Icens.Rcheck/tests_i386/testbv.Rout.save
R : Copyright 2004, The R Foundation for Statistical Computing
Version 1.9.0 Under development (unstable) (2004-03-04), ISBN 3-900051-00-3
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for a HTML browser interface to help.
Type 'q()' to quit R.
> #some random data
> library(Icens)
>
> intvlx <- matrix(c(
+ 0.8820387, 10.666764,
+ 15.2923703, 18.390665,
+ 10.0710104,
+ 18.9,
+ 7.9796946, 10.964210,
+ 5.2703924, 11.267734,
+ 18.7,
+ 19.875977,
+ 5.9667531, 19.886629,
+ 9.7729062, 13.055671,
+ 3.1947369,
+ 7.482414,
+ 4.2636605, 7.216566,
+ 5.3197158, 15.686208,
+ 0.2885009,
+ 11.463272,
+ 0.2885009,
+ 11.463272),ncol=2,byrow=TRUE)
>
> intvly <- matrix(c(
+ 8.431484, 11.324923,
+ 9.6,
+ 18.739108,
+ 1.438516, 3.232738,
+ 10.6, 11.711857,
+ 14.298833,
+ 16.752745,
+ 9.431221, 16.958045,
+ 2.396955, 7.541405,
+ 12.334413,
+ 21.932913,
+ 7.0, 19.268005,
+ 9.342461, 13.843589,
+ 14.717762,
+ 22.361883,
+ 16.983453, 20.541734,
+ 7.918273, 10.),ncol=2,byrow=TRUE)
>
> #find the cliques
> BVcliques(intvlx,intvly)
[[1]]
[1] 7 9
[[2]]
[1] 10 9 1 13
[[3]]
[1] 11 5 9
[[4]]
[1] 11 9 12
[[5]]
[1] 3 7
[[6]]
[1] 4 1
[[7]]
[1] 8 11 5
[[8]]
[1] 8 11 12
[[9]]
[1] 2 11
[[10]]
[1] 6
>
> #find the support
> BVsupport(intvlx,intvly)
xlo xhi ylo yhi
1 5.966753 7.482414 7.000000 7.541405
2 4.263661 7.216566 9.342461 10.000000
3 5.319716 7.482414 14.717762 16.752745
4 5.319716 7.482414 16.983453 19.268005
5 10.071010 18.900000 2.396955 3.232738
6 7.979695 10.666764 10.600000 11.324923
7 9.772906 11.267734 14.717762 16.752745
8 9.772906 11.463272 16.983453 20.541734
9 15.292370 15.686208 14.717762 18.739108
10 18.700000 19.875977 9.431221 16.958045
>
> #find the clique matrix
> clmat <- BVclmat(BVcliques(intvlx,intvly))
>
> #the matrix is rank deficient
> clmat[4,]+clmat[7,]-clmat[3,]-clmat[8,]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0
>
> #should be the zero vector
>
> #now for some estimation
>
> p1 <- VEM(clmat)
>
> p2 <- PGM(clmat)
>
> #p3 seems to be different from p1 and p2!
> p3 <- EMICM(clmat)
>
> # so is the est unique?
>
> w<-clmat%*%t(clmat)
> b<-eigen(w)
>
> b$values
[1] 9.019594e+00 4.947594e+00 2.889820e+00 2.000000e+00 2.000000e+00
[6] 1.461001e+00 1.207129e+00 1.000000e+00 4.748624e-01 -2.480201e-16
> # one zero eigenvalue
>
> ev1 <- b$vectors[,10]
>
> #but the estimator is unique since we cannot move in the direction of
> #recesion
>
|
Icens.Rcheck/tests_x64/testbv.Rout.save
R : Copyright 2004, The R Foundation for Statistical Computing
Version 1.9.0 Under development (unstable) (2004-03-04), ISBN 3-900051-00-3
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for a HTML browser interface to help.
Type 'q()' to quit R.
> #some random data
> library(Icens)
>
> intvlx <- matrix(c(
+ 0.8820387, 10.666764,
+ 15.2923703, 18.390665,
+ 10.0710104,
+ 18.9,
+ 7.9796946, 10.964210,
+ 5.2703924, 11.267734,
+ 18.7,
+ 19.875977,
+ 5.9667531, 19.886629,
+ 9.7729062, 13.055671,
+ 3.1947369,
+ 7.482414,
+ 4.2636605, 7.216566,
+ 5.3197158, 15.686208,
+ 0.2885009,
+ 11.463272,
+ 0.2885009,
+ 11.463272),ncol=2,byrow=TRUE)
>
> intvly <- matrix(c(
+ 8.431484, 11.324923,
+ 9.6,
+ 18.739108,
+ 1.438516, 3.232738,
+ 10.6, 11.711857,
+ 14.298833,
+ 16.752745,
+ 9.431221, 16.958045,
+ 2.396955, 7.541405,
+ 12.334413,
+ 21.932913,
+ 7.0, 19.268005,
+ 9.342461, 13.843589,
+ 14.717762,
+ 22.361883,
+ 16.983453, 20.541734,
+ 7.918273, 10.),ncol=2,byrow=TRUE)
>
> #find the cliques
> BVcliques(intvlx,intvly)
[[1]]
[1] 7 9
[[2]]
[1] 10 9 1 13
[[3]]
[1] 11 5 9
[[4]]
[1] 11 9 12
[[5]]
[1] 3 7
[[6]]
[1] 4 1
[[7]]
[1] 8 11 5
[[8]]
[1] 8 11 12
[[9]]
[1] 2 11
[[10]]
[1] 6
>
> #find the support
> BVsupport(intvlx,intvly)
xlo xhi ylo yhi
1 5.966753 7.482414 7.000000 7.541405
2 4.263661 7.216566 9.342461 10.000000
3 5.319716 7.482414 14.717762 16.752745
4 5.319716 7.482414 16.983453 19.268005
5 10.071010 18.900000 2.396955 3.232738
6 7.979695 10.666764 10.600000 11.324923
7 9.772906 11.267734 14.717762 16.752745
8 9.772906 11.463272 16.983453 20.541734
9 15.292370 15.686208 14.717762 18.739108
10 18.700000 19.875977 9.431221 16.958045
>
> #find the clique matrix
> clmat <- BVclmat(BVcliques(intvlx,intvly))
>
> #the matrix is rank deficient
> clmat[4,]+clmat[7,]-clmat[3,]-clmat[8,]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0
>
> #should be the zero vector
>
> #now for some estimation
>
> p1 <- VEM(clmat)
>
> p2 <- PGM(clmat)
>
> #p3 seems to be different from p1 and p2!
> p3 <- EMICM(clmat)
>
> # so is the est unique?
>
> w<-clmat%*%t(clmat)
> b<-eigen(w)
>
> b$values
[1] 9.019594e+00 4.947594e+00 2.889820e+00 2.000000e+00 2.000000e+00
[6] 1.461001e+00 1.207129e+00 1.000000e+00 4.748624e-01 -2.480201e-16
> # one zero eigenvalue
>
> ev1 <- b$vectors[,10]
>
> #but the estimator is unique since we cannot move in the direction of
> #recesion
>
|
Icens.Rcheck/tests_i386/testbv.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #some random data
> library(Icens)
Loading required package: survival
>
> intvlx <- matrix(c(
+ 0.8820387, 10.666764,
+ 15.2923703, 18.390665,
+ 10.0710104,
+ 18.9,
+ 7.9796946, 10.964210,
+ 5.2703924, 11.267734,
+ 18.7,
+ 19.875977,
+ 5.9667531, 19.886629,
+ 9.7729062, 13.055671,
+ 3.1947369,
+ 7.482414,
+ 4.2636605, 7.216566,
+ 5.3197158, 15.686208,
+ 0.2885009,
+ 11.463272,
+ 0.2885009,
+ 11.463272),ncol=2,byrow=TRUE)
>
> intvly <- matrix(c(
+ 8.431484, 11.324923,
+ 9.6,
+ 18.739108,
+ 1.438516, 3.232738,
+ 10.6, 11.711857,
+ 14.298833,
+ 16.752745,
+ 9.431221, 16.958045,
+ 2.396955, 7.541405,
+ 12.334413,
+ 21.932913,
+ 7.0, 19.268005,
+ 9.342461, 13.843589,
+ 14.717762,
+ 22.361883,
+ 16.983453, 20.541734,
+ 7.918273, 10.),ncol=2,byrow=TRUE)
>
> #find the cliques
> BVcliques(intvlx,intvly)
[[1]]
[1] 7 9
[[2]]
[1] 10 9 1 13
[[3]]
[1] 11 5 9
[[4]]
[1] 11 9 12
[[5]]
[1] 3 7
[[6]]
[1] 4 1
[[7]]
[1] 8 11 5
[[8]]
[1] 8 11 12
[[9]]
[1] 2 11
[[10]]
[1] 6
>
> #find the support
> BVsupport(intvlx,intvly)
xlo xhi ylo yhi
1 5.966753 7.482414 7.000000 7.541405
2 4.263661 7.216566 9.342461 10.000000
3 5.319716 7.482414 14.717762 16.752745
4 5.319716 7.482414 16.983453 19.268005
5 10.071010 18.900000 2.396955 3.232738
6 7.979695 10.666764 10.600000 11.324923
7 9.772906 11.267734 14.717762 16.752745
8 9.772906 11.463272 16.983453 20.541734
9 15.292370 15.686208 14.717762 18.739108
10 18.700000 19.875977 9.431221 16.958045
>
> #find the clique matrix
> clmat <- BVclmat(BVcliques(intvlx,intvly))
>
> #the matrix is rank deficient
> clmat[4,]+clmat[7,]-clmat[3,]-clmat[8,]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0
>
> #should be the zero vector
>
> #now for some estimation
>
> p1 <- VEM(clmat)
>
> p2 <- PGM(clmat)
>
> #p3 seems to be different from p1 and p2!
> p3 <- EMICM(clmat)
>
> # so is the est unique?
>
> w<-clmat%*%t(clmat)
> b<-eigen(w)
>
> b$values
[1] 9.019594e+00 4.947594e+00 2.889820e+00 2.000000e+00 2.000000e+00
[6] 1.461001e+00 1.207129e+00 1.000000e+00 4.748624e-01 -2.640501e-16
> # one zero eigenvalue
>
> ev1 <- b$vectors[,10]
>
> #but the estimator is unique since we cannot move in the direction of
> #recesion
>
> proc.time()
user system elapsed
1.96 0.12 2.07
|
|
|
Icens.Rcheck/tests_x64/testbv.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #some random data
> library(Icens)
Loading required package: survival
>
> intvlx <- matrix(c(
+ 0.8820387, 10.666764,
+ 15.2923703, 18.390665,
+ 10.0710104,
+ 18.9,
+ 7.9796946, 10.964210,
+ 5.2703924, 11.267734,
+ 18.7,
+ 19.875977,
+ 5.9667531, 19.886629,
+ 9.7729062, 13.055671,
+ 3.1947369,
+ 7.482414,
+ 4.2636605, 7.216566,
+ 5.3197158, 15.686208,
+ 0.2885009,
+ 11.463272,
+ 0.2885009,
+ 11.463272),ncol=2,byrow=TRUE)
>
> intvly <- matrix(c(
+ 8.431484, 11.324923,
+ 9.6,
+ 18.739108,
+ 1.438516, 3.232738,
+ 10.6, 11.711857,
+ 14.298833,
+ 16.752745,
+ 9.431221, 16.958045,
+ 2.396955, 7.541405,
+ 12.334413,
+ 21.932913,
+ 7.0, 19.268005,
+ 9.342461, 13.843589,
+ 14.717762,
+ 22.361883,
+ 16.983453, 20.541734,
+ 7.918273, 10.),ncol=2,byrow=TRUE)
>
> #find the cliques
> BVcliques(intvlx,intvly)
[[1]]
[1] 7 9
[[2]]
[1] 10 9 1 13
[[3]]
[1] 11 5 9
[[4]]
[1] 11 9 12
[[5]]
[1] 3 7
[[6]]
[1] 4 1
[[7]]
[1] 8 11 5
[[8]]
[1] 8 11 12
[[9]]
[1] 2 11
[[10]]
[1] 6
>
> #find the support
> BVsupport(intvlx,intvly)
xlo xhi ylo yhi
1 5.966753 7.482414 7.000000 7.541405
2 4.263661 7.216566 9.342461 10.000000
3 5.319716 7.482414 14.717762 16.752745
4 5.319716 7.482414 16.983453 19.268005
5 10.071010 18.900000 2.396955 3.232738
6 7.979695 10.666764 10.600000 11.324923
7 9.772906 11.267734 14.717762 16.752745
8 9.772906 11.463272 16.983453 20.541734
9 15.292370 15.686208 14.717762 18.739108
10 18.700000 19.875977 9.431221 16.958045
>
> #find the clique matrix
> clmat <- BVclmat(BVcliques(intvlx,intvly))
>
> #the matrix is rank deficient
> clmat[4,]+clmat[7,]-clmat[3,]-clmat[8,]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0
>
> #should be the zero vector
>
> #now for some estimation
>
> p1 <- VEM(clmat)
>
> p2 <- PGM(clmat)
>
> #p3 seems to be different from p1 and p2!
> p3 <- EMICM(clmat)
>
> # so is the est unique?
>
> w<-clmat%*%t(clmat)
> b<-eigen(w)
>
> b$values
[1] 9.019594e+00 4.947594e+00 2.889820e+00 2.000000e+00 2.000000e+00
[6] 1.461001e+00 1.207129e+00 1.000000e+00 4.748624e-01 -2.640501e-16
> # one zero eigenvalue
>
> ev1 <- b$vectors[,10]
>
> #but the estimator is unique since we cannot move in the direction of
> #recesion
>
> proc.time()
user system elapsed
1.53 0.21 1.73
|