LinearRegression#
- class pyspark.ml.regression.LinearRegression(*, featuresCol='features', labelCol='label', predictionCol='prediction', maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-06, fitIntercept=True, standardization=True, solver='auto', weightCol=None, aggregationDepth=2, loss='squaredError', epsilon=1.35, maxBlockSizeInMB=0.0)[source]#
- Linear regression. - The learning objective is to minimize the specified loss function, with regularization. This supports two kinds of loss: - squaredError (a.k.a squared loss) 
- huber (a hybrid of squared error for relatively small errors and absolute error for relatively large ones, and we estimate the scale parameter from training data) 
 - This supports multiple types of regularization: - none (a.k.a. ordinary least squares) 
- L2 (ridge regression) 
- L1 (Lasso) 
- L2 + L1 (elastic net) 
 - New in version 1.4.0. - Notes - Fitting with huber loss only supports none and L2 regularization. - Examples - >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, 2.0, Vectors.dense(1.0)), ... (0.0, 2.0, Vectors.sparse(1, [], []))], ["label", "weight", "features"]) >>> lr = LinearRegression(regParam=0.0, solver="normal", weightCol="weight") >>> lr.setMaxIter(5) LinearRegression... >>> lr.getMaxIter() 5 >>> lr.setRegParam(0.1) LinearRegression... >>> lr.getRegParam() 0.1 >>> lr.setRegParam(0.0) LinearRegression... >>> model = lr.fit(df) >>> model.setFeaturesCol("features") LinearRegressionModel... >>> model.setPredictionCol("newPrediction") LinearRegressionModel... >>> model.getMaxIter() 5 >>> model.getMaxBlockSizeInMB() 0.0 >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> abs(model.predict(test0.head().features) - (-1.0)) < 0.001 True >>> abs(model.transform(test0).head().newPrediction - (-1.0)) < 0.001 True >>> bool(abs(model.coefficients[0] - 1.0) < 0.001) True >>> abs(model.intercept - 0.0) < 0.001 True >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> abs(model.transform(test1).head().newPrediction - 1.0) < 0.001 True >>> lr.setParams(featuresCol="vector") LinearRegression... >>> lr_path = temp_path + "/lr" >>> lr.save(lr_path) >>> lr2 = LinearRegression.load(lr_path) >>> lr2.getMaxIter() 5 >>> model_path = temp_path + "/lr_model" >>> model.save(model_path) >>> model2 = LinearRegressionModel.load(model_path) >>> bool(model.coefficients[0] == model2.coefficients[0]) True >>> bool(model.intercept == model2.intercept) True >>> bool(model.transform(test0).take(1) == model2.transform(test0).take(1)) True >>> model.numFeatures 1 >>> model.write().format("pmml").save(model_path + "_2") - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of aggregationDepth or its default value. - Gets the value of elasticNetParam or its default value. - Gets the value of epsilon or its default value. - Gets the value of featuresCol or its default value. - Gets the value of fitIntercept or its default value. - Gets the value of labelCol or its default value. - getLoss()- Gets the value of loss or its default value. - Gets the value of maxBlockSizeInMB or its default value. - Gets the value of maxIter or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of regParam or its default value. - Gets the value of solver or its default value. - Gets the value of standardization or its default value. - getTol()- Gets the value of tol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setAggregationDepth(value)- Sets the value of - aggregationDepth.- setElasticNetParam(value)- Sets the value of - elasticNetParam.- setEpsilon(value)- Sets the value of - epsilon.- setFeaturesCol(value)- Sets the value of - featuresCol.- setFitIntercept(value)- Sets the value of - fitIntercept.- setLabelCol(value)- Sets the value of - labelCol.- setLoss(value)- Sets the value of - loss.- setMaxBlockSizeInMB(value)- Sets the value of - maxBlockSizeInMB.- setMaxIter(value)- Sets the value of - maxIter.- setParams(self, \*[, featuresCol, labelCol, ...])- Sets params for linear regression. - setPredictionCol(value)- Sets the value of - predictionCol.- setRegParam(value)- Sets the value of - regParam.- setSolver(value)- Sets the value of - solver.- setStandardization(value)- Sets the value of - standardization.- setTol(value)- Sets the value of - tol.- setWeightCol(value)- Sets the value of - weightCol.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - fit(dataset, params=None)#
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - fitMultiple(dataset, paramMaps)#
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - getAggregationDepth()#
- Gets the value of aggregationDepth or its default value. 
 - getElasticNetParam()#
- Gets the value of elasticNetParam or its default value. 
 - getEpsilon()#
- Gets the value of epsilon or its default value. - New in version 2.3.0. 
 - getFeaturesCol()#
- Gets the value of featuresCol or its default value. 
 - getFitIntercept()#
- Gets the value of fitIntercept or its default value. 
 - getLabelCol()#
- Gets the value of labelCol or its default value. 
 - getLoss()#
- Gets the value of loss or its default value. 
 - getMaxBlockSizeInMB()#
- Gets the value of maxBlockSizeInMB or its default value. 
 - getMaxIter()#
- Gets the value of maxIter or its default value. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getPredictionCol()#
- Gets the value of predictionCol or its default value. 
 - getRegParam()#
- Gets the value of regParam or its default value. 
 - getSolver()#
- Gets the value of solver or its default value. 
 - getStandardization()#
- Gets the value of standardization or its default value. 
 - getTol()#
- Gets the value of tol or its default value. 
 - getWeightCol()#
- Gets the value of weightCol or its default value. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - classmethod read()#
- Returns an MLReader instance for this class. 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setAggregationDepth(value)[source]#
- Sets the value of - aggregationDepth.
 - setElasticNetParam(value)[source]#
- Sets the value of - elasticNetParam.
 - setFeaturesCol(value)#
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - setFitIntercept(value)[source]#
- Sets the value of - fitIntercept.
 - setMaxBlockSizeInMB(value)[source]#
- Sets the value of - maxBlockSizeInMB.- New in version 3.1.0. 
 - setParams(self, \*, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, standardization=True, solver="auto", weightCol=None, aggregationDepth=2, loss="squaredError", epsilon=1.35, maxBlockSizeInMB=0.0)[source]#
- Sets params for linear regression. - New in version 1.4.0. 
 - setPredictionCol(value)#
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - setStandardization(value)[source]#
- Sets the value of - standardization.
 - write()#
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - aggregationDepth = Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')#
 - elasticNetParam = Param(parent='undefined', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.')#
 - epsilon = Param(parent='undefined', name='epsilon', doc='The shape parameter to control the amount of robustness. Must be > 1.0. Only valid when loss is huber')#
 - featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
 - fitIntercept = Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')#
 - labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 - loss = Param(parent='undefined', name='loss', doc='The loss function to be optimized. Supported options: squaredError, huber.')#
 - maxBlockSizeInMB = Param(parent='undefined', name='maxBlockSizeInMB', doc='maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.')#
 - maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')#
 - regParam = Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')#
 - solver = Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: auto, normal, l-bfgs.')#
 - standardization = Param(parent='undefined', name='standardization', doc='whether to standardize the training features before fitting the model.')#
 - tol = Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')#
 - weightCol = Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')#
 - uid#
- A unique id for the object.