Chapter 10 Nestorowa mouse HSC (Smart-seq2)
10.1 Introduction
This performs an analysis of the mouse haematopoietic stem cell (HSC) dataset generated with Smart-seq2 (Nestorowa et al. 2016).
10.2 Data loading
library(AnnotationHub)
ens.mm.v97 <- AnnotationHub()[["AH73905"]]
anno <- select(ens.mm.v97, keys=rownames(sce.nest),
keytype="GENEID", columns=c("SYMBOL", "SEQNAME"))
rowData(sce.nest) <- anno[match(rownames(sce.nest), anno$GENEID),]
After loading and annotation, we inspect the resulting SingleCellExperiment
object:
## class: SingleCellExperiment
## dim: 46078 1920
## metadata(0):
## assays(1): counts
## rownames(46078): ENSMUSG00000000001 ENSMUSG00000000003 ...
## ENSMUSG00000107391 ENSMUSG00000107392
## rowData names(3): GENEID SYMBOL SEQNAME
## colnames(1920): HSPC_007 HSPC_013 ... Prog_852 Prog_810
## colData names(2): cell.type FACS
## reducedDimNames(1): diffusion
## mainExpName: endogenous
## altExpNames(1): ERCC
10.3 Quality control
For some reason, no mitochondrial transcripts are available, so we will perform quality control using the spike-in proportions only.
library(scater)
stats <- perCellQCMetrics(sce.nest)
qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent")
sce.nest <- sce.nest[,!qc$discard]
We examine the number of cells discarded for each reason.
## low_lib_size low_n_features high_altexps_ERCC_percent
## 146 28 241
## discard
## 264
We create some diagnostic plots for each metric (Figure 10.1).
colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard
gridExtra::grid.arrange(
plotColData(unfiltered, y="sum", colour_by="discard") +
scale_y_log10() + ggtitle("Total count"),
plotColData(unfiltered, y="detected", colour_by="discard") +
scale_y_log10() + ggtitle("Detected features"),
plotColData(unfiltered, y="altexps_ERCC_percent",
colour_by="discard") + ggtitle("ERCC percent"),
ncol=2
)
10.4 Normalization
library(scran)
set.seed(101000110)
clusters <- quickCluster(sce.nest)
sce.nest <- computeSumFactors(sce.nest, clusters=clusters)
sce.nest <- logNormCounts(sce.nest)
We examine some key metrics for the distribution of size factors, and compare it to the library sizes as a sanity check (Figure 10.2).
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.044 0.422 0.748 1.000 1.249 15.927
plot(librarySizeFactors(sce.nest), sizeFactors(sce.nest), pch=16,
xlab="Library size factors", ylab="Deconvolution factors", log="xy")
10.5 Variance modelling
We use the spike-in transcripts to model the technical noise as a function of the mean (Figure 10.3).
set.seed(00010101)
dec.nest <- modelGeneVarWithSpikes(sce.nest, "ERCC")
top.nest <- getTopHVGs(dec.nest, prop=0.1)
plot(dec.nest$mean, dec.nest$total, pch=16, cex=0.5,
xlab="Mean of log-expression", ylab="Variance of log-expression")
curfit <- metadata(dec.nest)
curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)
points(curfit$mean, curfit$var, col="red")
10.6 Dimensionality reduction
set.seed(101010011)
sce.nest <- denoisePCA(sce.nest, technical=dec.nest, subset.row=top.nest)
sce.nest <- runTSNE(sce.nest, dimred="PCA")
We check that the number of retained PCs is sensible.
## [1] 9
10.7 Clustering
snn.gr <- buildSNNGraph(sce.nest, use.dimred="PCA")
colLabels(sce.nest) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
##
## 1 2 3 4 5 6 7 8 9
## 203 472 258 175 142 229 20 83 74
10.8 Marker gene detection
markers <- findMarkers(sce.nest, colLabels(sce.nest),
test.type="wilcox", direction="up", lfc=0.5,
row.data=rowData(sce.nest)[,"SYMBOL",drop=FALSE])
To illustrate the manual annotation process, we examine the marker genes for one of the clusters. Upregulation of Car2, Hebp1 amd hemoglobins indicates that cluster 8 contains erythroid precursors.
chosen <- markers[['8']]
best <- chosen[chosen$Top <= 10,]
aucs <- getMarkerEffects(best, prefix="AUC")
rownames(aucs) <- best$SYMBOL
library(pheatmap)
pheatmap(aucs, color=viridis::plasma(100))
10.9 Cell type annotation
library(SingleR)
mm.ref <- MouseRNAseqData()
# Renaming to symbols to match with reference row names.
renamed <- sce.nest
rownames(renamed) <- uniquifyFeatureNames(rownames(renamed),
rowData(sce.nest)$SYMBOL)
labels <- SingleR(renamed, mm.ref, labels=mm.ref$label.fine)
Most clusters are not assigned to any single lineage (Figure 10.6), which is perhaps unsurprising given that HSCs are quite different from their terminal fates. Cluster 8 is considered to contain erythrocytes, which is roughly consistent with our conclusions from the marker gene analysis above.
tab <- table(labels$labels, colLabels(sce.nest))
pheatmap(log10(tab+10), color=viridis::viridis(100))
10.10 Miscellaneous analyses
This dataset also contains information about the protein abundances in each cell from FACS. There is barely any heterogeneity in the chosen markers across the clusters (Figure 10.7); this is perhaps unsurprising given that all cells should be HSCs of some sort.
Y <- colData(sce.nest)$FACS
keep <- rowSums(is.na(Y))==0 # Removing NA intensities.
se.averaged <- sumCountsAcrossCells(t(Y[keep,]),
colLabels(sce.nest)[keep], average=TRUE)
averaged <- assay(se.averaged)
log.intensities <- log2(averaged+1)
centered <- log.intensities - rowMeans(log.intensities)
pheatmap(centered, breaks=seq(-1, 1, length.out=101))
Session Info
R version 4.3.1 (2023-06-16)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS
Matrix products: default
BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] celldex_1.11.1 SingleR_2.4.0
[3] pheatmap_1.0.12 scran_1.30.0
[5] scater_1.30.0 ggplot2_3.4.4
[7] scuttle_1.12.0 AnnotationHub_3.10.0
[9] BiocFileCache_2.10.0 dbplyr_2.3.4
[11] ensembldb_2.26.0 AnnotationFilter_1.26.0
[13] GenomicFeatures_1.54.0 AnnotationDbi_1.64.0
[15] Matrix_1.6-1.1 scRNAseq_2.15.0
[17] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
[19] Biobase_2.62.0 GenomicRanges_1.54.0
[21] GenomeInfoDb_1.38.0 IRanges_2.36.0
[23] S4Vectors_0.40.0 BiocGenerics_0.48.0
[25] MatrixGenerics_1.14.0 matrixStats_1.0.0
[27] BiocStyle_2.30.0 rebook_1.12.0
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 rstudioapi_0.15.0
[3] jsonlite_1.8.7 CodeDepends_0.6.5
[5] magrittr_2.0.3 ggbeeswarm_0.7.2
[7] farver_2.1.1 rmarkdown_2.25
[9] BiocIO_1.12.0 zlibbioc_1.48.0
[11] vctrs_0.6.4 memoise_2.0.1
[13] Rsamtools_2.18.0 DelayedMatrixStats_1.24.0
[15] RCurl_1.98-1.12 htmltools_0.5.6.1
[17] S4Arrays_1.2.0 progress_1.2.2
[19] curl_5.1.0 BiocNeighbors_1.20.0
[21] SparseArray_1.2.0 sass_0.4.7
[23] bslib_0.5.1 cachem_1.0.8
[25] GenomicAlignments_1.38.0 igraph_1.5.1
[27] mime_0.12 lifecycle_1.0.3
[29] pkgconfig_2.0.3 rsvd_1.0.5
[31] R6_2.5.1 fastmap_1.1.1
[33] GenomeInfoDbData_1.2.11 shiny_1.7.5.1
[35] digest_0.6.33 colorspace_2.1-0
[37] dqrng_0.3.1 irlba_2.3.5.1
[39] ExperimentHub_2.10.0 RSQLite_2.3.1
[41] beachmat_2.18.0 labeling_0.4.3
[43] filelock_1.0.2 fansi_1.0.5
[45] httr_1.4.7 abind_1.4-5
[47] compiler_4.3.1 bit64_4.0.5
[49] withr_2.5.1 BiocParallel_1.36.0
[51] viridis_0.6.4 DBI_1.1.3
[53] biomaRt_2.58.0 rappdirs_0.3.3
[55] DelayedArray_0.28.0 bluster_1.12.0
[57] rjson_0.2.21 tools_4.3.1
[59] vipor_0.4.5 beeswarm_0.4.0
[61] interactiveDisplayBase_1.40.0 httpuv_1.6.12
[63] glue_1.6.2 restfulr_0.0.15
[65] promises_1.2.1 grid_4.3.1
[67] Rtsne_0.16 cluster_2.1.4
[69] generics_0.1.3 gtable_0.3.4
[71] hms_1.1.3 metapod_1.10.0
[73] BiocSingular_1.18.0 ScaledMatrix_1.10.0
[75] xml2_1.3.5 utf8_1.2.4
[77] XVector_0.42.0 ggrepel_0.9.4
[79] BiocVersion_3.18.0 pillar_1.9.0
[81] stringr_1.5.0 limma_3.58.0
[83] later_1.3.1 dplyr_1.1.3
[85] lattice_0.22-5 rtracklayer_1.62.0
[87] bit_4.0.5 tidyselect_1.2.0
[89] locfit_1.5-9.8 Biostrings_2.70.0
[91] knitr_1.44 gridExtra_2.3
[93] bookdown_0.36 ProtGenerics_1.34.0
[95] edgeR_4.0.0 xfun_0.40
[97] statmod_1.5.0 stringi_1.7.12
[99] lazyeval_0.2.2 yaml_2.3.7
[101] evaluate_0.22 codetools_0.2-19
[103] tibble_3.2.1 BiocManager_1.30.22
[105] graph_1.80.0 cli_3.6.1
[107] xtable_1.8-4 munsell_0.5.0
[109] jquerylib_0.1.4 Rcpp_1.0.11
[111] dir.expiry_1.10.0 png_0.1-8
[113] XML_3.99-0.14 parallel_4.3.1
[115] ellipsis_0.3.2 blob_1.2.4
[117] prettyunits_1.2.0 sparseMatrixStats_1.14.0
[119] bitops_1.0-7 viridisLite_0.4.2
[121] scales_1.2.1 purrr_1.0.2
[123] crayon_1.5.2 rlang_1.1.1
[125] cowplot_1.1.1 KEGGREST_1.42.0
References
Nestorowa, S., F. K. Hamey, B. Pijuan Sala, E. Diamanti, M. Shepherd, E. Laurenti, N. K. Wilson, D. G. Kent, and B. Gottgens. 2016. “A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.” Blood 128 (8): 20–31.