionsExternal, 
        vecSizeFactorsExternal = vecSizeFactorsExternal)
    matCountDataProc <- lsProcessedData$matCountDataProc
    dfAnnotationProc <- lsProcessedData$dfAnnotationProc
    vecSizeFactorsExternalProc <- lsProcessedData$vecSizeFactorsExternalProc
    vecDispersionsExternalProc <- lsProcessedData$vecDispersionsExternalProc
    if (boolVerbose) {
        write(lsProcessedData$strReportProcessing, file = "", 
            ncolumns = 1)
    }
    strReport <- paste0(strReport, lsProcessedData$strReportProcessing)
    if (scaNProc > 1) {
        register(MulticoreParam(workers = scaNProc))
    }
    else {
        register(SerialParam())
    }
    if (is.null(vecDispersionsExternal)) {
        strMessage <- paste0("# Run DESeq2: Using dispersion factors", 
            "computed by DESeq2.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        tm_runDESeq2 <- system.time({
            vecDispersions <- runDESeq2(dfAnnotationProc = dfAnnotationProc, 
                matCountDataProc = matCountDataProc, boolCaseCtrl = boolCaseCtrl, 
                vecConfounders = vecConfounders)
        })
        strMessage <- paste0("Consumed time: ", round(tm_runDESeq2["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
    }
    else {
        strMessage <- "# Using externally supplied dispersion factors."
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        vecDispersions <- vecDispersionsExternalProc
    }
    strMessage <- "# Compute size factors"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    vecSizeFactors <- computeNormConst(matCountDataProc = matCountDataProc, 
        vecSizeFactorsExternal = vecSizeFactorsExternalProc)
    objectImpulseDE2 <- new("ImpulseDE2Object", dfImpulseDE2Results = NULL, 
        vecDEGenes = NULL, lsModelFits = NULL, matCountDataProc = matCountDataProc, 
        vecAllIDs = rownames(matCountData), dfAnnotationProc = dfAnnotationProc, 
        vecSizeFactors = vecSizeFactors, vecDispersions = vecDispersions, 
        boolCaseCtrl = boolCaseCtrl, vecConfounders = vecConfounders, 
        scaNProc = scaNProc, scaQThres = scaQThres, strReport = strReport)
    strMessage <- "# Fitting null and alternative model to the genes"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    tm_fitImpulse <- system.time({
        objectImpulseDE2 <- fitModels(objectImpulseDE2 = objectImpulseDE2, 
            vecConfounders = vecConfounders, boolCaseCtrl = boolCaseCtrl)
    })
    strMessage <- paste0("Consumed time: ", round(tm_fitImpulse["elapsed"]/60, 
        2), " min.")
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    if (boolIdentifyTransients) {
        strMessage <- "# Fitting sigmoid model to case condition"
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
        tm_fitSigmoid <- system.time({
            objectImpulseDE2 <- fitSigmoidModels(objectImpulseDE2 = objectImpulseDE2, 
                vecConfounders = vecConfounders, strCondition = "case")
        })
        strMessage <- paste0("Consumed time: ", round(tm_fitSigmoid["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    strMessage <- "# Differentially expression analysis based on model fits"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    objectImpulseDE2 <- runDEAnalysis(objectImpulseDE2 = objectImpulseDE2, 
        boolCaseCtrl = get_boolCaseCtrl(obj = objectImpulseDE2), 
        boolIdentifyTransients = boolIdentifyTransients)
    if (!is.null(scaQThres)) {
        vecDEGenes <- as.vector(objectImpulseDE2$dfImpulseDE2Results[as.numeric(objectImpulseDE2$dfImpulseDE2Results$padj) <= 
            scaQThres, "Gene"])
        strMessage <- paste0("Found ", length(vecDEGenes), " DE genes", 
            " at a FDR corrected p-value cut off of ", scaQThres, 
            ".")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    else {
        vecDEGenes <- NULL
    }
    objectImpulseDE2 <- set_vecDEGenes(obj = objectImpulseDE2, 
        element = vecDEGenes)
})
 --- call from argument --- 
if (class(matCountData) == "SummarizedExperiment") {
    matCountData <- assay(matCountData)
}
 --- R stacktrace ---
where 1: system.time({
    strMessage <- "# Process input"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    if (class(matCountData) == "SummarizedExperiment") {
        matCountData <- assay(matCountData)
    }
    lsProcessedData <- processData(dfAnnotation = dfAnnotation, 
        matCountData = matCountData, boolCaseCtrl = boolCaseCtrl, 
        vecConfounders = vecConfounders, vecDispersionsExternal = vecDispersionsExternal, 
        vecSizeFactorsExternal = vecSizeFactorsExternal)
    matCountDataProc <- lsProcessedData$matCountDataProc
    dfAnnotationProc <- lsProcessedData$dfAnnotationProc
    vecSizeFactorsExternalProc <- lsProcessedData$vecSizeFactorsExternalProc
    vecDispersionsExternalProc <- lsProcessedData$vecDispersionsExternalProc
    if (boolVerbose) {
        write(lsProcessedData$strReportProcessing, file = "", 
            ncolumns = 1)
    }
    strReport <- paste0(strReport, lsProcessedData$strReportProcessing)
    if (scaNProc > 1) {
        register(MulticoreParam(workers = scaNProc))
    }
    else {
        register(SerialParam())
    }
    if (is.null(vecDispersionsExternal)) {
        strMessage <- paste0("# Run DESeq2: Using dispersion factors", 
            "computed by DESeq2.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        tm_runDESeq2 <- system.time({
            vecDispersions <- runDESeq2(dfAnnotationProc = dfAnnotationProc, 
                matCountDataProc = matCountDataProc, boolCaseCtrl = boolCaseCtrl, 
                vecConfounders = vecConfounders)
        })
        strMessage <- paste0("Consumed time: ", round(tm_runDESeq2["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
    }
    else {
        strMessage <- "# Using externally supplied dispersion factors."
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        vecDispersions <- vecDispersionsExternalProc
    }
    strMessage <- "# Compute size factors"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    vecSizeFactors <- computeNormConst(matCountDataProc = matCountDataProc, 
        vecSizeFactorsExternal = vecSizeFactorsExternalProc)
    objectImpulseDE2 <- new("ImpulseDE2Object", dfImpulseDE2Results = NULL, 
        vecDEGenes = NULL, lsModelFits = NULL, matCountDataProc = matCountDataProc, 
        vecAllIDs = rownames(matCountData), dfAnnotationProc = dfAnnotationProc, 
        vecSizeFactors = vecSizeFactors, vecDispersions = vecDispersions, 
        boolCaseCtrl = boolCaseCtrl, vecConfounders = vecConfounders, 
        scaNProc = scaNProc, scaQThres = scaQThres, strReport = strReport)
    strMessage <- "# Fitting null and alternative model to the genes"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    tm_fitImpulse <- system.time({
        objectImpulseDE2 <- fitModels(objectImpulseDE2 = objectImpulseDE2, 
            vecConfounders = vecConfounders, boolCaseCtrl = boolCaseCtrl)
    })
    strMessage <- paste0("Consumed time: ", round(tm_fitImpulse["elapsed"]/60, 
        2), " min.")
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    if (boolIdentifyTransients) {
        strMessage <- "# Fitting sigmoid model to case condition"
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
        tm_fitSigmoid <- system.time({
            objectImpulseDE2 <- fitSigmoidModels(objectImpulseDE2 = objectImpulseDE2, 
                vecConfounders = vecConfounders, strCondition = "case")
        })
        strMessage <- paste0("Consumed time: ", round(tm_fitSigmoid["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    strMessage <- "# Differentially expression analysis based on model fits"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    objectImpulseDE2 <- runDEAnalysis(objectImpulseDE2 = objectImpulseDE2, 
        boolCaseCtrl = get_boolCaseCtrl(obj = objectImpulseDE2), 
        boolIdentifyTransients = boolIdentifyTransients)
    if (!is.null(scaQThres)) {
        vecDEGenes <- as.vector(objectImpulseDE2$dfImpulseDE2Results[as.numeric(objectImpulseDE2$dfImpulseDE2Results$padj) <= 
            scaQThres, "Gene"])
        strMessage <- paste0("Found ", length(vecDEGenes), " DE genes", 
            " at a FDR corrected p-value cut off of ", scaQThres, 
            ".")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    else {
        vecDEGenes <- NULL
    }
    objectImpulseDE2 <- set_vecDEGenes(obj = objectImpulseDE2, 
        element = vecDEGenes)
})
where 2: runImpulseDE2(matCountData = lsSimulatedData$matObservedCounts, 
    dfAnnotation = lsSimulatedData$dfAnnotation, boolCaseCtrl = FALSE, 
    vecConfounders = NULL, boolIdentifyTransients = FALSE, scaNProc = 1)

 --- value of length: 2 type: logical ---
[1] FALSE FALSE
 --- function from context --- 
function (expr, gcFirst = TRUE) 
{
    ppt <- function(y) {
        if (!is.na(y[4L])) 
            y[1L] <- y[1L] + y[4L]
        if (!is.na(y[5L])) 
            y[2L] <- y[2L] + y[5L]
        paste(formatC(y[1L:3L]), collapse = " ")
    }
    if (gcFirst) 
        gc(FALSE)
    time <- proc.time()
    on.exit(message("Timing stopped at: ", ppt(proc.time() - 
        time)))
    expr
    new.time <- proc.time()
    on.exit()
    structure(new.time - time, class = "proc_time")
}
<bytecode: 0x0f79e978>
<environment: namespace:base>
 --- function search by body ---
Function system.time in namespace base has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

** running examples for arch 'x64' ... ERROR
Running examples in 'ImpulseDE2-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: fitSigmoidModels
> ### Title: Fits sigmoidal models to all genes on all all samples of a
> ###   condition
> ### Aliases: fitSigmoidModels
> 
> ### ** Examples
> 
> lsSimulatedData <- simulateDataSetImpulseDE2(
+ vecTimePointsA   = rep(seq(1,8),3),
+ vecTimePointsB   = NULL,
+ vecBatchesA      = NULL,
+ vecBatchesB      = NULL,
+ scaNConst        = 0,
+ scaNImp          = 20,
+ scaNLin          = 10,
+ scaNSig          = 20)
[1] "Setting no batch structure."
> objectImpulseDE2 <- runImpulseDE2(
+ matCountData    = lsSimulatedData$matObservedCounts, 
+ dfAnnotation    = lsSimulatedData$dfAnnotation,
+ boolCaseCtrl    = FALSE,
+ vecConfounders  = NULL,
+ boolIdentifyTransients = FALSE,
+ scaNProc        = 1 )
ImpulseDE2 for count data, v1.12.0
# Process input
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
ImpulseDE2
 --- call from context --- 
system.time({
    strMessage <- "# Process input"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    if (class(matCountData) == "SummarizedExperiment") {
        matCountData <- assay(matCountData)
    }
    lsProcessedData <- processData(dfAnnotation = dfAnnotation, 
        matCountData = matCountData, boolCaseCtrl = boolCaseCtrl, 
        vecConfounders = vecConfounders, vecDispersionsExternal = vecDispersionsExternal, 
        vecSizeFactorsExternal = vecSizeFactorsExternal)
    matCountDataProc <- lsProcessedData$matCountDataProc
    dfAnnotationProc <- lsProcessedData$dfAnnotationProc
    vecSizeFactorsExternalProc <- lsProcessedData$vecSizeFactorsExternalProc
    vecDispersionsExternalProc <- lsProcessedData$vecDispersionsExternalProc
    if (boolVerbose) {
        write(lsProcessedData$strReportProcessing, file = "", 
            ncolumns = 1)
    }
    strReport <- paste0(strReport, lsProcessedData$strReportProcessing)
    if (scaNProc > 1) {
        register(MulticoreParam(workers = scaNProc))
    }
    else {
        register(SerialParam())
    }
    if (is.null(vecDispersionsExternal)) {
        strMessage <- paste0("# Run DESeq2: Using dispersion factors", 
            "computed by DESeq2.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        tm_runDESeq2 <- system.time({
            vecDispersions <- runDESeq2(dfAnnotationProc = dfAnnotationProc, 
                matCountDataProc = matCountDataProc, boolCaseCtrl = boolCaseCtrl, 
                vecConfounders = vecConfounders)
        })
        strMessage <- paste0("Consumed time: ", round(tm_runDESeq2["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
    }
    else {
        strMessage <- "# Using externally supplied dispersion factors."
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        vecDispersions <- vecDispersionsExternalProc
    }
    strMessage <- "# Compute size factors"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    vecSizeFactors <- computeNormConst(matCountDataProc = matCountDataProc, 
        vecSizeFactorsExternal = vecSizeFactorsExternalProc)
    objectImpulseDE2 <- new("ImpulseDE2Object", dfImpulseDE2Results = NULL, 
        vecDEGenes = NULL, lsModelFits = NULL, matCountDataProc = matCountDataProc, 
        vecAllIDs = rownames(matCountData), dfAnnotationProc = dfAnnotationProc, 
        vecSizeFactors = vecSizeFactors, vecDispersions = vecDispersions, 
        boolCaseCtrl = boolCaseCtrl, vecConfounders = vecConfounders, 
        scaNProc = scaNProc, scaQThres = scaQThres, strReport = strReport)
    strMessage <- "# Fitting null and alternative model to the genes"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    tm_fitImpulse <- system.time({
        objectImpulseDE2 <- fitModels(objectImpulseDE2 = objectImpulseDE2, 
            vecConfounders = vecConfounders, boolCaseCtrl = boolCaseCtrl)
    })
    strMessage <- paste0("Consumed time: ", round(tm_fitImpulse["elapsed"]/60, 
        2), " min.")
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    if (boolIdentifyTransients) {
        strMessage <- "# Fitting sigmoid model to case condition"
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
        tm_fitSigmoid <- system.time({
            objectImpulseDE2 <- fitSigmoidModels(objectImpulseDE2 = objectImpulseDE2, 
                vecConfounders = vecConfounders, strCondition = "case")
        })
        strMessage <- paste0("Consumed time: ", round(tm_fitSigmoid["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    strMessage <- "# Differentially expression analysis based on model fits"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    objectImpulseDE2 <- runDEAnalysis(objectImpulseDE2 = objectImpulseDE2, 
        boolCaseCtrl = get_boolCaseCtrl(obj = objectImpulseDE2), 
        boolIdentifyTransients = boolIdentifyTransients)
    if (!is.null(scaQThres)) {
        vecDEGenes <- as.vector(objectImpulseDE2$dfImpulseDE2Results[as.numeric(objectImpulseDE2$dfImpulseDE2Results$padj) <= 
            scaQThres, "Gene"])
        strMessage <- paste0("Found ", length(vecDEGenes), " DE genes", 
            " at a FDR corrected p-value cut off of ", scaQThres, 
            ".")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    else {
        vecDEGenes <- NULL
    }
    objectImpulseDE2 <- set_vecDEGenes(obj = objectImpulseDE2, 
        element = vecDEGenes)
})
 --- call from argument --- 
if (class(matCountData) == "SummarizedExperiment") {
    matCountData <- assay(matCountData)
}
 --- R stacktrace ---
where 1: system.time({
    strMessage <- "# Process input"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    if (class(matCountData) == "SummarizedExperiment") {
        matCountData <- assay(matCountData)
    }
    lsProcessedData <- processData(dfAnnotation = dfAnnotation, 
        matCountData = matCountData, boolCaseCtrl = boolCaseCtrl, 
        vecConfounders = vecConfounders, vecDispersionsExternal = vecDispersionsExternal, 
        vecSizeFactorsExternal = vecSizeFactorsExternal)
    matCountDataProc <- lsProcessedData$matCountDataProc
    dfAnnotationProc <- lsProcessedData$dfAnnotationProc
    vecSizeFactorsExternalProc <- lsProcessedData$vecSizeFactorsExternalProc
    vecDispersionsExternalProc <- lsProcessedData$vecDispersionsExternalProc
    if (boolVerbose) {
        write(lsProcessedData$strReportProcessing, file = "", 
            ncolumns = 1)
    }
    strReport <- paste0(strReport, lsProcessedData$strReportProcessing)
    if (scaNProc > 1) {
        register(MulticoreParam(workers = scaNProc))
    }
    else {
        register(SerialParam())
    }
    if (is.null(vecDispersionsExternal)) {
        strMessage <- paste0("# Run DESeq2: Using dispersion factors", 
            "computed by DESeq2.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        tm_runDESeq2 <- system.time({
            vecDispersions <- runDESeq2(dfAnnotationProc = dfAnnotationProc, 
                matCountDataProc = matCountDataProc, boolCaseCtrl = boolCaseCtrl, 
                vecConfounders = vecConfounders)
        })
        strMessage <- paste0("Consumed time: ", round(tm_runDESeq2["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
    }
    else {
        strMessage <- "# Using externally supplied dispersion factors."
        if (boolVerbose) {
            message(strMessage)
        }
        strReport <- paste0(strReport, "\n", strMessage)
        vecDispersions <- vecDispersionsExternalProc
    }
    strMessage <- "# Compute size factors"
    if (boolVerbose) {
        message(strMessage)
    }
    strReport <- paste0(strReport, "\n", strMessage)
    vecSizeFactors <- computeNormConst(matCountDataProc = matCountDataProc, 
        vecSizeFactorsExternal = vecSizeFactorsExternalProc)
    objectImpulseDE2 <- new("ImpulseDE2Object", dfImpulseDE2Results = NULL, 
        vecDEGenes = NULL, lsModelFits = NULL, matCountDataProc = matCountDataProc, 
        vecAllIDs = rownames(matCountData), dfAnnotationProc = dfAnnotationProc, 
        vecSizeFactors = vecSizeFactors, vecDispersions = vecDispersions, 
        boolCaseCtrl = boolCaseCtrl, vecConfounders = vecConfounders, 
        scaNProc = scaNProc, scaQThres = scaQThres, strReport = strReport)
    strMessage <- "# Fitting null and alternative model to the genes"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    tm_fitImpulse <- system.time({
        objectImpulseDE2 <- fitModels(objectImpulseDE2 = objectImpulseDE2, 
            vecConfounders = vecConfounders, boolCaseCtrl = boolCaseCtrl)
    })
    strMessage <- paste0("Consumed time: ", round(tm_fitImpulse["elapsed"]/60, 
        2), " min.")
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    if (boolIdentifyTransients) {
        strMessage <- "# Fitting sigmoid model to case condition"
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
        tm_fitSigmoid <- system.time({
            objectImpulseDE2 <- fitSigmoidModels(objectImpulseDE2 = objectImpulseDE2, 
                vecConfounders = vecConfounders, strCondition = "case")
        })
        strMessage <- paste0("Consumed time: ", round(tm_fitSigmoid["elapsed"]/60, 
            2), " min.")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    strMessage <- "# Differentially expression analysis based on model fits"
    if (boolVerbose) {
        message(strMessage)
    }
    objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
        s = strMessage)
    objectImpulseDE2 <- runDEAnalysis(objectImpulseDE2 = objectImpulseDE2, 
        boolCaseCtrl = get_boolCaseCtrl(obj = objectImpulseDE2), 
        boolIdentifyTransients = boolIdentifyTransients)
    if (!is.null(scaQThres)) {
        vecDEGenes <- as.vector(objectImpulseDE2$dfImpulseDE2Results[as.numeric(objectImpulseDE2$dfImpulseDE2Results$padj) <= 
            scaQThres, "Gene"])
        strMessage <- paste0("Found ", length(vecDEGenes), " DE genes", 
            " at a FDR corrected p-value cut off of ", scaQThres, 
            ".")
        if (boolVerbose) {
            message(strMessage)
        }
        objectImpulseDE2 <- append_strReport(obj = objectImpulseDE2, 
            s = strMessage)
    }
    else {
        vecDEGenes <- NULL
    }
    objectImpulseDE2 <- set_vecDEGenes(obj = objectImpulseDE2, 
        element = vecDEGenes)
})
where 2: runImpulseDE2(matCountData = lsSimulatedData$matObservedCounts, 
    dfAnnotation = lsSimulatedData$dfAnnotation, boolCaseCtrl = FALSE, 
    vecConfounders = NULL, boolIdentifyTransients = FALSE, scaNProc = 1)

 --- value of length: 2 type: logical ---
[1] FALSE FALSE
 --- function from context --- 
function (expr, gcFirst = TRUE) 
{
    ppt <- function(y) {
        if (!is.na(y[4L])) 
            y[1L] <- y[1L] + y[4L]
        if (!is.na(y[5L])) 
            y[2L] <- y[2L] + y[5L]
        paste(formatC(y[1L:3L]), collapse = " ")
    }
    if (gcFirst) 
        gc(FALSE)
    time <- proc.time()
    on.exit(message("Timing stopped at: ", ppt(proc.time() - 
        time)))
    expr
    new.time <- proc.time()
    on.exit()
    structure(new.time - time, class = "proc_time")
}
<bytecode: 0x0000000029afbe18>
<environment: namespace:base>
 --- function search by body ---
Function system.time in namespace base has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 ERRORs, 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.11-bioc/meat/ImpulseDE2.Rcheck/00check.log'
for details.


Installation output

ImpulseDE2.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.11/bioc/src/contrib/ImpulseDE2_1.12.0.tar.gz && rm -rf ImpulseDE2.buildbin-libdir && mkdir ImpulseDE2.buildbin-libdir && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=ImpulseDE2.buildbin-libdir ImpulseDE2_1.12.0.tar.gz && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL ImpulseDE2_1.12.0.zip && rm ImpulseDE2_1.12.0.tar.gz ImpulseDE2_1.12.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 58597  100 58597    0     0   903k      0 --:--:-- --:--:-- --:--:-- 1021k

install for i386

* installing *source* package 'ImpulseDE2' ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'ImpulseDE2'
    finding HTML links ... done
    ImpulseDE2Object-class                  html  
    append_strReport                        html  
    computeNormConst                        html  
    computeSizeFactors                      html  
    estimateImpulseParam                    html  
    estimateSigmoidParam                    html  
    evalImpulse                             html  
    evalImpulse_comp                        html  
    evalLogLikImpulse                       html  
    evalLogLikImpulse_comp                  html  
    evalLogLikMu                            html  
    evalLogLikMu_comp                       html  
    evalLogLikSigmoid                       html  
    evalLogLikSigmoid_comp                  html  
    evalSigmoid                             html  
    evalSigmoid_comp                        html  
    fitConstImpulse                         html  
    fitConstImpulseGene                     html  
    fitConstModel                           html  
    fitImpulseModel                         html  
    fitModels                               html  
    fitSigmoidGene                          html  
    fitSigmoidModel                         html  
    fitSigmoidModels                        html  
    get_accessors                           html  
    list_accession                          html  
    plotGenes                               html  
    plotHeatmap                             html  
    processData                             html  
    runDEAnalysis                           html  
    runDESeq2                               html  
    runImpulseDE2                           html  
    set_accessors                           html  
    simulateDataSetImpulseDE2               html  
    updateDEAnalysis                        html  
    writeReportToFile                       html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'ImpulseDE2' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'ImpulseDE2' as ImpulseDE2_1.12.0.zip
* DONE (ImpulseDE2)
* installing to library 'C:/Users/biocbuild/bbs-3.11-bioc/R/library'
package 'ImpulseDE2' successfully unpacked and MD5 sums checked

Tests output


Example timings

ImpulseDE2.Rcheck/examples_i386/ImpulseDE2-Ex.timings

nameusersystemelapsed
computeNormConst0.120.030.16

ImpulseDE2.Rcheck/examples_x64/ImpulseDE2-Ex.timings

nameusersystemelapsed
computeNormConst0.840.000.84