3  Manipulating Hi-C data in R

library(ggplot2)
library(GenomicRanges)
##  Loading required package: stats4
##  Loading required package: BiocGenerics
##  
##  Attaching package: 'BiocGenerics'
##  The following objects are masked from 'package:stats':
##  
##      IQR, mad, sd, var, xtabs
##  The following objects are masked from 'package:base':
##  
##      Filter, Find, Map, Position, Reduce, anyDuplicated, aperm,
##      append, as.data.frame, basename, cbind, colnames, dirname,
##      do.call, duplicated, eval, evalq, get, grep, grepl, intersect,
##      is.unsorted, lapply, mapply, match, mget, order, paste, pmax,
##      pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply,
##      saveRDS, setdiff, table, tapply, union, unique, unsplit,
##      which.max, which.min
##  Loading required package: S4Vectors
##  
##  Attaching package: 'S4Vectors'
##  The following object is masked from 'package:utils':
##  
##      findMatches
##  The following objects are masked from 'package:base':
##  
##      I, expand.grid, unname
##  Loading required package: IRanges
##  Loading required package: GenomeInfoDb
library(InteractionSet)
##  Loading required package: SummarizedExperiment
##  Loading required package: MatrixGenerics
##  Loading required package: matrixStats
##  
##  Attaching package: 'MatrixGenerics'
##  The following objects are masked from 'package:matrixStats':
##  
##      colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##      colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##      colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##      colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##      colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##      colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##      colWeightedMeans, colWeightedMedians, colWeightedSds,
##      colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##      rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##      rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##      rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##      rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##      rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs,
##      rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##      rowWeightedSds, rowWeightedVars
##  Loading required package: Biobase
##  Welcome to Bioconductor
##  
##      Vignettes contain introductory material; view with
##      'browseVignettes()'. To cite Bioconductor, see
##      'citation("Biobase")', and for packages 'citation("pkgname")'.
##  
##  Attaching package: 'Biobase'
##  The following object is masked from 'package:MatrixGenerics':
##  
##      rowMedians
##  The following objects are masked from 'package:matrixStats':
##  
##      anyMissing, rowMedians
library(HiCExperiment)
##  Consider using the `HiContacts` package to perform advanced genomic operations 
##  on `HiCExperiment` objects.
##  
##  Read "Orchestrating Hi-C analysis with Bioconductor" online book to learn more:
##  https://js2264.github.io/OHCA/
##  
##  Attaching package: 'HiCExperiment'
##  The following object is masked from 'package:SummarizedExperiment':
##  
##      metadata<-
##  The following object is masked from 'package:S4Vectors':
##  
##      metadata<-
##  The following object is masked from 'package:ggplot2':
##  
##      resolution
library(HiContactsData)
##  Loading required package: ExperimentHub
##  Loading required package: AnnotationHub
##  Loading required package: BiocFileCache
##  Loading required package: dbplyr
##  
##  Attaching package: 'AnnotationHub'
##  The following object is masked from 'package:Biobase':
##  
##      cache
Aims

This chapter focuses on:

  • Modifying information associated with an existing HiCExperiment object
  • Subsetting a HiCExperiment object
  • Coercing a HiCExperiment object in a base data structure
Important reminder
  • An HiCExperiment object allows random access parsing of a disk-stored contact matrix.
  • An HiCExperiment object operates by wrapping together (1) a ContactFile (i.e. a connection to a disk-stored data file) and (2) a GInteractions generated by parsing the data file.
  • Creating a connection to a disk-stored contact matrix:
# coolf <- "<path-to-disk-stored-contact-matrix.cool>"
coolf <- HiContactsData('yeast_wt', 'mcool')
##  see ?HiContactsData and browseVignettes('HiContactsData') for documentation
##  loading from cache
cf <- CoolFile(coolf)
availableResolutions(cf)
##  resolutions(5): 1000 2000 4000 8000 16000
##  

availableChromosomes(cf)
##  Seqinfo object with 16 sequences from an unspecified genome:
##    seqnames seqlengths isCircular genome
##    I            230218       <NA>   <NA>
##    II           813184       <NA>   <NA>
##    III          316620       <NA>   <NA>
##    IV          1531933       <NA>   <NA>
##    V            576874       <NA>   <NA>
##    ...             ...        ...    ...
##    XII         1078177       <NA>   <NA>
##    XIII         924431       <NA>   <NA>
##    XIV          784333       <NA>   <NA>
##    XV          1091291       <NA>   <NA>
##    XVI          948066       <NA>   <NA>
  • Importing a contact matrix over a specific genomic location, at a given resolution:
hic <- import(cf, focus = 'II:10000-50000', resolution = 4000)
hic
##  `HiCExperiment` object with 10,801 contacts over 11 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:10,000-50,000" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 4000 
##  interactions: 45 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Recovering genomic interactions stored in a HiCExperiment:
interactions(hic)
##  GInteractions object with 45 interactions and 4 metadata columns:
##         seqnames1     ranges1     seqnames2     ranges2 |   bin_id1   bin_id2
##             <Rle>   <IRanges>         <Rle>   <IRanges> | <numeric> <numeric>
##     [1]        II 12001-16000 ---        II 12001-16000 |        61        61
##     [2]        II 12001-16000 ---        II 16001-20000 |        61        62
##     [3]        II 12001-16000 ---        II 20001-24000 |        61        63
##     [4]        II 12001-16000 ---        II 24001-28000 |        61        64
##     [5]        II 12001-16000 ---        II 28001-32000 |        61        65
##     ...       ...         ... ...       ...         ... .       ...       ...
##    [41]        II 36001-40000 ---        II 40001-44000 |        67        68
##    [42]        II 36001-40000 ---        II 44001-48000 |        67        69
##    [43]        II 40001-44000 ---        II 40001-44000 |        68        68
##    [44]        II 40001-44000 ---        II 44001-48000 |        68        69
##    [45]        II 44001-48000 ---        II 44001-48000 |        69        69
##             count  balanced
##         <numeric> <numeric>
##     [1]       213  0.249303
##     [2]       673  0.449271
##     [3]       325  0.210001
##     [4]       137  0.125732
##     [5]        77  0.106917
##     ...       ...       ...
##    [41]       941  0.358860
##    [42]       275  0.114972
##    [43]       675  0.253868
##    [44]       497  0.204920
##    [45]       295  0.133344
##    -------
##    regions: 11 ranges and 4 metadata columns
##    seqinfo: 16 sequences from an unspecified genome

To demonstrate how to manipulate a HiCExperiment object, we will create an HiCExperiment object from an example .cool file provided in the HiContactsData package.

library(HiCExperiment)
library(HiContactsData)

# ---- This downloads an example `.mcool` file and caches it locally 
coolf <- HiContactsData('yeast_wt', 'mcool')
##  see ?HiContactsData and browseVignettes('HiContactsData') for documentation
##  loading from cache

# ---- This creates a connection to the disk-stored `.mcool` file
cf <- CoolFile(coolf)
cf
##  CoolFile object
##  .mcool file: /home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752 
##  resolution: 1000 
##  pairs file: 
##  metadata(0):

# ---- This imports contacts from the long arm of chromosome `II`, at resolution `2000`
hic <- import(cf, focus = 'II:300001-813184', resolution = 2000)
hic
##  `HiCExperiment` object with 306,212 contacts over 257 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300,001-813,184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 18513 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):

3.1 Subsetting a contact matrix

Two entirely different approaches are possible to subset of a Hi-C contact matrix:

  • Subsetting before importing: leveraging random access to a disk-stored contact matrix to only import interactions overlapping with a genomic locus of interest.

  • Subsetting after importing: parsing the entire contact matrix in memory, and subsequently subset interactions overlapping with a genomic locus of interest.

3.1.1 Subsetting before import: with focus

Specifying a focus when importing a dataset in R (i.e. "Subset first, then parse") is generally the recommended approach to import Hi-C data in R.

The focus argument can be set when importing a ContactFile in R, as follows:

## This code is not evaluated
## Change `focus = "..."` accordingly (see below)
import(cf, focus = "...")

This ensures that only the needed data is parsed in R, reducing memory load and accelerating the import. Thus, this should be the preferred way of parsing HiCExperiment data, as disk-stored contact matrices allow efficient random access to indexed data.

focus can be any of the following string types:

#   "II"                                  --> import contacts over an entire chromosome
#   "II:300001-800000"                    --> import on-diagonal contacts within a chromosome
#   "II:300001-400000|II:600001-700000"   --> import off-diagonal contacts within a chromosome
#   "II|III"                              --> import contacts between two chromosomes
#   "II:300001-800000|V:1-500000"         --> import contacts between segments of two chromosomes
  • Subsetting to a specific on-diagonal genomic location using standard UCSC coordinates query:
import(cf, focus = 'II:300001-800000', resolution = 2000)
##  `HiCExperiment` object with 301,018 contacts over 250 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300,001-800,000" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 17974 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting to a specific off-diagonal genomic location using pairs of coordinates query:
import(cf, focus = 'II:300001-400000|II:600001-700000', resolution = 2000)
##  `HiCExperiment` object with 402 contacts over 100 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300001-400000|II:600001-700000" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 357 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting interactions to retain those constrained within a single chromosome:
import(cf, focus = 'II', resolution = 2000)
##  `HiCExperiment` object with 471,364 contacts over 407 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 34063 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting interactions to retain those between two chromosomes:
import(cf, focus = 'II|III', resolution = 2000)
##  `HiCExperiment` object with 9,092 contacts over 566 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II|III" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 7438 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting interactions to retain those between parts of two chromosomes:
import(cf, focus = 'II:300001-800000|V:1-500000', resolution = 2000)
##  `HiCExperiment` object with 7,147 contacts over 500 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300001-800000|V:1-500000" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 6523 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):

3.1.2 Subsetting after import

It may sometimes be desirable to import a full dataset from disk first, and only then perform in-memory subsetting of the HiCExperiment object (i.e. "Parse first, then subset"). This is for example necessary when the end user aims to investigate subsets of interactions across a large number of different areas of a contact matrix.

Several strategies are possible to allow subsetting of imported data, either with subsetByOverlaps or [.

3.1.2.1 subsetByOverlaps(<HiCExperiment>, <GRanges>)

subsetByOverlaps can take a HiCExperiment as a query and a GRanges as a query. In this case, the GRanges is used to extract a subset of a HiCExperiment constrained within a specific genomic location.

telomere <- GRanges("II:700001-813184")
subsetByOverlaps(hic, telomere) |> interactions()
##  GInteractions object with 1540 interactions and 4 metadata columns:
##           seqnames1       ranges1     seqnames2       ranges2 |   bin_id1
##               <Rle>     <IRanges>         <Rle>     <IRanges> | <numeric>
##       [1]        II 700001-702000 ---        II 700001-702000 |       466
##       [2]        II 700001-702000 ---        II 702001-704000 |       466
##       [3]        II 700001-702000 ---        II 704001-706000 |       466
##       [4]        II 700001-702000 ---        II 706001-708000 |       466
##       [5]        II 700001-702000 ---        II 708001-710000 |       466
##       ...       ...           ... ...       ...           ... .       ...
##    [1536]        II 804001-806000 ---        II 810001-812000 |       518
##    [1537]        II 806001-808000 ---        II 806001-808000 |       519
##    [1538]        II 806001-808000 ---        II 808001-810000 |       519
##    [1539]        II 806001-808000 ---        II 810001-812000 |       519
##    [1540]        II 808001-810000 ---        II 808001-810000 |       520
##             bin_id2     count  balanced
##           <numeric> <numeric> <numeric>
##       [1]       466        30 0.0283618
##       [2]       467       145 0.0709380
##       [3]       468       124 0.0704979
##       [4]       469        59 0.0510221
##       [5]       470        59 0.0384004
##       ...       ...       ...       ...
##    [1536]       521         1       NaN
##    [1537]       519        15 0.0560633
##    [1538]       520        25       NaN
##    [1539]       521         1       NaN
##    [1540]       520        10       NaN
##    -------
##    regions: 57 ranges and 4 metadata columns
##    seqinfo: 16 sequences from an unspecified genome

By default, subsetByOverlaps(hic, telomere) will only recover interactions constrained within telomere, i.e. interactions for which both ends are in telomere.

Alternatively, type = "any" can be specified to get all interactions with at least one of their anchors within telomere.

subsetByOverlaps(hic, telomere, type = "any") |> interactions()
##  GInteractions object with 6041 interactions and 4 metadata columns:
##           seqnames1       ranges1     seqnames2       ranges2 |   bin_id1
##               <Rle>     <IRanges>         <Rle>     <IRanges> | <numeric>
##       [1]        II 300001-302000 ---        II 702001-704000 |       266
##       [2]        II 300001-302000 ---        II 704001-706000 |       266
##       [3]        II 300001-302000 ---        II 768001-770000 |       266
##       [4]        II 300001-302000 ---        II 784001-786000 |       266
##       [5]        II 302001-304000 ---        II 740001-742000 |       267
##       ...       ...           ... ...       ...           ... .       ...
##    [6037]        II 804001-806000 ---        II 810001-812000 |       518
##    [6038]        II 806001-808000 ---        II 806001-808000 |       519
##    [6039]        II 806001-808000 ---        II 808001-810000 |       519
##    [6040]        II 806001-808000 ---        II 810001-812000 |       519
##    [6041]        II 808001-810000 ---        II 808001-810000 |       520
##             bin_id2     count    balanced
##           <numeric> <numeric>   <numeric>
##       [1]       467         1 0.000590999
##       [2]       468         1 0.000686799
##       [3]       500         1 0.000728215
##       [4]       508         1 0.000923092
##       [5]       486         1 0.000382222
##       ...       ...       ...         ...
##    [6037]       521         1         NaN
##    [6038]       519        15   0.0560633
##    [6039]       520        25         NaN
##    [6040]       521         1         NaN
##    [6041]       520        10         NaN
##    -------
##    regions: 257 ranges and 4 metadata columns
##    seqinfo: 16 sequences from an unspecified genome

3.1.2.2 <HiCExperiment>["..."]

The square bracket operator [ allows for more advanced textual queries, similarly to focus arguments that can be used when importing contact matrices in memory.

This ensures that only the needed data is parsed in R, reducing memory load and accelerating the import. Thus, this should be the preferred way of parsing HiCExperiment data, as disk-stored contact matrices allow efficient random access to indexed data.

The following string types can be used to subset a HiCExperiment object with the [ notation:

#   "II"                                  --> import contacts over an entire chromosome
#   "II:300001-800000"                    --> import on-diagonal contacts within a chromosome
#   "II:300001-400000|II:600001-700000"   --> import off-diagonal contacts within a chromosome
#   "II|III"                              --> import contacts between two chromosomes
#   "II:300001-800000|V:1-500000"         --> import contacts between segments of two chromosomes
#   c("II", "III", "IV")                  --> import contacts within and between several chromosomes
  • Subsetting to a specific on-diagonal genomic location using standard UCSC coordinates query:
hic["II:800001-813184"]
##  `HiCExperiment` object with 1,040 contacts over 6 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:800,001-813,184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 19 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting to a specific off-diagonal genomic location using pairs of coordinates query:
hic["II:300001-320000|II:800001-813184"]
##  `HiCExperiment` object with 3 contacts over 6 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300001-320000|II:800001-813184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 3 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting interactions to retain those constrained within a single chromosome:
hic["II"]
##  `HiCExperiment` object with 306,212 contacts over 257 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 18513 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting interactions to retain those between two chromosomes:
hic["II|IV"]
##  `HiCExperiment` object with 0 contacts over 0 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:1-813184|IV:1-1531933" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 0 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting interactions to retain those between segments of two chromosomes:
hic["II:300001-320000|IV:1-100000"]
##  `HiCExperiment` object with 0 contacts over 0 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300001-320000|IV:1-100000" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 0 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
  • Subsetting interactions to retain those constrained within several chromosomes:
hic[c('II', 'III', 'IV')]
##  `HiCExperiment` object with 306,212 contacts over 257 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II, III, IV" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 18513 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):

Some notes:

  • This last example (subsetting for a vector of several chromosomes) is the only scenario for which [-based in-memory subsetting of pre-imported data is the only way to go, as such subsetting is not possible with focus from disk-stored data.
  • All the other [ subsetting scenarii illustrated above can be achieved more efficiently using the focus argument when importing data into a HiCExperiment object.
  • However, keep in mind that subsetting preserves extra data, e.g. added scores, topologicalFeatures, metadata or pairsFile, whereas this information is lost using focus with import.

3.1.3 Zooming on a HiCExperiment

β€œZooming” refers to dynamically changing the resolution of a HiCExperiment. By zooming a HiCExperiment, one can refine or coarsen the contact matrix. This operation takes aContactFile and focus from an existing HiCExperiment input and re-generates a new HiCExperiment with updated resolution, interactions and scores. Note that zoom will preserve existing metadata, topologicalFeatures and pairsFile information.

hic
##  `HiCExperiment` object with 306,212 contacts over 257 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300,001-813,184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 18513 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):

zoom(hic, 4000)
##  `HiCExperiment` object with 306,212 contacts over 129 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300,001-813,184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 4000 
##  interactions: 6800 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):

zoom(hic, 1000)
##  `HiCExperiment` object with 306,212 contacts over 514 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300,001-813,184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 1000 
##  interactions: 44363 
##  scores(2): count balanced 
##  topologicalFeatures: compartments(0) borders(0) loops(0) viewpoints(0) 
##  pairsFile: N/A 
##  metadata(0):
Note

The sum of raw counts do not change after zooming, however the number of individual interactions and regions changes.

length(hic)
##  [1] 18513
length(zoom(hic, 1000))
##  [1] 44363
length(zoom(hic, 4000))
##  [1] 6800
sum(scores(hic, "count"))
##  [1] 306212
sum(scores(zoom(hic, 1000), "count"))
##  [1] 306212
sum(scores(zoom(hic, 4000), "count"))
##  [1] 306212
Important
  • zoom does not change the focus! It only affects the resolution (and consequently, the interactions).
  • zoom will only work for multi-resolution contact matrices, e.g. .mcool or .hic.

3.2 Updating an HiCExperiment object

TL;DR: Which HiCExperiment slots are mutable (βœ…) / immutable (⛔️)?
  • fileName(hic): ⛔️ (obtained from disk-stored file)
  • focus(hic): πŸ€” (see subsetting section)
  • resolutions(hic): ⛔️ (obtained from disk-stored file)
  • resolution(hic): πŸ€” (see zooming section)
  • interactions(hic): ⛔️ (obtained from disk-stored file)
  • scores(hic): βœ…
  • topologicalFeatures(hic): βœ…
  • pairsFile(hic): βœ…
  • metadata(hic): βœ…

3.2.1 Immutable slots

An HiCExperiment object acts as an interface exposing disk-stored data. This implies that the fileName slot itself is immutable (i.e. cannot be changed). This should be obvious, as a HiCExperiment has to be associated with a disk-stored contact matrix to properly function (except in some advanced cases developed in next chapters).

For this reason, methods to manually modify interactions and resolutions slots are also not exposed in the HiCExperiment package.

A corollary of this is that the associated regions and anchors of an HiCExperiment should not be modified by hand either, since they are directly linked to interactions.

3.2.2 Mutable slots

That being said, HiCExperiment objects are flexible and can be partially modified in memory without having to change/overwrite the original, disk-stored contact matrix.

Several slots can be modified in memory: slots, topologicalFeatures, pairsFile and metadata.

3.2.2.1 scores

We have seen in the previous chapter that scores are stored in a list and are available using the scores function.

scores(hic)
##  List of length 2
##  names(2): count balanced

head(scores(hic, "count"))
##  [1]  7 92 75 61 38 43

head(scores(hic, "balanced"))
##  [1] 0.009657438 0.076622340 0.054101992 0.042940512 0.040905212 0.029293930

Extra scores can be added to this list, e.g. to describe the β€œexpected” interaction frequency for each interaction stored in the HiCExperiment object). This can be achieved using the scores()<- function.

scores(hic, "random") <- runif(length(hic))

scores(hic)
##  List of length 3
##  names(3): count balanced random

head(scores(hic, "random"))
##  [1] 0.5337919 0.3499953 0.6272530 0.8999565 0.4940897 0.4214349

3.2.2.2 topologicalFeatures

The end-user can create additional topologicalFeatures or modify the existing ones using the topologicalFeatures()<- function.

topologicalFeatures(hic, 'CTCF') <- GRanges(c(
    "II:340-352", 
    "II:3520-3532", 
    "II:7980-7992", 
    "II:9240-9252" 
))
topologicalFeatures(hic, 'CTCF')
##  GRanges object with 4 ranges and 0 metadata columns:
##        seqnames    ranges strand
##           <Rle> <IRanges>  <Rle>
##    [1]       II   340-352      *
##    [2]       II 3520-3532      *
##    [3]       II 7980-7992      *
##    [4]       II 9240-9252      *
##    -------
##    seqinfo: 1 sequence from an unspecified genome; no seqlengths

topologicalFeatures(hic, 'loops') <- GInteractions(
    topologicalFeatures(hic, 'CTCF')[rep(1:3, each = 3)],
    topologicalFeatures(hic, 'CTCF')[rep(1:3, 3)]
)
topologicalFeatures(hic, 'loops')
##  GInteractions object with 9 interactions and 0 metadata columns:
##        seqnames1   ranges1     seqnames2   ranges2
##            <Rle> <IRanges>         <Rle> <IRanges>
##    [1]        II   340-352 ---        II   340-352
##    [2]        II   340-352 ---        II 3520-3532
##    [3]        II   340-352 ---        II 7980-7992
##    [4]        II 3520-3532 ---        II   340-352
##    [5]        II 3520-3532 ---        II 3520-3532
##    [6]        II 3520-3532 ---        II 7980-7992
##    [7]        II 7980-7992 ---        II   340-352
##    [8]        II 7980-7992 ---        II 3520-3532
##    [9]        II 7980-7992 ---        II 7980-7992
##    -------
##    regions: 3 ranges and 0 metadata columns
##    seqinfo: 1 sequence from an unspecified genome; no seqlengths

hic
##  `HiCExperiment` object with 306,212 contacts over 257 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300,001-813,184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 18513 
##  scores(3): count balanced random 
##  topologicalFeatures: compartments(0) borders(0) loops(9) viewpoints(0) CTCF(4) 
##  pairsFile: N/A 
##  metadata(0):

All these objects can be used in *Overlap methods, as they all extend the GRanges class of objects.

# ---- This counts the number of times `CTCF` anchors are being used in the 
#      `loops` `GInteractions` object
countOverlaps(
    query = topologicalFeatures(hic, 'CTCF'), 
    subject = topologicalFeatures(hic, 'loops')
)
##  [1] 5 5 5 0

3.2.2.3 pairsFile

If pairsFile is not specified when importing the ContactFile into a HiCExperiment object, one can add it later.

pairsf <- HiContactsData('yeast_wt', 'pairs.gz')
##  see ?HiContactsData and browseVignettes('HiContactsData') for documentation
##  loading from cache
pairsFile(hic) <- pairsf
hic
##  `HiCExperiment` object with 306,212 contacts over 257 regions 
##  -------
##  fileName: "/home/biocbuild/.cache/R/ExperimentHub/1895c561583f2e_7752" 
##  focus: "II:300,001-813,184" 
##  resolutions(5): 1000 2000 4000 8000 16000
##  active resolution: 2000 
##  interactions: 18513 
##  scores(3): count balanced random 
##  topologicalFeatures: compartments(0) borders(0) loops(9) viewpoints(0) CTCF(4) 
##  pairsFile: /home/biocbuild/.cache/R/ExperimentHub/1895c54cd82178_7753 
##  metadata(0):

3.2.2.4 metadata

Metadata associated with a HiCExperiment can be updated at any point.

metadata(hic) <- list(
    info = "HiCExperiment created from an example .mcool file from `HiContactsData`", 
    date = date()
)
metadata(hic)
##  $info
##  [1] "HiCExperiment created from an example .mcool file from `HiContactsData`"
##  
##  $date
##  [1] "Wed Oct 30 07:36:20 2024"

3.3 Coercing HiCExperiment objects

Convenient coercing functions exist to transform data stored as a HiCExperiment into another class.

  • as.matrix(): allows to coerce the HiCExperiment into a sparse or dense matrix (using the sparse logical argument, TRUE by default) and choosing specific scores of interest (using the use.scores argument, "balanced" by default).
# ----- `as.matrix` coerces a `HiCExperiment` into a dense `matrix` by default 
as.matrix(hic) |> class()
##  [1] "matrix" "array"

as.matrix(hic) |> dim()
##  [1] 257 257

# ----- One can specify which scores should be used when coercing into a matrix
as.matrix(hic, use.scores = "balanced")[1:5, 1:5]
##              [,1]       [,2]       [,3]       [,4]       [,5]
##  [1,] 0.009657438 0.07662234 0.05410199 0.04294051 0.04090521
##  [2,] 0.076622340 0.05128277 0.09841564 0.06926737 0.05263611
##  [3,] 0.054101992 0.09841564 0.05657589 0.08723160 0.07316890
##  [4,] 0.042940512 0.06926737 0.08723160 0.03699543 0.08403496
##  [5,] 0.040905212 0.05263611 0.07316890 0.08403496 0.04787415

as.matrix(hic, use.scores = "count")[1:5, 1:5]
##       [,1] [,2] [,3] [,4] [,5]
##  [1,]    7   92   75   61   38
##  [2,]   92  102  226  163   81
##  [3,]   75  226  150  237  130
##  [4,]   61  163  237  103  153
##  [5,]   38   81  130  153   57

# ----- If needed, one can coerce a HiCExperiment into a sparse matrix
as.matrix(hic, use.scores = "count", sparse = TRUE)[1:5, 1:5]
##  5 x 5 sparse Matrix of class "dgTMatrix"
##                         
##  [1,]  7  92  75  61  38
##  [2,] 92 102 226 163  81
##  [3,] 75 226 150 237 130
##  [4,] 61 163 237 103 153
##  [5,] 38  81 130 153  57
  • as.data.frame(): simply coercing interactions into a rectangular data frame
as.data.frame(hic) |> head()
##    seqnames1 start1   end1 width1 strand1 bin_id1    weight1 center1
##  1        II 300001 302000   2000       *     266 0.03714342  301000
##  2        II 300001 302000   2000       *     266 0.03714342  301000
##  3        II 300001 302000   2000       *     266 0.03714342  301000
##  4        II 300001 302000   2000       *     266 0.03714342  301000
##  5        II 300001 302000   2000       *     266 0.03714342  301000
##  6        II 300001 302000   2000       *     266 0.03714342  301000
##    seqnames2 start2   end2 width2 strand2 bin_id2    weight2 center2 count
##  1        II 300001 302000   2000       *     266 0.03714342  301000     7
##  2        II 302001 304000   2000       *     267 0.02242258  303000    92
##  3        II 304001 306000   2000       *     268 0.01942093  305000    75
##  4        II 306001 308000   2000       *     269 0.01895202  307000    61
##  5        II 308001 310000   2000       *     270 0.02898098  309000    38
##  6        II 310001 312000   2000       *     271 0.01834118  311000    43
##       balanced    random
##  1 0.009657438 0.5337919
##  2 0.076622340 0.3499953
##  3 0.054101992 0.6272530
##  4 0.042940512 0.8999565
##  5 0.040905212 0.4940897
##  6 0.029293930 0.4214349
Warning

These coercing methods only operate on interactions and scores, and discard all other information, e.g. regarding genomic regions, available resolutions, associated metadata, pairsFile or topologicalFeatures.

Session info

sessioninfo::session_info(include_base = TRUE)
##  ─ Session info ────────────────────────────────────────────────────────────
##   setting  value
##   version  R version 4.4.1 (2024-06-14)
##   os       Ubuntu 24.04.1 LTS
##   system   x86_64, linux-gnu
##   ui       X11
##   language (EN)
##   collate  C
##   ctype    en_US.UTF-8
##   tz       America/New_York
##   date     2024-10-30
##   pandoc   2.7.3 @ /usr/bin/ (via rmarkdown)
##  
##  ─ Packages ────────────────────────────────────────────────────────────────
##   package              * version date (UTC) lib source
##   abind                  1.4-8   2024-09-12 [2] CRAN (R 4.4.1)
##   AnnotationDbi          1.68.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   AnnotationHub        * 3.14.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   base                 * 4.4.1   2024-09-25 [3] local
##   Biobase              * 2.66.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   BiocFileCache        * 2.14.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   BiocGenerics         * 0.52.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   BiocIO                 1.16.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   BiocManager            1.30.25 2024-08-28 [2] CRAN (R 4.4.1)
##   BiocParallel           1.40.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   BiocVersion            3.20.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   Biostrings             2.74.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   bit                    4.5.0   2024-09-20 [2] CRAN (R 4.4.1)
##   bit64                  4.5.2   2024-09-22 [2] CRAN (R 4.4.1)
##   blob                   1.2.4   2023-03-17 [2] CRAN (R 4.4.1)
##   cachem                 1.1.0   2024-05-16 [2] CRAN (R 4.4.1)
##   cli                    3.6.3   2024-06-21 [2] CRAN (R 4.4.1)
##   codetools              0.2-20  2024-03-31 [3] CRAN (R 4.4.1)
##   colorspace             2.1-1   2024-07-26 [2] CRAN (R 4.4.1)
##   compiler               4.4.1   2024-09-25 [3] local
##   crayon                 1.5.3   2024-06-20 [2] CRAN (R 4.4.1)
##   curl                   5.2.3   2024-09-20 [2] CRAN (R 4.4.1)
##   datasets             * 4.4.1   2024-09-25 [3] local
##   DBI                    1.2.3   2024-06-02 [2] CRAN (R 4.4.1)
##   dbplyr               * 2.5.0   2024-03-19 [2] CRAN (R 4.4.1)
##   DelayedArray           0.32.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   digest                 0.6.37  2024-08-19 [2] CRAN (R 4.4.1)
##   dplyr                  1.1.4   2023-11-17 [2] CRAN (R 4.4.1)
##   evaluate               1.0.1   2024-10-10 [2] CRAN (R 4.4.1)
##   ExperimentHub        * 2.14.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   fansi                  1.0.6   2023-12-08 [2] CRAN (R 4.4.1)
##   fastmap                1.2.0   2024-05-15 [2] CRAN (R 4.4.1)
##   filelock               1.0.3   2023-12-11 [2] CRAN (R 4.4.1)
##   generics               0.1.3   2022-07-05 [2] CRAN (R 4.4.1)
##   GenomeInfoDb         * 1.42.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   GenomeInfoDbData       1.2.13  2024-10-01 [2] Bioconductor
##   GenomicRanges        * 1.58.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   ggplot2              * 3.5.1   2024-04-23 [2] CRAN (R 4.4.1)
##   glue                   1.8.0   2024-09-30 [2] CRAN (R 4.4.1)
##   graphics             * 4.4.1   2024-09-25 [3] local
##   grDevices            * 4.4.1   2024-09-25 [3] local
##   grid                   4.4.1   2024-09-25 [3] local
##   gtable                 0.3.6   2024-10-25 [2] CRAN (R 4.4.1)
##   HiCExperiment        * 1.6.0   2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   HiContactsData       * 1.7.0   2024-10-26 [2] Bioconductor 3.20 (R 4.4.1)
##   htmltools              0.5.8.1 2024-04-04 [2] CRAN (R 4.4.1)
##   htmlwidgets            1.6.4   2023-12-06 [2] CRAN (R 4.4.1)
##   httr                   1.4.7   2023-08-15 [2] CRAN (R 4.4.1)
##   InteractionSet       * 1.34.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   IRanges              * 2.40.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   jsonlite               1.8.9   2024-09-20 [2] CRAN (R 4.4.1)
##   KEGGREST               1.46.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   knitr                  1.48    2024-07-07 [2] CRAN (R 4.4.1)
##   lattice                0.22-6  2024-03-20 [3] CRAN (R 4.4.1)
##   lifecycle              1.0.4   2023-11-07 [2] CRAN (R 4.4.1)
##   magrittr               2.0.3   2022-03-30 [2] CRAN (R 4.4.1)
##   Matrix                 1.7-1   2024-10-18 [3] CRAN (R 4.4.1)
##   MatrixGenerics       * 1.18.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   matrixStats          * 1.4.1   2024-09-08 [2] CRAN (R 4.4.1)
##   memoise                2.0.1   2021-11-26 [2] CRAN (R 4.4.1)
##   methods              * 4.4.1   2024-09-25 [3] local
##   mime                   0.12    2021-09-28 [2] CRAN (R 4.4.1)
##   munsell                0.5.1   2024-04-01 [2] CRAN (R 4.4.1)
##   parallel               4.4.1   2024-09-25 [3] local
##   pillar                 1.9.0   2023-03-22 [2] CRAN (R 4.4.1)
##   pkgconfig              2.0.3   2019-09-22 [2] CRAN (R 4.4.1)
##   png                    0.1-8   2022-11-29 [2] CRAN (R 4.4.1)
##   purrr                  1.0.2   2023-08-10 [2] CRAN (R 4.4.1)
##   R6                     2.5.1   2021-08-19 [2] CRAN (R 4.4.1)
##   rappdirs               0.3.3   2021-01-31 [2] CRAN (R 4.4.1)
##   Rcpp                   1.0.13  2024-07-17 [2] CRAN (R 4.4.1)
##   rhdf5                  2.50.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   rhdf5filters           1.18.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   Rhdf5lib               1.28.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   rlang                  1.1.4   2024-06-04 [2] CRAN (R 4.4.1)
##   rmarkdown              2.28    2024-08-17 [2] CRAN (R 4.4.1)
##   RSQLite                2.3.7   2024-05-27 [2] CRAN (R 4.4.1)
##   S4Arrays               1.6.0   2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   S4Vectors            * 0.44.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   scales                 1.3.0   2023-11-28 [2] CRAN (R 4.4.1)
##   sessioninfo            1.2.2   2021-12-06 [2] CRAN (R 4.4.1)
##   SparseArray            1.6.0   2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   stats                * 4.4.1   2024-09-25 [3] local
##   stats4               * 4.4.1   2024-09-25 [3] local
##   strawr                 0.0.92  2024-07-16 [2] CRAN (R 4.4.1)
##   SummarizedExperiment * 1.36.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   tibble                 3.2.1   2023-03-20 [2] CRAN (R 4.4.1)
##   tidyselect             1.2.1   2024-03-11 [2] CRAN (R 4.4.1)
##   tools                  4.4.1   2024-09-25 [3] local
##   tzdb                   0.4.0   2023-05-12 [2] CRAN (R 4.4.1)
##   UCSC.utils             1.2.0   2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   utf8                   1.2.4   2023-10-22 [2] CRAN (R 4.4.1)
##   utils                * 4.4.1   2024-09-25 [3] local
##   vctrs                  0.6.5   2023-12-01 [2] CRAN (R 4.4.1)
##   vroom                  1.6.5   2023-12-05 [2] CRAN (R 4.4.1)
##   withr                  3.0.2   2024-10-28 [2] CRAN (R 4.4.1)
##   xfun                   0.48    2024-10-03 [2] CRAN (R 4.4.1)
##   XVector                0.46.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##   yaml                   2.3.10  2024-07-26 [2] CRAN (R 4.4.1)
##   zlibbioc               1.52.0  2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
##  
##   [1] /home/biocbuild/bbs-3.20-books/tmpdir/RtmphzOvfD/Rinst2020235c565b68
##   [2] /home/biocbuild/bbs-3.20-bioc/R/site-library
##   [3] /home/biocbuild/bbs-3.20-bioc/R/library
##  
##  ───────────────────────────────────────────────────────────────────────────

References

Back to top