Chapter 7 Lawlor human pancreas (SMARTer)

7.1 Introduction

This performs an analysis of the Lawlor et al. (2017) dataset, consisting of human pancreas cells from various donors.

7.2 Data loading

library(scRNAseq)
sce.lawlor <- LawlorPancreasData()
library(AnnotationHub)
edb <- AnnotationHub()[["AH73881"]]
anno <- select(edb, keys=rownames(sce.lawlor), keytype="GENEID", 
    columns=c("SYMBOL", "SEQNAME"))
rowData(sce.lawlor) <- anno[match(rownames(sce.lawlor), anno[,1]),-1]

7.3 Quality control

unfiltered <- sce.lawlor
library(scater)
stats <- perCellQCMetrics(sce.lawlor, 
    subsets=list(Mito=which(rowData(sce.lawlor)$SEQNAME=="MT")))
qc <- quickPerCellQC(stats, percent_subsets="subsets_Mito_percent",
    batch=sce.lawlor$`islet unos id`)
sce.lawlor <- sce.lawlor[,!qc$discard]
colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard

gridExtra::grid.arrange(
    plotColData(unfiltered, x="islet unos id", y="sum", colour_by="discard") +
        scale_y_log10() + ggtitle("Total count") +
        theme(axis.text.x = element_text(angle = 90)),
    plotColData(unfiltered, x="islet unos id", y="detected", 
        colour_by="discard") + scale_y_log10() + ggtitle("Detected features") +
        theme(axis.text.x = element_text(angle = 90)), 
    plotColData(unfiltered, x="islet unos id", y="subsets_Mito_percent",
        colour_by="discard") + ggtitle("Mito percent") +
        theme(axis.text.x = element_text(angle = 90)),
    ncol=2
)
Distribution of each QC metric across cells from each donor of the Lawlor pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

Figure 7.1: Distribution of each QC metric across cells from each donor of the Lawlor pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

plotColData(unfiltered, x="sum", y="subsets_Mito_percent",
    colour_by="discard") + scale_x_log10()
Percentage of mitochondrial reads in each cell in the 416B dataset compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

Figure 7.2: Percentage of mitochondrial reads in each cell in the 416B dataset compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

colSums(as.matrix(qc))
##              low_lib_size            low_n_features high_subsets_Mito_percent 
##                         9                         5                        25 
##                   discard 
##                        34

7.4 Normalization

library(scran)
set.seed(1000)
clusters <- quickCluster(sce.lawlor)
sce.lawlor <- computeSumFactors(sce.lawlor, clusters=clusters)
sce.lawlor <- logNormCounts(sce.lawlor)
summary(sizeFactors(sce.lawlor))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.295   0.781   0.963   1.000   1.182   2.629
plot(librarySizeFactors(sce.lawlor), sizeFactors(sce.lawlor), pch=16,
    xlab="Library size factors", ylab="Deconvolution factors", log="xy")
Relationship between the library size factors and the deconvolution size factors in the Lawlor pancreas dataset.

Figure 7.3: Relationship between the library size factors and the deconvolution size factors in the Lawlor pancreas dataset.

7.5 Variance modelling

Using age as a proxy for the donor.

dec.lawlor <- modelGeneVar(sce.lawlor, block=sce.lawlor$`islet unos id`)
chosen.genes <- getTopHVGs(dec.lawlor, n=2000)
par(mfrow=c(4,2))
blocked.stats <- dec.lawlor$per.block
for (i in colnames(blocked.stats)) {
    current <- blocked.stats[[i]]
    plot(current$mean, current$total, main=i, pch=16, cex=0.5,
        xlab="Mean of log-expression", ylab="Variance of log-expression")
    curfit <- metadata(current)
    curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)
}
Per-gene variance as a function of the mean for the log-expression values in the Lawlor pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted separately for each donor.

Figure 7.4: Per-gene variance as a function of the mean for the log-expression values in the Lawlor pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted separately for each donor.

7.6 Dimensionality reduction

library(BiocSingular)
set.seed(101011001)
sce.lawlor <- runPCA(sce.lawlor, subset_row=chosen.genes, ncomponents=25)
sce.lawlor <- runTSNE(sce.lawlor, dimred="PCA")

7.7 Clustering

snn.gr <- buildSNNGraph(sce.lawlor, use.dimred="PCA")
colLabels(sce.lawlor) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
table(colLabels(sce.lawlor), sce.lawlor$`cell type`)
##    
##     Acinar Alpha Beta Delta Ductal Gamma/PP None/Other Stellate
##   1      1     0    1    13      2       16          2        0
##   2      0     0   75     1      0        0          0        0
##   3      0   161    1     0      0        1          2        0
##   4      0     1    0     1      0        0          5       19
##   5     22     0    0     0      0        0          0        0
##   6      0     0  174     4      1        0          1        0
##   7      0    76    1     0      0        0          0        0
##   8      0     0    0     1     20        0          2        0
table(colLabels(sce.lawlor), sce.lawlor$`islet unos id`)
##    
##     ACCG268 ACCR015A ACEK420A ACEL337 ACHY057 ACIB065 ACIW009 ACJV399
##   1       8        2        2       4       4       4       9       2
##   2      13        3        2      33       3       2       4      16
##   3      36       23       14      13      14      14      21      30
##   4       7        1        0       1       0       4       9       4
##   5       0        2       13       0       0       0       5       2
##   6      34       10        4      39       7      23      24      39
##   7      33       12        0       5       6       7       4      10
##   8       1        1        2       1       2       1      12       3
gridExtra::grid.arrange(
    plotTSNE(sce.lawlor, colour_by="label"),
    plotTSNE(sce.lawlor, colour_by="islet unos id"),
    ncol=2
)
Obligatory $t$-SNE plots of the Lawlor pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

Figure 5.3: Obligatory \(t\)-SNE plots of the Lawlor pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

Session Info

R Under development (unstable) (2024-10-21 r87258)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] BiocSingular_1.23.0         scran_1.35.0               
 [3] scater_1.35.0               ggplot2_3.5.1              
 [5] scuttle_1.17.0              ensembldb_2.31.0           
 [7] AnnotationFilter_1.31.0     GenomicFeatures_1.59.1     
 [9] AnnotationDbi_1.69.0        AnnotationHub_3.15.0       
[11] BiocFileCache_2.15.0        dbplyr_2.5.0               
[13] scRNAseq_2.21.0             SingleCellExperiment_1.29.1
[15] SummarizedExperiment_1.37.0 Biobase_2.67.0             
[17] GenomicRanges_1.59.0        GenomeInfoDb_1.43.0        
[19] IRanges_2.41.0              S4Vectors_0.45.1           
[21] BiocGenerics_0.53.1         generics_0.1.3             
[23] MatrixGenerics_1.19.0       matrixStats_1.4.1          
[25] BiocStyle_2.35.0            rebook_1.17.0              

loaded via a namespace (and not attached):
  [1] jsonlite_1.8.9           CodeDepends_0.6.6        magrittr_2.0.3          
  [4] ggbeeswarm_0.7.2         gypsum_1.3.0             farver_2.1.2            
  [7] rmarkdown_2.29           BiocIO_1.17.0            zlibbioc_1.53.0         
 [10] vctrs_0.6.5              memoise_2.0.1            Rsamtools_2.23.0        
 [13] RCurl_1.98-1.16          htmltools_0.5.8.1        S4Arrays_1.7.1          
 [16] curl_6.0.0               BiocNeighbors_2.1.0      Rhdf5lib_1.29.0         
 [19] SparseArray_1.7.1        rhdf5_2.51.0             sass_0.4.9              
 [22] alabaster.base_1.7.1     bslib_0.8.0              alabaster.sce_1.7.0     
 [25] httr2_1.0.6              cachem_1.1.0             GenomicAlignments_1.43.0
 [28] igraph_2.1.1             mime_0.12                lifecycle_1.0.4         
 [31] pkgconfig_2.0.3          rsvd_1.0.5               Matrix_1.7-1            
 [34] R6_2.5.1                 fastmap_1.2.0            GenomeInfoDbData_1.2.13 
 [37] digest_0.6.37            colorspace_2.1-1         dqrng_0.4.1             
 [40] irlba_2.3.5.1            ExperimentHub_2.15.0     RSQLite_2.3.7           
 [43] beachmat_2.23.0          labeling_0.4.3           filelock_1.0.3          
 [46] fansi_1.0.6              httr_1.4.7               abind_1.4-8             
 [49] compiler_4.5.0           bit64_4.5.2              withr_3.0.2             
 [52] BiocParallel_1.41.0      viridis_0.6.5            DBI_1.2.3               
 [55] HDF5Array_1.35.1         alabaster.ranges_1.7.0   alabaster.schemas_1.7.0 
 [58] rappdirs_0.3.3           DelayedArray_0.33.1      bluster_1.17.0          
 [61] rjson_0.2.23             tools_4.5.0              vipor_0.4.7             
 [64] beeswarm_0.4.0           glue_1.8.0               restfulr_0.0.15         
 [67] rhdf5filters_1.19.0      grid_4.5.0               Rtsne_0.17              
 [70] cluster_2.1.6            gtable_0.3.6             metapod_1.15.0          
 [73] ScaledMatrix_1.15.0      utf8_1.2.4               XVector_0.47.0          
 [76] ggrepel_0.9.6            BiocVersion_3.21.1       pillar_1.9.0            
 [79] limma_3.63.2             dplyr_1.1.4              lattice_0.22-6          
 [82] rtracklayer_1.67.0       bit_4.5.0                tidyselect_1.2.1        
 [85] locfit_1.5-9.10          Biostrings_2.75.1        knitr_1.49              
 [88] gridExtra_2.3            bookdown_0.41            ProtGenerics_1.39.0     
 [91] edgeR_4.5.0              xfun_0.49                statmod_1.5.0           
 [94] UCSC.utils_1.3.0         lazyeval_0.2.2           yaml_2.3.10             
 [97] evaluate_1.0.1           codetools_0.2-20         tibble_3.2.1            
[100] alabaster.matrix_1.7.0   BiocManager_1.30.25      graph_1.85.0            
[103] cli_3.6.3                munsell_0.5.1            jquerylib_0.1.4         
[106] Rcpp_1.0.13-1            dir.expiry_1.15.0        png_0.1-8               
[109] XML_3.99-0.17            parallel_4.5.0           blob_1.2.4              
[112] bitops_1.0-9             viridisLite_0.4.2        alabaster.se_1.7.0      
[115] scales_1.3.0             purrr_1.0.2              crayon_1.5.3            
[118] rlang_1.1.4              cowplot_1.1.3            KEGGREST_1.47.0         

References

Lawlor, N., J. George, M. Bolisetty, R. Kursawe, L. Sun, V. Sivakamasundari, I. Kycia, P. Robson, and M. L. Stitzel. 2017. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes.” Genome Res. 27 (2): 208–22.