Node.js v22.0.0-nightly202312012f4065250e documentation
- Node.js v22.0.0-nightly202312012f4065250e
-
►
Table of contents
- Async hooks
- Terminology
- Overview
async_hooks.createHook(callbacks)
- Class:
AsyncHook
- Promise execution tracking
- JavaScript embedder API
- Class:
AsyncLocalStorage
- Async hooks
-
►
Index
- Assertion testing
- Asynchronous context tracking
- Async hooks
- Buffer
- C++ addons
- C/C++ addons with Node-API
- C++ embedder API
- Child processes
- Cluster
- Command-line options
- Console
- Corepack
- Crypto
- Debugger
- Deprecated APIs
- Diagnostics Channel
- DNS
- Domain
- Errors
- Events
- File system
- Globals
- HTTP
- HTTP/2
- HTTPS
- Inspector
- Internationalization
- Modules: CommonJS modules
- Modules: ECMAScript modules
- Modules:
node:module
API - Modules: Packages
- Net
- OS
- Path
- Performance hooks
- Permissions
- Process
- Punycode
- Query strings
- Readline
- REPL
- Report
- Single executable applications
- Stream
- String decoder
- Test runner
- Timers
- TLS/SSL
- Trace events
- TTY
- UDP/datagram
- URL
- Utilities
- V8
- VM
- WASI
- Web Crypto API
- Web Streams API
- Worker threads
- Zlib
- ► Other versions
- ► Options
Async hooks#
createHook
, AsyncHook
, and
executionAsyncResource
APIs as they have usability issues, safety risks,
and performance implications. Async context tracking use cases are better
served by the stable AsyncLocalStorage
API. If you have a use case for
createHook
, AsyncHook
, or executionAsyncResource
beyond the context
tracking need solved by AsyncLocalStorage
or diagnostics data currently
provided by Diagnostics Channel, please open an issue at
https://github.com/nodejs/node/issues describing your use case so we can
create a more purpose-focused API.Source Code: lib/async_hooks.js
We strongly discourage the use of the async_hooks
API.
Other APIs that can cover most of its use cases include:
AsyncLocalStorage
tracks async contextprocess.getActiveResourcesInfo()
tracks active resources
The node:async_hooks
module provides an API to track asynchronous resources.
It can be accessed using:
import async_hooks from 'node:async_hooks';
const async_hooks = require('node:async_hooks');
Terminology#
An asynchronous resource represents an object with an associated callback.
This callback may be called multiple times, such as the 'connection'
event in net.createServer()
, or just a single time like in fs.open()
.
A resource can also be closed before the callback is called. AsyncHook
does
not explicitly distinguish between these different cases but will represent them
as the abstract concept that is a resource.
If Worker
s are used, each thread has an independent async_hooks
interface, and each thread will use a new set of async IDs.
Overview#
Following is a simple overview of the public API.
import async_hooks from 'node:async_hooks';
// Return the ID of the current execution context.
const eid = async_hooks.executionAsyncId();
// Return the ID of the handle responsible for triggering the callback of the
// current execution scope to call.
const tid = async_hooks.triggerAsyncId();
// Create a new AsyncHook instance. All of these callbacks are optional.
const asyncHook =
async_hooks.createHook({ init, before, after, destroy, promiseResolve });
// Allow callbacks of this AsyncHook instance to call. This is not an implicit
// action after running the constructor, and must be explicitly run to begin
// executing callbacks.
asyncHook.enable();
// Disable listening for new asynchronous events.
asyncHook.disable();
//
// The following are the callbacks that can be passed to createHook().
//
// init() is called during object construction. The resource may not have
// completed construction when this callback runs. Therefore, all fields of the
// resource referenced by "asyncId" may not have been populated.
function init(asyncId, type, triggerAsyncId, resource) { }
// before() is called just before the resource's callback is called. It can be
// called 0-N times for handles (such as TCPWrap), and will be called exactly 1
// time for requests (such as FSReqCallback).
function before(asyncId) { }
// after() is called just after the resource's callback has finished.
function after(asyncId) { }
// destroy() is called when the resource is destroyed.
function destroy(asyncId) { }
// promiseResolve() is called only for promise resources, when the
// resolve() function passed to the Promise constructor is invoked
// (either directly or through other means of resolving a promise).
function promiseResolve(asyncId) { }
const async_hooks = require('node:async_hooks');
// Return the ID of the current execution context.
const eid = async_hooks.executionAsyncId();
// Return the ID of the handle responsible for triggering the callback of the
// current execution scope to call.
const tid = async_hooks.triggerAsyncId();
// Create a new AsyncHook instance. All of these callbacks are optional.
const asyncHook =
async_hooks.createHook({ init, before, after, destroy, promiseResolve });
// Allow callbacks of this AsyncHook instance to call. This is not an implicit
// action after running the constructor, and must be explicitly run to begin
// executing callbacks.
asyncHook.enable();
// Disable listening for new asynchronous events.
asyncHook.disable();
//
// The following are the callbacks that can be passed to createHook().
//
// init() is called during object construction. The resource may not have
// completed construction when this callback runs. Therefore, all fields of the
// resource referenced by "asyncId" may not have been populated.
function init(asyncId, type, triggerAsyncId, resource) { }
// before() is called just before the resource's callback is called. It can be
// called 0-N times for handles (such as TCPWrap), and will be called exactly 1
// time for requests (such as FSReqCallback).
function before(asyncId) { }
// after() is called just after the resource's callback has finished.
function after(asyncId) { }
// destroy() is called when the resource is destroyed.
function destroy(asyncId) { }
// promiseResolve() is called only for promise resources, when the
// resolve() function passed to the Promise constructor is invoked
// (either directly or through other means of resolving a promise).
function promiseResolve(asyncId) { }
async_hooks.createHook(callbacks)
#
callbacks
<Object> The Hook Callbacks to registerinit
<Function> Theinit
callback.before
<Function> Thebefore
callback.after
<Function> Theafter
callback.destroy
<Function> Thedestroy
callback.promiseResolve
<Function> ThepromiseResolve
callback.
- Returns: <AsyncHook> Instance used for disabling and enabling hooks
Registers functions to be called for different lifetime events of each async operation.
The callbacks init()
/before()
/after()
/destroy()
are called for the
respective asynchronous event during a resource's lifetime.
All callbacks are optional. For example, if only resource cleanup needs to
be tracked, then only the destroy
callback needs to be passed. The
specifics of all functions that can be passed to callbacks
is in the
Hook Callbacks section.
import { createHook } from 'node:async_hooks';
const asyncHook = createHook({
init(asyncId, type, triggerAsyncId, resource) { },
destroy(asyncId) { },
});
const async_hooks = require('node:async_hooks');
const asyncHook = async_hooks.createHook({
init(asyncId, type, triggerAsyncId, resource) { },
destroy(asyncId) { },
});
The callbacks will be inherited via the prototype chain:
class MyAsyncCallbacks {
init(asyncId, type, triggerAsyncId, resource) { }
destroy(asyncId) {}
}
class MyAddedCallbacks extends MyAsyncCallbacks {
before(asyncId) { }
after(asyncId) { }
}
const asyncHook = async_hooks.createHook(new MyAddedCallbacks());
Because promises are asynchronous resources whose lifecycle is tracked
via the async hooks mechanism, the init()
, before()
, after()
, and
destroy()
callbacks must not be async functions that return promises.
Error handling#
If any AsyncHook
callbacks throw, the application will print the stack trace
and exit. The exit path does follow that of an uncaught exception, but
all 'uncaughtException'
listeners are removed, thus forcing the process to
exit. The 'exit'
callbacks will still be called unless the application is run
with --abort-on-uncaught-exception
, in which case a stack trace will be
printed and the application exits, leaving a core file.
The reason for this error handling behavior is that these callbacks are running at potentially volatile points in an object's lifetime, for example during class construction and destruction. Because of this, it is deemed necessary to bring down the process quickly in order to prevent an unintentional abort in the future. This is subject to change in the future if a comprehensive analysis is performed to ensure an exception can follow the normal control flow without unintentional side effects.
Printing in AsyncHook
callbacks#
Because printing to the console is an asynchronous operation, console.log()
will cause AsyncHook
callbacks to be called. Using console.log()
or
similar asynchronous operations inside an AsyncHook
callback function will
cause an infinite recursion. An easy solution to this when debugging is to use a
synchronous logging operation such as fs.writeFileSync(file, msg, flag)
.
This will print to the file and will not invoke AsyncHook
recursively because
it is synchronous.
import { writeFileSync } from 'node:fs';
import { format } from 'node:util';
function debug(...args) {
// Use a function like this one when debugging inside an AsyncHook callback
writeFileSync('log.out', `${format(...args)}\n`, { flag: 'a' });
}
const fs = require('node:fs');
const util = require('node:util');
function debug(...args) {
// Use a function like this one when debugging inside an AsyncHook callback
fs.writeFileSync('log.out', `${util.format(...args)}\n`, { flag: 'a' });
}
If an asynchronous operation is needed for logging, it is possible to keep
track of what caused the asynchronous operation using the information
provided by AsyncHook
itself. The logging should then be skipped when
it was the logging itself that caused the AsyncHook
callback to be called. By
doing this, the otherwise infinite recursion is broken.
Class: AsyncHook
#
The class AsyncHook
exposes an interface for tracking lifetime events
of asynchronous operations.
asyncHook.enable()
#
- Returns: <AsyncHook> A reference to
asyncHook
.
Enable the callbacks for a given AsyncHook
instance. If no callbacks are
provided, enabling is a no-op.
The AsyncHook
instance is disabled by default. If the AsyncHook
instance
should be enabled immediately after creation, the following pattern can be used.
import { createHook } from 'node:async_hooks';
const hook = createHook(callbacks).enable();
const async_hooks = require('node:async_hooks');
const hook = async_hooks.createHook(callbacks).enable();
asyncHook.disable()
#
- Returns: <AsyncHook> A reference to
asyncHook
.
Disable the callbacks for a given AsyncHook
instance from the global pool of
AsyncHook
callbacks to be executed. Once a hook has been disabled it will not
be called again until enabled.
For API consistency disable()
also returns the AsyncHook
instance.
Hook callbacks#
Key events in the lifetime of asynchronous events have been categorized into four areas: instantiation, before/after the callback is called, and when the instance is destroyed.
init(asyncId, type, triggerAsyncId, resource)
#
asyncId
<number> A unique ID for the async resource.type
<string> The type of the async resource.triggerAsyncId
<number> The unique ID of the async resource in whose execution context this async resource was created.resource
<Object> Reference to the resource representing the async operation, needs to be released during destroy.
Called when a class is constructed that has the possibility to emit an
asynchronous event. This does not mean the instance must call
before
/after
before destroy
is called, only that the possibility
exists.
This behavior can be observed by doing something like opening a resource then closing it before the resource can be used. The following snippet demonstrates this.
import { createServer } from 'node:net';
createServer().listen(function() { this.close(); });
// OR
clearTimeout(setTimeout(() => {}, 10));
require('node:net').createServer().listen(function() { this.close(); });
// OR
clearTimeout(setTimeout(() => {}, 10));
Every new resource is assigned an ID that is unique within the scope of the current Node.js instance.
type
#
The type
is a string identifying the type of resource that caused
init
to be called. Generally, it will correspond to the name of the
resource's constructor.
The type
of resources created by Node.js itself can change in any Node.js
release. Valid values include TLSWRAP
,
TCPWRAP
, TCPSERVERWRAP
, GETADDRINFOREQWRAP
, FSREQCALLBACK
,
Microtask
, and Timeout
. Inspect the source code of the Node.js version used
to get the full list.
Furthermore users of AsyncResource
create async resources independent
of Node.js itself.
There is also the PROMISE
resource type, which is used to track Promise
instances and asynchronous work scheduled by them.
Users are able to define their own type
when using the public embedder API.
It is possible to have type name collisions. Embedders are encouraged to use unique prefixes, such as the npm package name, to prevent collisions when listening to the hooks.
triggerAsyncId
#
triggerAsyncId
is the asyncId
of the resource that caused (or "triggered")
the new resource to initialize and that caused init
to call. This is different
from async_hooks.executionAsyncId()
that only shows when a resource was
created, while triggerAsyncId
shows why a resource was created.
The following is a simple demonstration of triggerAsyncId
:
import { createHook, executionAsyncId } from 'node:async_hooks';
import { stdout } from 'node:process';
import net from 'node:net';
import fs from 'node:fs';
createHook({
init(asyncId, type, triggerAsyncId) {
const eid = executionAsyncId();
fs.writeSync(
stdout.fd,
`${type}(${asyncId}): trigger: ${triggerAsyncId} execution: ${eid}\n`);
},
}).enable();
net.createServer((conn) => {}).listen(8080);
const { createHook, executionAsyncId } = require('node:async_hooks');
const { stdout } = require('node:process');
const net = require('node:net');
const fs = require('node:fs');
createHook({
init(asyncId, type, triggerAsyncId) {
const eid = executionAsyncId();
fs.writeSync(
stdout.fd,
`${type}(${asyncId}): trigger: ${triggerAsyncId} execution: ${eid}\n`);
},
}).enable();
net.createServer((conn) => {}).listen(8080);
Output when hitting the server with nc localhost 8080
:
TCPSERVERWRAP(5): trigger: 1 execution: 1
TCPWRAP(7): trigger: 5 execution: 0
The TCPSERVERWRAP
is the server which receives the connections.
The TCPWRAP
is the new connection from the client. When a new
connection is made, the TCPWrap
instance is immediately constructed. This
happens outside of any JavaScript stack. (An executionAsyncId()
of 0
means
that it is being executed from C++ with no JavaScript stack above it.) With only
that information, it would be impossible to link resources together in
terms of what caused them to be created, so triggerAsyncId
is given the task
of propagating what resource is responsible for the new resource's existence.
resource
#
resource
is an object that represents the actual async resource that has
been initialized. The API to access the object may be specified by the
creator of the resource. Resources created by Node.js itself are internal
and may change at any time. Therefore no API is specified for these.
In some cases the resource object is reused for performance reasons, it is
thus not safe to use it as a key in a WeakMap
or add properties to it.
Asynchronous context example#
The context tracking use case is covered by the stable API AsyncLocalStorage
.
This example only illustrates async hooks operation but AsyncLocalStorage
fits better to this use case.
The following is an example with additional information about the calls to
init
between the before
and after
calls, specifically what the
callback to listen()
will look like. The output formatting is slightly more
elaborate to make calling context easier to see.
import async_hooks from 'node:async_hooks';
import fs from 'node:fs';
import net from 'node:net';
import { stdout } from 'node:process';
const { fd } = stdout;
let indent = 0;
async_hooks.createHook({
init(asyncId, type, triggerAsyncId) {
const eid = async_hooks.executionAsyncId();
const indentStr = ' '.repeat(indent);
fs.writeSync(
fd,
`${indentStr}${type}(${asyncId}):` +
` trigger: ${triggerAsyncId} execution: ${eid}\n`);
},
before(asyncId) {
const indentStr = ' '.repeat(indent);
fs.writeSync(fd, `${indentStr}before: ${asyncId}\n`);
indent += 2;
},
after(asyncId) {
indent -= 2;
const indentStr = ' '.repeat(indent);
fs.writeSync(fd, `${indentStr}after: ${asyncId}\n`);
},
destroy(asyncId) {
const indentStr = ' '.repeat(indent);
fs.writeSync(fd, `${indentStr}destroy: ${asyncId}\n`);
},
}).enable();
net.createServer(() => {}).listen(8080, () => {
// Let's wait 10ms before logging the server started.
setTimeout(() => {
console.log('>>>', async_hooks.executionAsyncId());
}, 10);
});
const async_hooks = require('node:async_hooks');
const fs = require('node:fs');
const net = require('node:net');
const { fd } = process.stdout;
let indent = 0;
async_hooks.createHook({
init(asyncId, type, triggerAsyncId) {
const eid = async_hooks.executionAsyncId();
const indentStr = ' '.repeat(indent);
fs.writeSync(
fd,
`${indentStr}${type}(${asyncId}):` +
` trigger: ${triggerAsyncId} execution: ${eid}\n`);
},
before(asyncId) {
const indentStr = ' '.repeat(indent);
fs.writeSync(fd, `${indentStr}before: ${asyncId}\n`);
indent += 2;
},
after(asyncId) {
indent -= 2;
const indentStr = ' '.repeat(indent);
fs.writeSync(fd, `${indentStr}after: ${asyncId}\n`);
},
destroy(asyncId) {
const indentStr = ' '.repeat(indent);
fs.writeSync(fd, `${indentStr}destroy: ${asyncId}\n`);
},
}).enable();
net.createServer(() => {}).listen(8080, () => {
// Let's wait 10ms before logging the server started.
setTimeout(() => {
console.log('>>>', async_hooks.executionAsyncId());
}, 10);
});
Output from only starting the server:
TCPSERVERWRAP(5): trigger: 1 execution: 1
TickObject(6): trigger: 5 execution: 1
before: 6
Timeout(7): trigger: 6 execution: 6
after: 6
destroy: 6
before: 7
>>> 7
TickObject(8): trigger: 7 execution: 7
after: 7
before: 8
after: 8
As illustrated in the example, executionAsyncId()
and execution
each specify
the value of the current execution context; which is delineated by calls to
before
and after
.
Only using execution
to graph resource allocation results in the following:
root(1)
^
|
TickObject(6)
^
|
Timeout(7)
The TCPSERVERWRAP
is not part of this graph, even though it was the reason for
console.log()
being called. This is because binding to a port without a host
name is a synchronous operation, but to maintain a completely asynchronous
API the user's callback is placed in a process.nextTick()
. Which is why
TickObject
is present in the output and is a 'parent' for .listen()
callback.
The graph only shows when a resource was created, not why, so to track
the why use triggerAsyncId
. Which can be represented with the following
graph:
bootstrap(1)
|
˅
TCPSERVERWRAP(5)
|
˅
TickObject(6)
|
˅
Timeout(7)
before(asyncId)
#
asyncId
<number>
When an asynchronous operation is initiated (such as a TCP server receiving a
new connection) or completes (such as writing data to disk) a callback is
called to notify the user. The before
callback is called just before said
callback is executed. asyncId
is the unique identifier assigned to the
resource about to execute the callback.
The before
callback will be called 0 to N times. The before
callback
will typically be called 0 times if the asynchronous operation was cancelled
or, for example, if no connections are received by a TCP server. Persistent
asynchronous resources like a TCP server will typically call the before
callback multiple times, while other operations like fs.open()
will call
it only once.
after(asyncId)
#
asyncId
<number>
Called immediately after the callback specified in before
is completed.
If an uncaught exception occurs during execution of the callback, then after
will run after the 'uncaughtException'
event is emitted or a domain
's
handler runs.
destroy(asyncId)
#
asyncId
<number>
Called after the resource corresponding to asyncId
is destroyed. It is also
called asynchronously from the embedder API emitDestroy()
.
Some resources depend on garbage collection for cleanup, so if a reference is
made to the resource
object passed to init
it is possible that destroy
will never be called, causing a memory leak in the application. If the resource
does not depend on garbage collection, then this will not be an issue.
Using the destroy hook results in additional overhead because it enables
tracking of Promise
instances via the garbage collector.
promiseResolve(asyncId)
#
asyncId
<number>
Called when the resolve
function passed to the Promise
constructor is
invoked (either directly or through other means of resolving a promise).
resolve()
does not do any observable synchronous work.
The Promise
is not necessarily fulfilled or rejected at this point if the
Promise
was resolved by assuming the state of another Promise
.
new Promise((resolve) => resolve(true)).then((a) => {});
calls the following callbacks:
init for PROMISE with id 5, trigger id: 1
promise resolve 5 # corresponds to resolve(true)
init for PROMISE with id 6, trigger id: 5 # the Promise returned by then()
before 6 # the then() callback is entered
promise resolve 6 # the then() callback resolves the promise by returning
after 6
async_hooks.executionAsyncResource()
#
- Returns: <Object> The resource representing the current execution. Useful to store data within the resource.
Resource objects returned by executionAsyncResource()
are most often internal
Node.js handle objects with undocumented APIs. Using any functions or properties
on the object is likely to crash your application and should be avoided.
Using executionAsyncResource()
in the top-level execution context will
return an empty object as there is no handle or request object to use,
but having an object representing the top-level can be helpful.
import { open } from 'node:fs';
import { executionAsyncId, executionAsyncResource } from 'node:async_hooks';
console.log(executionAsyncId(), executionAsyncResource()); // 1 {}
open(new URL(import.meta.url), 'r', (err, fd) => {
console.log(executionAsyncId(), executionAsyncResource()); // 7 FSReqWrap
});
const { open } = require('node:fs');
const { executionAsyncId, executionAsyncResource } = require('node:async_hooks');
console.log(executionAsyncId(), executionAsyncResource()); // 1 {}
open(__filename, 'r', (err, fd) => {
console.log(executionAsyncId(), executionAsyncResource()); // 7 FSReqWrap
});
This can be used to implement continuation local storage without the
use of a tracking Map
to store the metadata:
import { createServer } from 'node:http';
import {
executionAsyncId,
executionAsyncResource,
createHook,
} from 'async_hooks';
const sym = Symbol('state'); // Private symbol to avoid pollution
createHook({
init(asyncId, type, triggerAsyncId, resource) {
const cr = executionAsyncResource();
if (cr) {
resource[sym] = cr[sym];
}
},
}).enable();
const server = createServer((req, res) => {
executionAsyncResource()[sym] = { state: req.url };
setTimeout(function() {
res.end(JSON.stringify(executionAsyncResource()[sym]));
}, 100);
}).listen(3000);
const { createServer } = require('node:http');
const {
executionAsyncId,
executionAsyncResource,
createHook,
} = require('node:async_hooks');
const sym = Symbol('state'); // Private symbol to avoid pollution
createHook({
init(asyncId, type, triggerAsyncId, resource) {
const cr = executionAsyncResource();
if (cr) {
resource[sym] = cr[sym];
}
},
}).enable();
const server = createServer((req, res) => {
executionAsyncResource()[sym] = { state: req.url };
setTimeout(function() {
res.end(JSON.stringify(executionAsyncResource()[sym]));
}, 100);
}).listen(3000);
async_hooks.executionAsyncId()
#
- Returns: <number> The
asyncId
of the current execution context. Useful to track when something calls.
import { executionAsyncId } from 'node:async_hooks';
import fs from 'node:fs';
console.log(executionAsyncId()); // 1 - bootstrap
const path = '.';
fs.open(path, 'r', (err, fd) => {
console.log(executionAsyncId()); // 6 - open()
});
const async_hooks = require('node:async_hooks');
const fs = require('node:fs');
console.log(async_hooks.executionAsyncId()); // 1 - bootstrap
const path = '.';
fs.open(path, 'r', (err, fd) => {
console.log(async_hooks.executionAsyncId()); // 6 - open()
});
The ID returned from executionAsyncId()
is related to execution timing, not
causality (which is covered by triggerAsyncId()
):
const server = net.createServer((conn) => {
// Returns the ID of the server, not of the new connection, because the
// callback runs in the execution scope of the server's MakeCallback().
async_hooks.executionAsyncId();
}).listen(port, () => {
// Returns the ID of a TickObject (process.nextTick()) because all
// callbacks passed to .listen() are wrapped in a nextTick().
async_hooks.executionAsyncId();
});
Promise contexts may not get precise executionAsyncIds
by default.
See the section on promise execution tracking.
async_hooks.triggerAsyncId()
#
- Returns: <number> The ID of the resource responsible for calling the callback that is currently being executed.
const server = net.createServer((conn) => {
// The resource that caused (or triggered) this callback to be called
// was that of the new connection. Thus the return value of triggerAsyncId()
// is the asyncId of "conn".
async_hooks.triggerAsyncId();
}).listen(port, () => {
// Even though all callbacks passed to .listen() are wrapped in a nextTick()
// the callback itself exists because the call to the server's .listen()
// was made. So the return value would be the ID of the server.
async_hooks.triggerAsyncId();
});
Promise contexts may not get valid triggerAsyncId
s by default. See
the section on promise execution tracking.
async_hooks.asyncWrapProviders
#
- Returns: A map of provider types to the corresponding numeric id.
This map contains all the event types that might be emitted by the
async_hooks.init()
event.
This feature suppresses the deprecated usage of process.binding('async_wrap').Providers
.
See: DEP0111
Promise execution tracking#
By default, promise executions are not assigned asyncId
s due to the relatively
expensive nature of the promise introspection API provided by
V8. This means that programs using promises or async
/await
will not get
correct execution and trigger ids for promise callback contexts by default.
import { executionAsyncId, triggerAsyncId } from 'node:async_hooks';
Promise.resolve(1729).then(() => {
console.log(`eid ${executionAsyncId()} tid ${triggerAsyncId()}`);
});
// produces:
// eid 1 tid 0
const { executionAsyncId, triggerAsyncId } = require('node:async_hooks');
Promise.resolve(1729).then(() => {
console.log(`eid ${executionAsyncId()} tid ${triggerAsyncId()}`);
});
// produces:
// eid 1 tid 0
Observe that the then()
callback claims to have executed in the context of the
outer scope even though there was an asynchronous hop involved. Also,
the triggerAsyncId
value is 0
, which means that we are missing context about
the resource that caused (triggered) the then()
callback to be executed.
Installing async hooks via async_hooks.createHook
enables promise execution
tracking:
import { createHook, executionAsyncId, triggerAsyncId } from 'node:async_hooks';
createHook({ init() {} }).enable(); // forces PromiseHooks to be enabled.
Promise.resolve(1729).then(() => {
console.log(`eid ${executionAsyncId()} tid ${triggerAsyncId()}`);
});
// produces:
// eid 7 tid 6
const { createHook, executionAsyncId, triggerAsyncId } = require('node:async_hooks');
createHook({ init() {} }).enable(); // forces PromiseHooks to be enabled.
Promise.resolve(1729).then(() => {
console.log(`eid ${executionAsyncId()} tid ${triggerAsyncId()}`);
});
// produces:
// eid 7 tid 6
In this example, adding any actual hook function enabled the tracking of
promises. There are two promises in the example above; the promise created by
Promise.resolve()
and the promise returned by the call to then()
. In the
example above, the first promise got the asyncId
6
and the latter got
asyncId
7
. During the execution of the then()
callback, we are executing
in the context of promise with asyncId
7
. This promise was triggered by
async resource 6
.
Another subtlety with promises is that before
and after
callbacks are run
only on chained promises. That means promises not created by then()
/catch()
will not have the before
and after
callbacks fired on them. For more details
see the details of the V8 PromiseHooks API.
JavaScript embedder API#
Library developers that handle their own asynchronous resources performing tasks
like I/O, connection pooling, or managing callback queues may use the
AsyncResource
JavaScript API so that all the appropriate callbacks are called.
Class: AsyncResource
#
The documentation for this class has moved AsyncResource
.
Class: AsyncLocalStorage
#
The documentation for this class has moved AsyncLocalStorage
.