pyspark.sql.DataFrame.subtract#
- DataFrame.subtract(other)[source]#
- Return a new - DataFramecontaining rows in this- DataFramebut not in another- DataFrame.- New in version 1.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- Returns
- DataFrame
- Subtracted DataFrame. 
 
 - See also - DataFrame.exceptAll
- Similar to subtract, but preserves duplicates. 
 - Notes - This is equivalent to EXCEPT DISTINCT in SQL. - Examples - Example 1: Subtracting two DataFrames with the same schema - >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) >>> result_df = df1.subtract(df2) >>> result_df.show() +---+---+ | C1| C2| +---+---+ | c| 4| +---+---+ - Example 2: Subtracting two DataFrames with different schemas - >>> df1 = spark.createDataFrame([(1, "A"), (2, "B")], ["id", "value"]) >>> df2 = spark.createDataFrame([(2, "B"), (3, "C")], ["id", "value"]) >>> result_df = df1.subtract(df2) >>> result_df.show() +---+-----+ | id|value| +---+-----+ | 1| A| +---+-----+ - Example 3: Subtracting two DataFrames with mismatched columns - >>> df1 = spark.createDataFrame([(1, 2)], ["A", "B"]) >>> df2 = spark.createDataFrame([(1, 2)], ["C", "D"]) >>> result_df = df1.subtract(df2) >>> result_df.show() +---+---+ | A| B| +---+---+ +---+---+