public class BisectingKMeansModel extends Model<BisectingKMeansModel> implements BisectingKMeansParams, MLWritable
param: parentModel a model trained by BisectingKMeans.
| Modifier and Type | Method and Description |
|---|---|
Vector[] |
clusterCenters() |
double |
computeCost(Dataset<?> dataset)
Computes the sum of squared distances between the input points and their corresponding cluster
centers.
|
BisectingKMeansModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
boolean |
hasSummary()
Return true if there exists summary of model.
|
static BisectingKMeansModel |
load(String path) |
static MLReader<BisectingKMeansModel> |
read() |
BisectingKMeansModel |
setFeaturesCol(String value) |
BisectingKMeansModel |
setPredictionCol(String value) |
BisectingKMeansSummary |
summary()
Gets summary of model on training set.
|
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetK, getMinDivisibleClusterSize, k, minDivisibleClusterSize, validateAndTransformSchemagetMaxIter, maxIterfeaturesCol, getFeaturesColgetPredictionCol, predictionColdistanceMeasure, getDistanceMeasureclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringsaveinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static MLReader<BisectingKMeansModel> read()
public static BisectingKMeansModel load(String path)
public String uid()
Identifiableuid in interface Identifiablepublic BisectingKMeansModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<BisectingKMeansModel>extra - (undocumented)public BisectingKMeansModel setFeaturesCol(String value)
public BisectingKMeansModel setPredictionCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public Vector[] clusterCenters()
public double computeCost(Dataset<?> dataset)
dataset - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic boolean hasSummary()
public BisectingKMeansSummary summary()
trainingSummary == None.