The example data set (GeneExp
,Meth
) is a subset of chromosome 1 data from TCGA LUSC and it is available with the ELMER package.
ELMER analysis have 5 main steps which are shown in the next sections individually. And later the function TCGA.pipe
, which is a pipeline combining all 5 steps and producing all results and figures, is presented.
This step is to select HM450K/EPIC probes, which locate far from TSS (at least 2Kb away) These probes are called distal probes.
Be default, this comprehensive list of TSS annotated by ENSEMBL database, which is programatically accessed using biomaRt to get its last version, will be used to select distal probes. But user can use their own TSS annotation or add features such as H3K27ac ChIP-seq in a certain cell line, to select probes overlapping thoses features regions.
library(MultiAssayExperiment)
library(ELMER.data)
data(LUSC_RNA_refined,package = "ELMER.data")
data(LUSC_meth_refined,package = "ELMER.data")
GeneExp[1:5,1:5]
## TCGA-22-5472-01A-01R-1635-07 TCGA-22-5489-01A-01R-1635-07
## ENSG00000188984 0.0000000 0.000000
## ENSG00000204518 0.4303923 0.000000
## ENSG00000108270 10.0817831 10.717673
## ENSG00000198691 6.4462711 6.386644
## ENSG00000135776 8.5929182 9.333097
## TCGA-22-5491-11A-01R-1858-07 TCGA-56-5898-01A-11R-1635-07
## ENSG00000188984 0.000000 0.5233612
## ENSG00000204518 0.000000 0.0000000
## ENSG00000108270 10.180863 10.1595162
## ENSG00000198691 5.755627 4.8354795
## ENSG00000135776 8.558358 8.7772810
## TCGA-90-6837-01A-11R-1949-07
## ENSG00000188984 0.000000
## ENSG00000204518 1.167294
## ENSG00000108270 9.975092
## ENSG00000198691 3.152329
## ENSG00000135776 8.604804
## TCGA-43-3394-11A-01D-1551-05 TCGA-43-3920-11B-01D-1551-05
## cg00045114 0.8190894 0.8073763
## cg00050294 0.8423084 0.8241138
## cg00066722 0.9101127 0.9162212
## cg00093522 0.8751903 0.8864599
## cg00107046 0.3326016 0.3445508
## TCGA-56-8305-01A-11D-2294-05 TCGA-56-8307-01A-11D-2294-05
## cg00045114 0.8907009 0.8483227
## cg00050294 0.5597787 0.3488952
## cg00066722 0.7228874 0.6238963
## cg00093522 0.8050060 0.8194921
## cg00107046 0.4312738 0.4328108
## TCGA-56-8308-01A-11D-2294-05
## cg00045114 0.7612094
## cg00050294 0.3908054
## cg00066722 0.7727631
## cg00093522 0.7507631
## cg00107046 0.4260053
In case you are using non-TCGA data there are two matrices to be inputed, colData with the samples metadata and sampleMap, mapping for each column of the gene expression and DNA methylation matrices to samples. An simple example is below if the columns of the matrices have the same name.
library(ELMER)
# example input
met <- matrix(rep(0,15),ncol = 5)
colnames(met) <- c("Sample1",
"Sample2",
"Sample3",
"Sample4",
"Sample5")
rownames(met) <- c("cg26928153","cg16269199","cg13869341")
exp <- matrix(rep(0,15),ncol = 5)
colnames(exp) <- c("Sample1",
"Sample2",
"Sample3",
"Sample4",
"Sample5")
rownames(exp) <- c("ENSG00000073282","ENSG00000078900","ENSG00000141510")
assay <- c(rep("DNA methylation", ncol(met)),
rep("Gene expression", ncol(exp)))
primary <- c(colnames(met),colnames(exp))
colname <- c(colnames(met),colnames(exp))
sampleMap <- data.frame(assay,primary,colname)
distal.probes <- get.feature.probe(genome = "hg19",
met.platform = "EPIC")
colData <- data.frame(sample = colnames(met))
rownames(colData) <- colnames(met)
mae <- createMAE(exp = exp,
met = met,
save = TRUE,
filter.probes = distal.probes,
colData = colData,
sampleMap = sampleMap,
linearize.exp = TRUE,
save.filename = "mae.rda",
met.platform = "EPIC",
genome = "hg19",
TCGA = FALSE)