class TrainValidationSplit extends Estimator[TrainValidationSplitModel] with TrainValidationSplitParams with HasParallelism with HasCollectSubModels with MLWritable with Logging
Validation for hyper-parameter tuning. Randomly splits the input dataset into train and validation sets, and uses evaluation metric on the validation set to select the best model. Similar to CrossValidator, but only splits the set once.
- Annotations
- @Since( "1.5.0" )
- Source
- TrainValidationSplit.scala
- Grouped
- Alphabetic
- By Inheritance
- TrainValidationSplit
- MLWritable
- HasCollectSubModels
- HasParallelism
- TrainValidationSplitParams
- ValidatorParams
- HasSeed
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      An alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): TrainValidationSplit.this.type
      
      
      Clears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        collectSubModels: BooleanParam
      
      
      Param for whether to collect a list of sub-models trained during tuning. Param for whether to collect a list of sub-models trained during tuning. If set to false, then only the single best sub-model will be available after fitting. If set to true, then all sub-models will be available. Warning: For large models, collecting all sub-models can cause OOMs on the Spark driver. - Definition Classes
- HasCollectSubModels
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): TrainValidationSplit
      
      
      Creates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- TrainValidationSplit → Estimator → PipelineStage → Params
- Annotations
- @Since( "1.5.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      Copies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      Default implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        estimator: Param[Estimator[_]]
      
      
      param for the estimator to be validated param for the estimator to be validated - Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        estimatorParamMaps: Param[Array[ParamMap]]
      
      
      param for estimator param maps param for estimator param maps - Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        evaluator: Param[Evaluator]
      
      
      param for the evaluator used to select hyper-parameters that maximize the validated metric param for the evaluator used to select hyper-parameters that maximize the validated metric - Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      Explains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      Explains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_]): TrainValidationSplitModel
      
      
      Fits a model to the input data. Fits a model to the input data. - Definition Classes
- TrainValidationSplit → Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TrainValidationSplitModel]
      
      
      Fits multiple models to the input data with multiple sets of parameters. Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training. - dataset
- input dataset 
- paramMaps
- An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted models, matching the input parameter maps 
 - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMap: ParamMap): TrainValidationSplitModel
      
      
      Fits a single model to the input data with provided parameter map. Fits a single model to the input data with provided parameter map. - dataset
- input dataset 
- paramMap
- Parameter map. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TrainValidationSplitModel
      
      
      Fits a single model to the input data with optional parameters. Fits a single model to the input data with optional parameters. - dataset
- input dataset 
- firstParamPair
- the first param pair, overrides embedded params 
- otherParamPairs
- other param pairs. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getCollectSubModels: Boolean
      
      
      - Definition Classes
- HasCollectSubModels
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getEstimator: Estimator[_]
      
      
      - Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getEstimatorParamMaps: Array[ParamMap]
      
      
      - Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getEvaluator: Evaluator
      
      
      - Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      Gets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParallelism: Int
      
      
      - Definition Classes
- HasParallelism
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getSeed: Long
      
      
      - Definition Classes
- HasSeed
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getTrainRatio: Double
      
      
      - Definition Classes
- TrainValidationSplitParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      Tests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      Tests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      Checks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      Checks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTuningParams(instrumentation: Instrumentation): Unit
      
      
      Instrumentation logging for tuning params including the inner estimator and evaluator info. Instrumentation logging for tuning params including the inner estimator and evaluator info. - Attributes
- protected
- Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        parallelism: IntParam
      
      
      The number of threads to use when running parallel algorithms. The number of threads to use when running parallel algorithms. Default is 1 for serial execution - Definition Classes
- HasParallelism
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      Saves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        seed: LongParam
      
      
      Param for random seed. Param for random seed. - Definition Classes
- HasSeed
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): TrainValidationSplit.this.type
      
      
      Sets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): TrainValidationSplit.this.type
      
      
      Sets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): TrainValidationSplit.this.type
      
      
      Sets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setCollectSubModels(value: Boolean): TrainValidationSplit.this.type
      
      
      Whether to collect submodels when fitting. Whether to collect submodels when fitting. If set, we can get submodels from the returned model. Note: If set this param, when you save the returned model, you can set an option "persistSubModels" to be "true" before saving, in order to save these submodels. You can check documents of org.apache.spark.ml.tuning.TrainValidationSplitModel.TrainValidationSplitModelWriterfor more information.- Annotations
- @Since( "2.3.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): TrainValidationSplit.this.type
      
      
      Sets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): TrainValidationSplit.this.type
      
      
      Sets a default value for a param. Sets a default value for a param. - param
- param to set the default value. Make sure that this param is initialized before this method gets called. 
- value
- the default value 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setEstimator(value: Estimator[_]): TrainValidationSplit.this.type
      
      
      - Annotations
- @Since( "1.5.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setEstimatorParamMaps(value: Array[ParamMap]): TrainValidationSplit.this.type
      
      
      - Annotations
- @Since( "1.5.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setEvaluator(value: Evaluator): TrainValidationSplit.this.type
      
      
      - Annotations
- @Since( "1.5.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setParallelism(value: Int): TrainValidationSplit.this.type
      
      
      Set the maximum level of parallelism to evaluate models in parallel. Set the maximum level of parallelism to evaluate models in parallel. Default is 1 for serial evaluation - Annotations
- @Since( "2.3.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setSeed(value: Long): TrainValidationSplit.this.type
      
      
      - Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setTrainRatio(value: Double): TrainValidationSplit.this.type
      
      
      - Annotations
- @Since( "1.5.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        trainRatio: DoubleParam
      
      
      Param for ratio between train and validation data. Param for ratio between train and validation data. Must be between 0 and 1. Default: 0.75 - Definition Classes
- TrainValidationSplitParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      Check transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- TrainValidationSplit → PipelineStage
- Annotations
- @Since( "1.5.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      :: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchemaImpl(schema: StructType): StructType
      
      
      - Attributes
- protected
- Definition Classes
- ValidatorParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      An immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- TrainValidationSplit → Identifiable
- Annotations
- @Since( "1.5.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      Returns an MLWriterinstance for this ML instance.Returns an MLWriterinstance for this ML instance.- Definition Classes
- TrainValidationSplit → MLWritable
- Annotations
- @Since( "2.0.0" )
 
Inherited from MLWritable
Inherited from HasCollectSubModels
Inherited from HasParallelism
Inherited from TrainValidationSplitParams
Inherited from ValidatorParams
Inherited from HasSeed
Inherited from Estimator[TrainValidationSplitModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.