Various methods for targeted and semiparametric inference including
	     augmented inverse probability weighted (AIPW) estimators for missing data and
	     causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>),
         variable importance and conditional average treatment effects (CATE)
         (van der Laan (2006) <doi:10.2202/1557-4679.1008>),
	     estimators for risk differences and relative risks (Richardson et al. (2017)
	     <doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized
         linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).
| Version: | 
0.6 | 
| Depends: | 
R (≥ 4.1) | 
| Imports: | 
R6, Rcpp (≥ 1.0.0), abind, cli, data.table, future.apply, lava (≥ 1.8.0), methods, mets, optimx, quadprog, progressr, rlang, survival | 
| LinkingTo: | 
Rcpp, RcppArmadillo | 
| Suggests: | 
SuperLearner (≥ 2.0-28), cmprsk, MASS, e1071, earth, glmnet, grf, hal9001, knitr, mgcv, nnls, polle (≥ 1.5), pracma, randomForestSRC, ranger, riskRegression, rmarkdown, scatterplot3d, tinytest, viridisLite, xgboost | 
| Published: | 
2025-10-30 | 
| DOI: | 
10.32614/CRAN.package.targeted | 
| Author: | 
Klaus K. Holst [aut, cre],
  Benedikt Sommer [aut],
  Andreas Nordland [aut] | 
| Maintainer: | 
Klaus K. Holst  <klaus at holst.it> | 
| BugReports: | 
https://github.com/kkholst/targeted/issues | 
| License: | 
Apache License (== 2.0) | 
| URL: | 
https://kkholst.github.io/targeted/ | 
| NeedsCompilation: | 
yes | 
| Materials: | 
README, NEWS  | 
| In views: | 
MissingData | 
| CRAN checks: | 
targeted results |