User Documentation for CVODES v7.4.0
SUNDIALS v7.4.0

Alan C. Hindmarsh!, Radu Serban®, Cody J. Balos!,
David J. Gardner', Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

June 23, 2025

aials

<
S

(Vo)

UCRL-SM-208111

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: Mustafa Aggul, James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart,
John Loffeld, Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M.
Sexton, Dan Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan,
and Ulrike M. Yang.

Contents

1 Introduction 1
1.1 Historical Background e 1
1.2 Changes to SUNDIALS inrelease 7.4.0 o i it 2
1.3 Reading this User Guide 0 i e e e e e e e 3
1.4 SUNDIALS License and Notices ittt ettt e e e 4
2 Mathematical Considerations 7
2.1 IVPsolution e e e 7
22 IVPswithconstraints e e e e 12
2.3 Preconditioning L e e 12
2.4 BDF stability limitdetection e 13
2.5 Rootfinding L. 14
2.6 Pure Quadrature Integration e e e e e e e e e 15
2.7 Forward Sensitivity Analysis L e e e e e 15
2.8 Adjoint Sensitivity Analysis oL e 19
2.9 Checkpointing scheme L e 20
2.10 Second-order sensitivity analysis Lo e 21
3 Code Organization 23
4 Getting Started 25
4.1 DataTypes . . . v o v v e e e e e e e e e e e e e e e 26
4.2 The SUNContext Type o i i e e e e e e 28
43 ErrorChecking e e e e e e e 34
4.4 Statusand Error Logging L 36
4.5 Performance Profiling e e e e 41
4.6 Getting Version Information L. L e e 44
477 Fortran Interface 45
4.8 Features for GPU Accelerated Computing oo 54
5 Using CVODES 57
5.1 Using CVODES for IVP Solution 57
5.2 Integration of pure quadrature equations e 121
5.3 Using CVODES for Forward Sensitivity Analysis 135
5.4 Using CVODES for Adjoint Sensitivity Analysis 165
6 Vector Data Structures 205
6.1 Description of the NVECTOR Modules i ittt e e 205
6.2 Description of the NVECTOR operations o v i v v v it ettt e e 213
6.3 NVECTOR functionsused by CVODES e 226
6.4 The NVECTOR_SERIAL Module ettt et e 227
6.5 The NVECTOR_PARALLEL Module 230
6.6 The NVECTOR_OPENMP Module et 234

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

The NVECTOR_PTHREADS Module ittt
The NVECTOR_PARHYP Module e
The NVECTOR_PETSC Module et
The NVECTOR_CUDA Module et
The NVECTOR_HIP Module e it
The NVECTOR_SYCL Module e s
The NVECTOR_RAJAModule
The NVECTOR_KOKKOS Module e e e e e e e e e e
The NVECTOR_OPENMPDEV Module
The NVECTOR_TRILINOS Module it
The NVECTOR_MANYVECTOR Module o it
The NVECTOR_MPIMANYVECTOR Module
The NVECTOR_MPIPLUSX Module i
NVECTOR Examples oo e e e e e e e e e e e e e e

Matrix Data Structures

7.1
7.2
7.3
7.4
1.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Description of the SUNMATRIX Modules
Description of the SUNMATRIX operations
The SUNMATRIX_DENSE Module it
The SUNMATRIX_MAGMADENSEModule
The SUNMATRIX_ONEMKLDENSEModule
The SUNMATRIX_BAND Module e
The SUNMATRIX_CUSPARSEModule
The SUNMATRIX_SPARSE Module i
The SUNMATRIX_SLUNRLOC Module i
The SUNMATRIX_GINKGO Module i

Linear Algebraic Solvers

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

The SUNLinearSolver APL e e e e
CVODES SUNLinearSolverinterface i it
The SUNLinSol Band Module e
The SUNLinSol_Dense Module e e
The SUNLinSol_KLU Module e e e e e e e e e
The SUNLinSol_LapackBand Module i
The SUNLinSol_LapackDense Module
The SUNLinSol_MagmaDense Module
The SUNLinSol_OneMklDense Module o e i e
The SUNLinSol_PCG Module e e s e e e s e
The SUNLinSol_SPBCGS Module e e e e e e
The SUNLinSol_SPFGMR Module et et et et
The SUNLinSol_SPGMR Module ittt
The SUNLinSol_SPTFQMR Module ittt e et
The SUNLinSol_SuperLUDIST Module
The SUNLinSol_SuperLUMT Module ettt e e e e
The SUNLinSol_cuSolverSp_batchQR Module
The SUNLINEARSOLVER_GINKGO Module
The SUNLINEARSOLVER_KOKKOSDENSE Module
SUNLinearSolver Examples o e

Nonlinear Algebraic Solvers

9.1

The SUNNonlinearSolver API e

ii

10

11

12

13

14

9.2 CVODES SUNNonlinearSolver interface 0 i i i i e 394

9.3 The SUNNonlinSol_Newton implementation, 398
9.4 The SUNNonlinSol_FixedPoint implementation 400
9.5 The SUNNonlinSol_PetscSNES implementation 404
Tools for Memory Management 407
10.1 The SUNMemoryHelper API e 407
10.2 The SUNMemoryHelper_Sys Implementation 413
10.3 The SUNMemoryHelper_Cuda Implementation 414
10.4 The SUNMemoryHelper_Hip Implementation 416
10.5 The SUNMemoryHelper_Sycl Implementation 419
Installing SUNDIALS 423
11.1 Installing with Spack 423
11.2 InstallingwithCMake e e e 423
11.3 Configuration options L e e e e 426
11.4 Testing the Build and Installation 453
11.5 Building and Running Examples 453
11.6 Using SUNDIALS In Your Project ettt 453
11.7 Libraries and Header Files e 455
CVODES Constants 475
12.1 CVODES input CONStants v v v v vt e ettt e e e e e e e 475
12.2 CVODES output ConStants v v v v v v v e i e e e e e e e e e e e e e e e e e e 476
Release History 479
Changelog 481
14.1 Changes to SUNDIALS inrelease 7.4.0 o 481
14.2 Changes to SUNDIALS inrelease 7.3.0 o o it 481
14.3 Changes to SUNDIALS inrelease 7.2.1 0 i i e e e e e e e e e 484
14.4 Changes to SUNDIALS inrelease 7.2.0 o i ittt e e 484
14.5 Changes to SUNDIALS inrelease 7.1.1 487
14.6 Changes to SUNDIALS inrelease 7.1.0 o 487
14.7 Changes to SUNDIALS inrelease 7.0.0 489
14.8 Changes to SUNDIALS inrelease 6.7.0 o i 492
14.9 Changes to SUNDIALS inrelease 6.6.2 o i i it e it e e e e 493
14.10 Changes to SUNDIALS inrelease 6.6.1 493
14.11 Changes to SUNDIALS inrelease 6.6.0 493
14.12 Changes to SUNDIALS inrelease 6.5.1 494
14.13 Changes to SUNDIALS inrelease 6.5.0 494
14.14 Changes to SUNDIALS inrelease 6.4.1 0 i i e it e e e e 495
14.15 Changes to SUNDIALS inrelease 6.4.0 o . i it e e e e 495
14.16 Changes to SUNDIALS inrelease 6.3.0 496
14.17 Changes to SUNDIALS inrelease 6.2.0 497
14.18 Changes to SUNDIALS inrelease 6.1.1 o e 500
14.19 Changes to SUNDIALS inrelease 6.1.0 i it 500
14.20 Changes to SUNDIALS inrelease 6.0.0 et 500
14.21 Changes to SUNDIALS inrelease 5.8.0 506
14.22 Changes to SUNDIALS inrelease 5.7.0 o 507
14.23 Changes to SUNDIALS inrelease 5.6.1 o i 507
14.24 Changes to SUNDIALS inrelease 5.6.0 o i 507
14.25 Changes to SUNDIALS inrelease 5.5.0 i i i e et 508
14.26 Changes to SUNDIALS inrelease 5.4.0 o 508
14.27 Changes to SUNDIALS inrelease 5.3.0 510

iii

14.28 Changes to SUNDIALS inrelease 5.2.0 o . o it 511

14.29 Changes to SUNDIALS inrelease 5.1.0 i it 512
14.30 Changes to SUNDIALS inrelease 5.0.0 i e 513
14.31 Changes to SUNDIALS inrelease 4.1.0 516
14.32 Changes to SUNDIALS inrelease 4.0.2 o o i e 517
14.33 Changes to SUNDIALS inrelease 4.0.1 o i e 517
14.34 Changes to SUNDIALS inrelease 4.0.0 i e it 517
14.35 Changes to SUNDIALS inrelease 3.2.1 0 i i et e e e 520
14.36 Changes to SUNDIALS inrelease 3.2.0 520
14.37 Changes to SUNDIALS inrelease 3.1.2 521
14.38 Changes to SUNDIALS inrelease 3.1.1 o i 521
14.39 Changes to SUNDIALS inrelease 3.1.0 o i e 522
14.40 Changes to SUNDIALS inrelease 3.0.0 i ittt 522
14.41 Changes to SUNDIALS inrelease 2.7.0 i 524
14.42 Changes to SUNDIALS inrelease 2.6.2 526
14.43 Changes to SUNDIALS inrelease 2.6.1 i 526
14.44 Changes to SUNDIALS inrelease 2.6.0 it 527
14.45 Changes to SUNDIALS inrelease 2.5.0 o i ittt e e e e 528
14.46 Changes to SUNDIALS inrelease 2.4.0 o i i ittt et 529
14.47 Changes to SUNDIALS inrelease 2.3.0 530
14.48 Changes to SUNDIALS inrelease 2.2.0 o 530
14.49 Changes to SUNDIALS inrelease 2.1.1 o . o it 531
14.50 Changes to SUNDIALS inrelease 2.1.0 i e it 531
14.51 Changes to SUNDIALS inrelease 2.0.2 0 i i ittt e e e e e 531
14.52 Changes to SUNDIALS inrelease 2.0.1 531
14.53 Changes to SUNDIALS inrelease 2.0.0 o 532
Bibliography 533
Index 537

iv

Chapter 1

Introduction

CVODES [61] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers [41]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities. CVODES is a solver for stiff and nonstiff initial value problems (IVPs) for systems of ordinary
differential equation (ODEs). In addition to solving stiff and nonstiff ODE systems, CVODES has sensitivity analysis
capabilities, using either the forward or the adjoint methods.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that have been written at
LLNL in the past are VODE [15] and VODPK [18]. VODE is a general purpose solver that includes methods for both
stiff and nonstiff systems, and in the stiff case uses direct methods (full or banded) for the solution of the linear systems
that arise at each implicit step. Externally, VODE is very similar to the well known solver LSODE [57]. VODPK is a
variant of VODE that uses a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear
systems. VODPK is a powerful tool for large stiff systems because it combines established methods for stiff integration,
nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness,
in the form of the user-supplied preconditioner matrix [16]. The capabilities of both VODE and VODPK have been
combined in the C-language package CVODE [23].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjunc-
tion with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [59], FGMRES (Flexible
Generalized Minimum RESidual) [58], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [67], TFQMR (Transpose-Free
Quasi-Minimal Residual) [33], and PCG (Preconditioned Conjugate Gradient) [36] linear iterative methods. As Krylov
methods, these require almost no matrix storage for solving the Newton equations as compared to direct methods. How-
ever, the algorithms allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential
for an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct linear solver
methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES
as the best overall choice. However, users are encouraged to compare all options, especially if encountering conver-
gence failures with GMRES. Bi-CGStab and TFQMR have an advantage in storage requirements, in that the number
of workspace vectors they require is fixed, while that number for GMRES depends on the desired Krylov subspace
size. FGMRES has an advantage in that it is designed to support preconditioners that vary between iterations (e.g.,
iterative methods). PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric
linear systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organization has been
changed considerably. One key feature of the CVODE organization is that the linear system solvers comprise a layer
of code modules that is separated from the integration algorithm, allowing for easy modification and expansion of the
linear solver array. A second key feature is a separate module devoted to vector operations; this facilitated the extension

User Documentation for CVODES, v7.4.0

to multiprosessor environments with minimal impacts on the rest of the solver, resulting in PVODE [20], the parallel
variant of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE. Sensitivity analysis ca-
pabilities, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity computations
in CVODES will result in the code integrating the so-called sensitivity equations simultaneously with the original IVP,
yielding both the solution and its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most
useful when the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called adjoint equations
backward in time. CVODES provides the infrastructure needed to integrate any final-condition ODE dependent on the
solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across the SUNDIALS
suite. The key feature of the N_Vector module is that it is written in terms of abstract vector operations with the
actual vector functions attached by a particular implementation (such as serial or parallel) of N_Vector. This allows
writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which can be user-
supplied), as well as allowing more than one N_Vector module to be linked into an executable file. SUNDIALS
(and thus CVODES) is supplied with serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel N_Vector
implementations.

There were several motivations for choosing the C language for CVODE, and later for CVODES. First, a general
movement away from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure, and
dynamic memory allocation features in C are extremely useful in software of this complexity. Finally, we prefer C
over C++ for CVODES because of the wider availability of C compilers, the potentially greater efficiency of C, and the
greater ease of interfacing the solver to applications written in extended Fortran.

1.2 Changes to SUNDIALS in release 7.4.0

New Features and Enhancements
ARKodeSetCFLFraction() now allows cfl_£frac to be greater than or equal to one.

Added an option to enable compensated summation of the time accumulator for all of ARKODE. This was previously
only an option for the SPRKStep module. The new function to call to enable this is ARKodeSetUseCompensated-
Sums Q).

Bug Fixes
Fixed segfaults in CVodeAdjInit () and IDAAdjInit () when called after adjoint memory has been freed.
Fixed a CMake bug that would cause the Caliper compile test to fail at configure time.

Fixed a bug in the CVODE/CVODES (VodeSetEtaFixedStepBounds () function which disallowed setting eta_-
min_fx or eta_min_fxto I.

SUNAdjointStepper_PrintAllStats() was reporting the wrong quantity for the number of “recompute passes”
and has been fixed.

Deprecation Notices

The SPRKStepSetUseCompensatedSums () function has been deprecated. Use the ARKodeSetUseCompensated-
Sums () function instead.

For changes in prior versions of SUNDIALS see §14.

2 Chapter 1. Introduction

https://sundials.readthedocs.io/en/v7.4.0/arkode/Usage/User_callable.html#c.ARKodeSetCFLFraction
https://sundials.readthedocs.io/en/v7.4.0/arkode/Usage/User_callable.html#c.ARKodeSetUseCompensatedSums
https://sundials.readthedocs.io/en/v7.4.0/arkode/Usage/User_callable.html#c.ARKodeSetUseCompensatedSums
https://sundials.readthedocs.io/en/v7.4.0/idas/Usage/ADJ.html#c.IDAAdjInit
https://sundials.readthedocs.io/en/v7.4.0/sunadjoint/SUNAdjoint_links.html#c.SUNAdjointStepper_PrintAllStats
https://sundials.readthedocs.io/en/v7.4.0/arkode/Usage/SPRKStep/User_callable.html#c.SPRKStepSetUseCompensatedSums
https://sundials.readthedocs.io/en/v7.4.0/arkode/Usage/User_callable.html#c.ARKodeSetUseCompensatedSums
https://sundials.readthedocs.io/en/v7.4.0/arkode/Usage/User_callable.html#c.ARKodeSetUseCompensatedSums

User Documentation for CVODES, v7.4.0

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided as a separate
document. We expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of CVODES. The most casual user, with a small IVP problem only, can
get by with reading §2.1, then Chapter §5.1 up to §5.2 only, and looking at examples in [62]. In addition, to solve a
forward sensitivity problem the user should read §2.7, followed by Chapter §5.3 and look at examples in [62].

In a different direction, a more expert user with an IVP problem may want to (a) use a package preconditioner (§5.2.7),
(b) supply his/her own Jacobian or preconditioner routines (§5.1.4), (c) do multiple runs of problems of the same
size (CVodeReInit()), (d) supply a new N_Vector module (§6), or even (e) supply new SUNLinearSolver and/or
SUNMatrix modules (Chapters §7 and §8). An advanced user with a forward sensitivity problem may also want to
(a) provide his/her own sensitivity equations right-hand side routine §5.3.3, (b) perform multiple runs with the same
number of sensitivity parameters (§5.3.2.1, or (c) extract additional diagnostic information (§5.3.2.7). A user with
an adjoint sensitivity problem needs to understand the IVP solution approach at the desired level and also go through
§2.8 for a short mathematical description of the adjoint approach, Chapter §5.4 for the usage of the adjoint module in
CVODES, and the examples in [62].

The structure of this document is as follows:

* In Chapter §2, we give short descriptions of the numerical methods implemented by CVODES for the solution
of initial value problems for systems of ODEs, continue with short descriptions of preconditioning §2.3, stability
limit detection (§2.4), and rootfinding (§2.5), and conclude with an overview of the mathematical aspects of
sensitivity analysis, both forward (§2.7) and adjoint (§2.8).

* The following chapter describes the software organization of the CVODES solver (§3).

e Chapter §5.1 is the main usage document for CVODES for simulation applications. It includes a complete
description of the user interface for the integration of ODE initial value problems. Readers that are not interested
in using CVODES for sensitivity analysis can then skip the next two chapters.

e Chapter §5.3 describes the usage of CVODES for forward sensitivity analysis as an extension of its [IVP integra-
tion capabilities. We begin with a skeleton of the user main program, with emphasis on the steps that are required
in addition to those already described in Chapter §5.1. Following that we provide detailed descriptions of the
user-callable interface routines specific to forward sensitivity analysis and of the additional optional user-defined
routines.

e Chapter §5.4 describes the usage of CVODES for adjoint sensitivity analysis. We begin by describing the
CVODES checkpointing implementation for interpolation of the original IVP solution during integration of the
adjoint system backward in time, and with an overview of a user’s main program. Following that we provide com-
plete descriptions of the user-callable interface routines for adjoint sensitivity analysis as well as descriptions of
the required additional user-defined routines.

» Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, and details on the N_Vector implementations provided with SUNDIALS.

» Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS: a dense implementation
(§7.3), a banded implementation (§7.6) and a sparse implementation (§7.8).

» Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

* Finally, in the appendices, we provide detailed instructions for the installation of CVODES, within the structure
of SUNDIALS (Appendix §11), as well as a list of all the constants used for input to and output from CVODES

1.3. Reading this User Guide 3

User Documentation for CVODES, v7.4.0

functions (Appendix §12).

Finally, the reader should be aware of the following notational conventions in this user guide: program listings and
identifiers (such as CVodeInit) within textual explanations appear in typewriter type style; fields in C structures (such
as content) appear in italics; and packages or modules, such as CVDLS, are written in all capitals.

Warning

Usage and installation instructions that constitute important warnings are marked in yellow boxes like this one.

1.4 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT, PETSc,
or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2025, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4 Chapter 1. Introduction

User Documentation for CVODES, v7.4.0

1.4.2 Additional Notice
This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

1.4. SUNDIALS License and Notices 5

User Documentation for CVODES, v7.4.0

6 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

CVODES solves ODE initial value problems (IVPs) in real /V-space, which we write in the abstract form

y=f(t,y), ylto) =1yo (2.1

where y € R¥ and f : R x RY — R¥. Here we use ¢ to denote dy/dt. While we use ¢ to denote the independent
variable, and usually this is time, it certainly need not be. CVODES solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time constant is small
compared to the time scale of the solution itself.

For problems (2.1) where the analytical solution y(¢) satisfies an implicit constraint g(¢,y) = 0 (including the initial
condition, g(to, yo) = 0) for g(¢,y) : R x RN — RM with M < N, CVODES may be configured to explicitly enforce
these constraints via solving the modified problem

) = ta) tg) =)
y=fty), ylto) =0 2.2)
0=g(t,y).
Additionally, if (2.1) depends on some parameters p € RN ? ie.
! = t7)
y=f(ty, p) 23)

y(to) = vo(p),

CVODES can also compute first order derivative information, performing either forward sensitivity analysis or adjoint
sensitivity analysis. In the first case, CVODES computes the sensitivities of the solution with respect to the parameters
p, while in the second case, CVODES computes the gradient of a derived function with respect to the parameters p.

2.1 IVP solution

The methods used in CVODES are variable-order, variable-step multistep methods, based on formulas of the form
K Ko
> iy by Bui" T =0, 24)
i=0 i=0

Here the y™ are computed approximations to y(¢,,), and h,, = t,, — t,,_1 is the step size. The user of CVODES must
choose appropriately one of two multistep methods. For nonstiff problems, CVODES includes the Adams-Moulton
formulas, characterized by K; = 1 and K5 = g—1 above, where the order ¢ varies between 1 and 12. For stiff problems,
CVODES includes the Backward Differentiation Formulas (BDF) in so-called fixed-leading coefficient (FLC) form,
given by K1 = q and Ky = 0, with order ¢ varying between 1 and 5. The coefficients are uniquely determined by the
method type, its order, the recent history of the step sizes, and the normalization «,, o = —1. See [19] and [44].

User Documentation for CVODES, v7.4.0

For either choice of formula, a nonlinear system must be solved (approximately) at each integration step. This nonlinear
system can be formulated as either a rootfinding problem

Fy")=y" = hnBnof(tn,y") —an =0, (2.5)

or as a fixed-point problem
G(") = haBrof(tn, y") +an =y". (2.6)

where a, = >, (¥ " + B Bn " 0).

In the process of controlling errors at various levels, CVODES uses a weighted root-mean-square norm, denoted | -
|wrwms, for all error-like quantities. The multiplicative weights used are based on the current solution and on the relative
and absolute tolerances input by the user, namely

W; = 1/[rtol - |y;| + atol;] . 2.7

Because 1/, represents a tolerance in the component y;, a vector whose norm is 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

2.1.1 Nonlinear Solve

CVODES provides several nonlinear solver choices as well as the option of using a user-defined nonlinear solver (see
§9). By default CVODES solves (2.5) with a Newton iteration which requires the solution of linear systems

M[yn(m-&-l) _ yn(m)] — _F(yn('m)) (2.8)

in which
M~I—~J, J=0f/0y, and ~v=h,0ho- 2.9)

The exact variation of the Newton iteration depends on the choice of linear solver and is discussed below and in §9.3.
For nonstiff systems, a fixed-point iteration (previously referred to as a functional iteration in this guide) solving (2.6)
is also available. This involves evaluations of f only and can (optionally) use Anderson’s method [10, 31, 54, 68]
to accelerate convergence (see §9.4 for more details). For any nonlinear solver, the initial guess for the iteration is a
predicted value y™(°) computed explicitly from the available history data.

For nonlinear solvers that require the solution of the linear system (2.8) (e.g., the default Newton iteration), CVODES
provides several linear solver choices, including the option of a user-supplied linear solver module (see §8). The linear
solver modules distributed with SUNDIALS are organized in two families, a direct family comprising direct linear
solvers for dense, banded, or sparse matrices, and a spils family comprising scaled preconditioned iterative (Krylov)
linear solvers. The methods offered through these modules are as follows:

 dense direct solvers, including an internal implementation, an interface to BLAS/LAPACK, an interface to
MAGMA [64] and an interface to the oneMKL library [3],

* band direct solvers, including an internal implementation or an interface to BLAS/LAPACK,

* sparse direct solver interfaces to various libraries, including KLU [4, 24], SuperLU_MT [9, 26, 51], SuperLU_-
Dist [8, 35, 52, 53], and cuSPARSE [7],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or

8 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.4.0

* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are often not feasible, the combination of a BDF integrator and a precon-
ditioned Krylov method yields a powerful tool because it combines established methods for stiff integration, nonlinear
iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form
of the user-supplied preconditioner matrix [16].

In addition, CVODES also provides a linear solver module which only uses a diagonal approximation of the Jacobian
matrix.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton iteration, in that the
iteration matrix M is fixed throughout the nonlinear iterations. However, in the case that a matrix-free iterative linear
solver is used, the default Newton iteration is an Inexact Newton iteration, in which M is applied in a matrix-free
manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied routine. With the
default Newton iteration, the matrix M and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,

* more than 20 steps have been taken since the last update,

* the value 7 of ~ at the last update satisfies |v/5 — 1| > 0.3,
 anon-fatal convergence failure just occurred, or

* an error test failure just occurred.

When an update of M or P occurs, it may or may not involve a reevaluation of J (in M) or of Jacobian data (in P),
depending on whether Jacobian error was the likely cause of the update. Reevaluating J (or instructing the user to
update Jacobian data in P) occurs when:

e starting the problem,
» more than 50 steps have been taken since the last evaluation,

* aconvergence failure occurred with an outdated matrix, and the value 7 of -y at the last update satisfies |y/7—1| <
0.2, or

* a convergence failure occurred that forced a step size reduction.

The default stopping test for nonlinear solver iterations is related to the subsequent local error test, with the goal of
keeping the nonlinear iteration errors from interfering with local error control. As described below, the final computed
value y"("™) will have to satisfy a local error test ||y™("™) —™(0)|| < €. Letting 4" denote the exact solution of (2.5), we
want to ensure that the iteration error y™ — y™(") is small relative to e, specifically that it is less than 0.1¢. (The safety
factor 0.1 can be changed by the user.) For this, we also estimate the linear convergence rate constant R as follows. We
initialize R to 1, and reset R = 1 when M or P is updated. After computing a correction d,,, = 3™("™) — 4*(m=1) e
update Rif m > 1 as

R = max{0.3R, [[0m]|/[|om—1]}-
Now we use the estimate
L R o e R e T (S 1 [
Therefore the convergence (stopping) test is
R|[6m|| < 0.1€.

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration diverged if any
10 I/ 10m—1]] > 2 with m > 1. If convergence fails with JJ or P current, we are forced to reduce the step size, and
we replace h,, by h, = n¢t * hy, where the default is 7. = 0.25. The integration is halted after a preset number of
convergence failures; the default value of this limit is 10, but this can be changed by the user.

2.1. IVP solution 9

User Documentation for CVODES, v7.4.0

When an iterative method is used to solve the linear system, its errors must also be controlled, and this also involves
the local error test constant. The linear iteration error in the solution vector §,, is approximated by the preconditioned
residual vector. Thus to ensure (or attempt to ensure) that the linear iteration errors do not interfere with the nonlinear
error and local integration error controls, we require that the norm of the preconditioned residual be less than 0.05 -
(0.1e).

When the Jacobian is stored using either the SUNMATRIX _DENSE or SUNMATRIX_BAND matrix objects, the Jaco-
bian may be supplied by a user routine, or approximated by difference quotients, at the user’s option. In the latter case,
we use the usual approximation

Jij = filt,y +oje5) — fi(t,y)]/oj .

The increments o; are given by
oj = max{ﬁ |yj|,00/Wj} ,

where U is the unit roundoff, o is a dimensionless value, and WV, is the error weight defined in (2.7). In the dense case,
this scheme requires /N evaluations of f, one for each column of .J. In the band case, the columns of .J are computed
in groups, by the Curtis-Powell-Reid algorithm, with the number of f evaluations equal to the bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both, with user-supplied
routines for the preconditioning setup and solve operations, and optionally also for the required matrix-vector products
Juv. If a routine for Jv is not supplied, these products are computed as

Jv=[f(t,y+ov)— f(t,y)]/o. (2.10)

The increment o is 1/||v]|, so that ov has norm 1.

2.1.2 Local Error Test

A critical part of CVODES — making it an ODE “solver” rather than just an ODE method, is its control of local
error. Atevery step, the local error is estimated and required to satisfy tolerance conditions, and the step is redone with
reduced step size whenever that error test fails. As with any linear multistep method, the local truncation error LTE, at
order g and step size h, satisfies an asymptotic relation

LTE = Ch9+1yatD) 4 O(h+2)

for some constant C', under mild assumptions on the step sizes. A similar relation holds for the error in the predictor
™), These are combined to get a relation

LTE = C'[y" — y" O] + O(h?*?).

The local error test is simply |[LTE| < 1. Using the above, it is performed on the predictor-corrector difference A,, =
y™m) — y(0) (with y™("™) the final iterate computed), and takes the form

1An]l < e=1/1C".

10 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.4.0

2.1.3 Step Size and Order Selection

If the local error test passes, the step is considered successful. If it fails, the step is rejected and a new step size h' is
computed based on the asymptotic behavior of the local error, namely by the equation

(BRI H[Al = €/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails three times, the
order ¢ is reset to 1 (if ¢ > 1), or the step is restarted from scratch (if ¢ = 1). The ratio n = h’/h is limited above
t0 Nmax_ef (default 0.2) after two error test failures, and limited below to 7min o (default 0.1) after three. After seven
failures, CVODES returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODES periodically adjusts the order, with the goal
of maximizing the step size. The integration starts out at order 1 and varies the order dynamically after that. The basic
idea is to pick the order ¢ for which a polynomial of order g best fits the discrete data involved in the multistep method.
However, if either a convergence failure or an error test failure occurred on the step just completed, no change in step
size or order is done. At the current order g, selecting a new step size is done exactly as when the error test fails, giving
a tentative step size ratio

W [h = (e/6] A +D =,

We consider changing order only after taking ¢ + 1 steps at order ¢, and then we consider only orders ¢’ = ¢ — 1 (if
q > 1)orq = q+ 1 (if ¢ < 5). The local truncation error at order ¢’ is estimated using the history data. Then a
tentative step size ratio is computed on the basis that this error, LTE(q’), behaves asymptotically as he'*+1. With safety
factors of 1/6 and 1/10 respectively, these ratios are:

h'/h = [1/6||LTE(q — 1)|[]"/* = 1y
and
R /h = [1/10|LTE(g + D[]/ = gy .
The new order and step size are then set according to

n = max{nq—1, Mg, Ng+17 »

with ¢’ set to the index achieving the above maximum. However, if we find that < 7max g (default 1.5), we do not
bother with the change. Also, 7 is always limited to 9max_gs (default 10), except on the first step, when it is limited to
Thmax_fs = 104‘

The various algorithmic features of CVODES described above, as inherited from VODE and VODPK, are documented
in [15, 18, 40]. They are also summarized in [41].

Normally, CVODES takes steps until a user-defined output value ¢ = ¢, is overtaken, and then it computes y(tou) by
interpolation. However, a “one step”” mode option is available, where control returns to the calling program after each
step. There are also options to force CVODES not to integrate past a given stopping point ¢ = tyop.

2.1.4 Inequality Constraints

CVODES permits the user to impose optional inequality constraints on individual components of the solution vector
y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0, or y; < 0. The constraint satisfaction
is tested after a successful nonlinear system solution. If any constraint fails, we declare a convergence failure of the
Newton iteration and reduce the step size. Rather than cutting the step size by some arbitrary factor, CVODES estimates
anew step size k' using a linear approximation of the components in y that failed the constraint test (including a safety
factor of 0.9 to cover the strict inequality case). If a step fails to satisfy the constraints repeatedly within a step attempt
or fails with the minimum step size then the integration is halted and an error is returned. In this case the user may
need to employ other strategies as discussed in §5.1.3.2 to satisfy the inequality constraints.

2.1. IVP solution 11

User Documentation for CVODES, v7.4.0

2.2 IVPs with constraints

For IVPs whose analytical solutions implicitly satisfy constraints as in (2.2), CVODES ensures that the solution satisfies
the constraint equation by projecting a successfully computed time step onto the invariant manifold. As discussed in
[30] and [63], this approach reduces the error in the solution and retains the order of convergence of the numerical
method. Therefore, in an attempt to advance the solution to a new point in time (i.e., taking a new integration step),
CVODES performs the following operations:

1. predict solution
2. solve nonlinear system and correct solution
3. project solution

4. test error

5. select order and step size for next step

and includes several recovery attempts in case there are convergence failures (or difficulties) in the nonlinear solver or
in the projection step, or if the solution fails to satisfy the error test. Note that at this time projection is only supported
with BDF methods and the projection function must be user-defined. See §5.1.3.8 and CVodeSetProjFn() for more
information on providing a projection function to CVODE.

When using a coordinate projection method the solution y,, is obtained by projecting (orthogonally or otherwise) the
solution y,, from step 2 above onto the manifold given by the constraint. As such y,, is computed as the solution of the
nonlinear constrained least squares problem

minimize ||yn — Jn|

2.11
subjectto g(tn,yn) = 0. @11

The solution of (2.11) can be computed iteratively with a Newton method. Given an initial guess y7(,,0) the iterations are
computed as

it =yl + sy

n
where the increment 5y§f) is the solution of the least-norm problem
minimize ||dy{V|

subject to G, y%) 6y = —g(tn,y)

n

2.12)

where G(t,y) = 0g(t,y)/0y.

If the projected solution satisfies the error test then the step is accepted and the correction to the unprojected solution,
Ap = Yn — Un, is used to update the Nordsieck history array for the next step.

2.3 Preconditioning

When using a nonlinear solver that requires the solution of the linear system, e.g., the default Newton iteration (§9.3),
CVODES makes repeated use of a linear solver to solve linear systems of the form Mx = —r, where z is a correction
vector and 7 is a residual vector. If this linear system solve is done with one of the scaled preconditioned iterative linear
solvers supplied with SUNDIALS, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Az = b can be preconditioned
on the left, as (P~ ' A)z = P~'b; on the right, as (AP~') Pz = b; or on both sides, as (P; ' APy ') Prx = P; 'b.
The Krylov method is then applied to a system with the matrix P~' A, or AP~!, or P; ' APy, instead of A. In order
to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product P;, Pr, in the last case,
should in some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the matrix

12 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.4.0

P, or matrices Pr, and Pg, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for example,
see [16] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for preconditioning either side, or on both sides,
although we know of no situation where preconditioning on both sides is clearly superior to preconditioning on one side
only (with the product P, Pr). Moreover, for a given preconditioner matrix, the merits of left vs. right preconditioning
are unclear in general, and the user should experiment with both choices. Performance will differ because the inverse
of the left preconditioner is included in the linear system residual whose norm is being tested in the Krylov algorithm.
As a rule, however, if the preconditioner is the product of two matrices, we recommend that preconditioning be done
either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with CVODES are based on approximations to the system Jacobian, J = Jf/dy. Since
the matrix involved is M = I —~.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = I — ~.J. Because the Krylov iteration occurs within a nonlinear solver iteration and further also within
a time integration, and since each of these iterations has its own test for convergence, the preconditioner may use a
very crude approximation, as long as it captures the dominant numerical feature(s) of the system. We have found that
the combination of a preconditioner with the Newton-Krylov iteration, using even a fairly poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.4 BDF stability limit detection

CVODES includes an algorithm, STALD (STAbility Limit Detection), which provides protection against potentially
unstable behavior of the BDF multistep integration methods in certain situations, as described below.

When the BDF option is selected, CVODES uses Backward Differentiation Formula methods of orders 1 to 5. At order
1 or 2, the BDF method is A-stable, meaning that for any complex constant A in the open left half-plane, the method
is unconditionally stable (for any step size) for the standard scalar model problem §y = Ay. For an ODE system, this
means that, roughly speaking, as long as all modes in the system are stable, the method is also stable for any choice of
step size, at least in the sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case, in order for the
method to be stable at step size h on the scalar model problem, the product hA must lie within a region of absolute
stability. That region excludes a portion of the left half-plane that is concentrated near the imaginary axis. The size of
that region of instability grows as the order increases from 3 to 5. What this means is that, when running BDF at any
of these orders, if an eigenvalue A of the system lies close enough to the imaginary axis, the step sizes h for which the
method is stable are limited (at least according to the linear stability theory) to a set that prevents A\ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region is much narrower
than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly damped oscillations. A
pure undamped oscillation corresponds to an eigenvalue on the imaginary axis. Problems with modes of that kind call
for different considerations, since the oscillation generally must be followed by the solver, and this requires step sizes
(h ~ 1/v, where v is the frequency) that are stable for BDF anyway. But for a weakly damped oscillatory mode, the
oscillation in the solution is eventually damped to the noise level, and at that time it is important that the solver not be
restricted to step sizes on the order of 1/v. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection option is appropriate
are ODE systems resulting from semi-discretized PDE:s (i.e., PDEs discretized in space) with advection and diffusion,
but with advection dominating over diffusion. Diffusion alone produces pure decay modes, while advection tends to
produce undamped oscillatory modes. A mix of the two with advection dominant will have weakly damped oscillatory
modes.

The STALD algorithm attempts to detect, in a direct manner, the presence of a stability region boundary that is limiting
the step sizes in the presence of a weakly damped oscillation [38]. The algorithm supplements (but differs greatly from)

2.4. BDF stability limit detection 13

User Documentation for CVODES, v7.4.0

the existing algorithms in CVODES for choosing step size and order based on estimated local truncation errors. The
STALD algorithm works directly with history data that is readily available in CVODES. If it concludes that the step
size is in fact stability-limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The STALD algorithm has been tested in combination with the VODE solver on linear advection-dominated
advection-diffusion problems [39], where it works well. The implementation in CVODES has been successfully tested
on linear and nonlinear advection-diffusion problems, among others.

This stability limit detection option adds some computational overhead to the CVODES solution. (In timing tests, these
overhead costs have ranged from 2% to 7% of the total, depending on the size and complexity of the problem, with
lower relative costs for larger problems.) Therefore, it should be activated only when there is reasonable expectation
of modes in the user’s system for which it is appropriate. In particular, if a CVODES solution with this option turned
off appears to take an inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution
time scale, then there is a good chance that step sizes are being limited by stability, and that turning on the option will
improve the efficiency of the solution.

2.5 Rootfinding

The CVODES solver has been augmented to include a rootfinding feature. This means that, while integrating the Initial
Value Problem (2.1), CVODES can also find the roots of a set of user-defined functions g; (¢, y) that depend both on ¢
and on the solution vector y = y(t). The number of these root functions is arbitrary, and if more than one g; is found
to have a root in any given interval, the various root locations are found and reported in the order that they occur on the
t axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(¢, y(t)),
denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it will probably be
missed by CVODES. If such a root is desired, the user should reformulate the root function so that it changes sign at
the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to hone in on the root(s) with a modified secant method [37]. In addition, each time g is computed, CVODES
checks to see if g;(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is found at a
point £, CVODES computes g at ¢ 4+ ¢ for a small increment J, slightly further in the direction of integration, and if
any g;(t + d) = 0 also, CVODES stops and reports an error. This way, each time CVODES takes a time step, it is
guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, CVODES
has an interval (¢;,, tn;] in which roots of the g;(¢) are to be sought, such that ¢; is further ahead in the direction of
integration, and all g;(¢;,) # 0. The endpoint 5 is either ¢,,, the end of the time step last taken, or the next requested
output time t,, if this comes sooner. The endpoint ¢;, is either ¢,,_1, the last output time ¢, (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,, if
an exact zero was found. The algorithm checks g; at tj; for zeros and for sign changes in (¢, t;). If no sign changes
were found, then either a root is reported (if some g;(¢5,;) = 0) or we proceed to the next time interval (starting at ¢5;).
If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance, given
by

7 =100 U * (|t,| + |h]) (U = unit roundof) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (¢tn:)|/|9: (tni) — g:(ti0)], corresponding to the closest to ¢;, of the secant method
values. At each pass through the loop, a new value t,,;4 is set, strictly within the search interval, and the values of
9i(tmia) are checked. Then either ¢;, or tp; is reset to ¢,,;4 according to which subinterval is found to include the sign
change. If there is none in (¢;,, t;niq) but some g;(tmiq) = 0, then that root is reported. The loop continues until
|thi — tio| < 7, and then the reported root location is tp;.

14 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.4.0

In the loop to locate the root of g;(t), the formula for ¢,,;4 is
tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,;4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs. high, i.e., toward ¢;, vs. toward ¢5;) in
which the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two
sides were the same, « is halved (if on the low side) or doubled (if on the high side). The value of t,,;4 is closer to
1, when o < 1 and closer to t;,; when o > 1. If the above value of ¢,,;4 is within 7/2 of ¢;, or ¢, it is adjusted
inward, such that its fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being
the midpoint), and the actual distance from the endpoint is at least /2.

2.6 Pure Quadrature Integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity analysis run
(see §2.8) it is of interest to compute integral quantities of the form

2(t) = / q(t,y(7),p)dr. (2.13)

to

The most effective approach to compute z(t) is to extend the original problem with the additional ODEs (obtained by
applying Leibnitz’s differentiation rule):

2:q(t7yap)7 Z(t()):O

Note that this is equivalent to using a quadrature method based on the underlying linear multistep polynomial repre-
sentation for y(t).

This can be done at the “user level” by simply exposing to CVODES the extended ODE system (2.3) + (2.13). However,
in the context of an implicit integration solver, this approach is not desirable since the nonlinear solver module will
require the Jacobian (or Jacobian-vector product) of this extended ODE. Moreover, since the additional states z do not
enter the right-hand side of the ODE (2.13) and therefore the right-hand side of the extended ODE system, it is much
more efficient to treat the ODE system (2.13) separately from the original system (2.3) by “taking out” the additional
states z from the nonlinear system (2.5) that must be solved in the correction step of the LMM. Instead, “corrected”
values 2" are computed explicitly as

Qn .0

)

K2 Kl
1 o By
Zn = - (hnﬁn,oq(t'ru ynap) + hn Zﬂn,izn ! + Z an,izn Z))
i=1 i=1

once the new approximation y" is available.

The quadrature variables z can be optionally included in the error test, in which case corresponding relative and absolute
tolerances must be provided.

2.7 Forward Sensitivity Analysis

Typically, the governing equations of complex, large-scale models depend on various parameters, through the right-
hand side vector and/or through the vector of initial conditions, as in (2.3). In addition to numerically solving the ODEs,
it may be desirable to determine the sensitivity of the results with respect to the model parameters. Such sensitivity
information can be used to estimate which parameters are most influential in affecting the behavior of the simulation
or to evaluate optimization gradients (in the setting of dynamic optimization, parameter estimation, optimal control,
etc.).

2.6. Pure Quadrature Integration 15

User Documentation for CVODES, v7.4.0

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) = dy(t)/Op; and satisfies
the following forward sensitivity equations (or sensitivity equations for short):

of | of oy 9y(p)
dy S opi’ silfo) = Op;

, (2.14)

5 =

obtained by applying the chain rule of differentiation to the original ODEs (2.3).

When performing forward sensitivity analysis, CVODES carries out the time integration of the combined system, (2.3)
and (2.14), by viewing it as an ODE system of size N (N, + 1), where N is the number of model parameters p;, with
respect to which sensitivities are desired (Vg < NN,). However, major improvements in efficiency can be made by
taking advantage of the special form of the sensitivity equations as linearizations of the original ODEs. In particular,
for stiff systems, for which CVODES employs a Newton iteration, the original ODE system and all sensitivity systems
share the same Jacobian matrix, and therefore the same iteration matrix M in (2.9).

The sensitivity equations are solved with the same linear multistep formula that was selected for the original ODEs and,
if Newton iteration was selected, the same linear solver is used in the correction phase for both state and sensitivity
variables. In addition, CVODES offers the option of including (full error control) or excluding (partial error control)
the sensitivity variables from the local error test.

2.7.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the combined ODE and
sensitivity system for the vector § = [y, $1, ..., Sn.]-

* Staggered Direct

In this approach [22], the nonlinear system (2.5) is first solved and, once an acceptable numerical solution is
obtained, the sensitivity variables at the new step are found by directly solving (2.14) after the (BDF or Adams)
discretization is used to eliminate s;. Although the system matrix of the above linear system is based on exactly
the same information as the matrix M in (2.9), it must be updated and factored at every step of the integration, in
contrast to an evaluation of M which is updated only occasionally. For problems with many parameters (relative
to the problem size), the staggered direct method can outperform the methods described below [50]. However,
the computational cost associated with matrix updates and factorizations makes this method unattractive for
problems with many more states than parameters (such as those arising from semidiscretization of PDEs) and is
therefore not implemented in CVODES.

e Simultaneous Corrector

In this method [55], the discretization is applied simultaneously to both the original equations (2.3) and the
sensitivity systems (2.14) resulting in the following nonlinear system

F(gn) = gn - hnﬁn,Of(tn; gn) - dn = 07

where f = [f(t,y,p)s ..., (Of JOy)(t,y,p)si + (Of /Opi)(t,y,p),...], and &, is comprised of the terms in the
discretization that depend on the solution at previous integration steps. This combined nonlinear system can be
solved using a modified Newton method as in (2.8) by solving the corrector equation

at each iteration, where
M
*")/Jl M
M — —’YJQ 0 M ,
*’YJNS 0 . 0 M

16 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.4.0

0 0 0
M is defined asin (2.9), and J; = a—y KJ;) S; + (81{)} . It can be shown that 2-step quadratic convergence

can be retained by using only the block-diagonal portion of M in the corrector equation (2.15). This results in a

0
decoupling that allows the reuse of M without additional matrix factorizations. However, the products (f> S5

dy
0
and the vectors —f must still be reevaluated at each step of the iterative process (2.15) to update the sensitivity
Pi
portions of the residual G.

 Staggered corrector

In this approach [32], as in the staggered direct method, the nonlinear system (2.5) is solved first using the Newton
iteration (2.8). Then a separate Newton iteration is used to solve the sensitivity system (2.14):

M[Sﬁ(m+1) _ sﬁ(m)] _

K2 ?

|:37; Y <8y (tﬂmy 7p)52 + 8pz (t"’y 7p) Qi | s

(2.16)

where a;n = 3o o(an,;js; " + hnfy,;8; 7). In other words, a modified Newton iteration is used to solve a

linear system. In this approach, the vectors (0f/0p;) need be updated only once per integration step, after the
state correction phase (2.8) has converged. Note also that Jacobian-related data can be reused at all iterations
(2.16) to evaluate the products (Of/0y)s;.

CVODES implements the simultaneous corrector method and two flavors of the staggered corrector method which
differ only if the sensitivity variables are included in the error control test. In the full error control case, the first variant
of the staggered corrector method requires the convergence of the iterations (2.16) for all IV, sensitivity systems and
then performs the error test on the sensitivity variables. The second variant of the method will perform the error test for
each sensitivity vector s;, (i = 1,2,. .., N,) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors s; fails a convergence or error
test.

An important observation is that the staggered corrector method, combined with a Krylov linear solver, effectively
results in a staggered direct method. Indeed, the Krylov solver requires only the action of the matrix M on a vector
and this can be provided with the current Jacobian information. Therefore, the modified Newton procedure (2.16) will
theoretically converge after one iteration.

2.7.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, CVODES provides an automated estimation of absolute tolerances for
the sensitivity variables based on the absolute tolerance for the corresponding state variable. The relative tolerance
for sensitivity variables is set to be the same as for the state variables. The selection of absolute tolerances for the
sensitivity variables is based on the observation that the sensitivity vector s; will have units of [y]/[p;]. With this, the
absolute tolerance for the j-th component of the sensitivity vector s; is set to atol;/|p;|, where atol; are the absolute
tolerances for the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute tolerances is
equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector s; with weights based on s;
be the same as the weighted root-mean-square norm of the vector of scaled sensitivities 5; = |p;|s; with weights based
on the state variables (the scaled sensitivities 5; being dimensionally consistent with the state variables). However, this
choice of tolerances for the s; may be a poor one, and the user of CVODES can provide different values as an option.

2.7. Forward Sensitivity Analysis 17

User Documentation for CVODES, v7.4.0

2.7.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.14): analytic evaluation,
automatic differentiation, complex-step approximation, and finite differences (or directional derivatives). CVODES
provides all the software hooks for implementing interfaces to automatic differentiation (AD) or complex-step approx-
imation; future versions will include a generic interface to AD-generated functions. At the present time, besides the
option for analytical sensitivity right-hand sides (user-provided), CVODES can evaluate these quantities using various
finite difference-based approximations to evaluate the terms (0 f /Qy)s; and (9 f /Op;), or using directional derivatives
to evaluate [(Of/0y)s; + (Of/Opi)]. As is typical for finite differences, the proper choice of perturbations is a deli-
cate matter. CVODES takes into account several problem-related features: the relative ODE error tolerance rtol, the
machine unit roundoff U, the scale factor p;, and the weighted root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0 f/Jy)s; and Of/Op; in the right-hand side of (2.14)
can be evaluated either separately:

of [ty +oysi,p) — f(t,y — aysi,p)

s 3] : 2.17)
87‘](‘ ~ f(t7yap+0-iei) _f(tvyvp_o'iei) (2 18)
Op; 20 ’ '

1
0; = |pi|v/max(rtol,U), o, =

max(1/oi, ||sill/|pil)
or simultaneously:
gS' af ~ f(t7y+03iap+03i)_f(t73/_<75i7p_0€i)
oy~ ap; 20 ’

o =min(o;, 0y),

or by adaptively switching between (2.17) + (2.18) and (2.19), depending on the relative size of the finite difference
increments o; and o,,. In the adaptive scheme, if p = max(o;/0,0,/0;), we use separate evaluations if p > ppaq
(an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o5, oy, o) and switching between finite difference and directional
derivative formulas have also been implemented for one-sided difference formulas. Forward finite differences can be
applied to (0f/0y)s; and O f/Op; separately, or the single directional derivative formula

of | of _ flt,y+osi,ptoe)— f(t,y,p)
5+ —— =
dy Op; o

can be used. In CVODES, the default value of p,,,, = 0 indicates the use of the second-order centered directional
derivative formula (2.19) exclusively. Otherwise, the magnitude of p,,,, and its sign (positive or negative) indicates
whether this switching is done with regard to (centered or forward) finite differences, respectively.

2.7.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.6), CVODES does not carry their
sensitivities automatically. Instead, we provide a more general feature through which integrals depending on both the
states y of (2.3) and the state sensitivities s; of (2.14) can be evaluated. In other words, CVODES provides support for
computing integrals of the form:

z(¢) :/l(j(T,y(T),Sl(T),...,SNP(T),p)dT.

to

If the sensitivities of the quadrature variables z of (2.13) are desired, these can then be computed by using:

inQySi_FQpiv izlv"'7Np7

18 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.4.0

as integrands for Z, where ¢, and ¢, are the partial derivatives of the integrand function g of (2.13).

As with the quadrature variables z, the new variables z are also excluded from any nonlinear solver phase and “cor-
rected” values z" are obtained through explicit formulas.

2.8 Adjoint Sensitivity Analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with respect to Ng param-
eters is roughly equivalent to solving an ODE system of size (1 + Ng)N. This can become prohibitively expensive,
especially for large-scale problems, if sensitivities with respect to many parameters are desired. In this situation, the
adjoint sensitivity method is a very attractive alternative, provided that we do not need the solution sensitivities s;, but
rather the gradients with respect to model parameters of a relatively few derived functionals of the solution. In other
words, if y(¢) is the solution of (2.3), we wish to evaluate the gradient dG/dp of

T
G(p) = / g(t,y,p)dt, (2.19)
to

or, alternatively, the gradient dg/dp of the function g(¢, y, p) at the final time T". The function g must be smooth enough
that dg/0y and Og/Jp exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For details on the derivation
see [21]. Introducing a Lagrange multiplier A, we form the augmented objective function

T
umzaw—z'vw—fm%mmu

where * denotes the conjugate transpose. The gradient of G with respect to p is

dG dI /T T
=5 wrasd- [NG gs-pa,
dp dp o 14) to Yy 14
where subscripts on functions f or g are used to denote partial derivatives and s = [sq,...,sy,] is the matrix of
solution sensitivities. Applying integration by parts to the term A*$, and by requiring that \ satisfy
() ()
dy dy (2.20)
ANT)=0,

the gradient of G with respect to p is nothing but

e, g)

i A*(to)s(to) + (gp + X" fp)dt. (2.21)
to

The gradient of g(7T', y, p) with respect to p can be then obtained by using the Leibniz differentiation rule. Indeed, from

(2.19),

dg d dG

T)=——
dp() dT dp

and therefore, taking into account that dG/dp in (2.21) depends on T both through the upper integration limit and
through), and that A\(T") = 0,

dg

T
D) = (t0)a(to) + 9,(T) + /t gt (2.22)

2.8. Adjoint Sensitivity Analysis 19

User Documentation for CVODES, v7.4.0

where p is the sensitivity of A\ with respect to the final integration limit 7". Thus y satisfies the following equation,
obtained by taking the total derivative with respect to T" of (2.20):

()
- ().,

The final condition on (T follows from (9A/dt) + (OA/OT) = 0 at T, and therefore, 1u(T) = —A(T).

(2.23)

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification of the parameters p; this
implies that, once the solution A is found, the formula (2.21) can then be used to find the gradient of G with respect to
any of the parameters p. The same holds true for the system (2.23) and the formula (2.22) for gradients of g(7T',y, p).
The second important remark is that the adjoint systems (2.20) and (2.23) are terminal value problems which depend
on the solution y(¢) of the original IVP (2.3). Therefore, a procedure is needed for providing the states y obtained
during a forward integration phase of (2.3) to CVODES during the backward integration phase of (2.20) or (2.23). The
approach adopted in CVODES, based on checkpointing, is described below.

2.9 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires, at the current time,
the states y which were computed during the forward integration phase. Since CVODES implements variable-step
integration formulas, it is unlikely that the states will be available at the desired time and so some form of interpolation
is needed. The CVODES implementation being also variable-order, it is possible that during the forward integration
phase the order may be reduced as low as first order, which means that there may be points in time where only y and g are
available. These requirements therefore limit the choices for possible interpolation schemes. CVODES implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial interpolation
method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size of the vectors y and y
that would need to be stored make this approach computationally intractable. Thus, CVODES settles for a compromise
between storage space and execution time by implementing a so-called checkpointing scheme. At the cost of at most
one additional forward integration, this approach offers the best possible estimate of memory requirements for adjoint
sensitivity analysis. To begin with, based on the problem size N and the available memory, the user decides on the
number Ny of data pairs (y, ¢) if cubic Hermite interpolation is selected, or on the number Ny of y vectors in the
case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of interpolation. Then,
during the first forward integration stage, after every N, integration steps a checkpoint is formed by saving enough
information (either in memory or on disk) to allow for a hot restart, that is a restart which will exactly reproduce the
forward integration. In order to avoid storing Jacobian-related data at each checkpoint, a reevaluation of the iteration
matrix is forced before each checkpoint. At the end of this stage, we are left with IV, checkpoints, including one at ;.
During the backward integration stage, the adjoint variables are integrated from 7T to ¢y going from one checkpoint to
the previous one. The backward integration from checkpoint 7 4 1 to checkpoint ¢ is preceded by a forward integration
from ¢ to ¢ + 1 during which the N4 vectors y (and, if necessary ¥) are generated and stored in memory for interpolation
(see Fig. 2.1).

Note

The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation
at the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th
checkpoint, in which case it uses the BDF order at the right-most relevant point). However, because of the FLC
BDF implementation §2.1, the resulting interpolation polynomial is only an approximation to the underlying BDF
interpolant.

20 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.4.0

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also
used by other adjoint solvers (e.g. DASPKADJOINT. The variable-degree polynomial is more memory-efficient (it
requires only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy
differences are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant
for the Adams method for which the order can reach 12.

\
Forward pass

Ko k, k, ky -

= ~—
\ Backward pass

Fig. 2.1: Tllustration of the checkpointing algorithm for generation of the forward solution during the integration of the
adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward integration phase to uncer-
tainty in the final number of checkpoints. However, N, is much smaller than the number of steps taken during the
forward integration, and there is no major penalty for writing/reading the checkpoint data to/from a temporary file.
Note that, at the end of the first forward integration stage, interpolation data are available from the last checkpoint to
the end of the interval of integration. If no checkpoints are necessary (/V; is larger than the number of integration steps
taken in the solution of (2.3)), the total cost of an adjoint sensitivity computation can be as low as one forward plus
one backward integration. In addition, CVODES provides the capability of reusing a set of checkpoints for multiple
backward integrations, thus allowing for efficient computation of gradients of several functionals (2.19).

Finally, we note that the adjoint sensitivity module in CVODES provides the necessary infrastructure to integrate
backwards in time any ODE terminal value problem dependent on the solution of the IVP (2.3), including adjoint
systems (2.20) or (2.23), as well as any other quadrature ODEs that may be needed in evaluating the integrals in (2.21)
or (2.22). In particular, for ODE systems arising from semi-discretization of time-dependent PDEs, this feature allows
for integration of either the discretized adjoint PDE system or the adjoint of the discretized PDE.

2.10 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute second-order deriva-
tive information. Considering the ODE problem (2.3) and some model output functional, g(y) then the Hessian
d?g/dp? can be obtained in a forward sensitivity analysis setting as

d2%g -
d7p2 = (gy ® INP) Ypp + yp GyyYp »

where ® is the Kronecker product. The second-order sensitivities are solution of the matrix ODE system:

Upp = (fy ®1Np) “Ypp T+ (IN ®y,?) 'fyyyp

82y0
Ypp(to) = op?

2.10. Second-order sensitivity analysis 21

User Documentation for CVODES, v7.4.0

where y,, is the first-order sensitivity matrix, the solution of N, systems (2.14), and y,,,, is a third-order tensor. It is easy
to see that, except for situations in which the number of parameters N, is very small, the computational cost of this
so-called forward-over-forward approach is exorbitant as it requires the solution of N,, 4 NI? additional ODE systems
of the same dimension [NV as (2.3).

Note

For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters p.
Moreover, we only consider the case in which the dependency of the original ODE (2.3) on the parameters p is
through its initial conditions only. For details on the derivation in the general case, see [56].

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-over-adjoint ap-
proach. This method is based on using the same “trick” as the one used in computing gradients of pointwise functionals
with the adjoint method, namely applying a formal directional forward derivation to one of the gradients of (2.21) or
(2.22). With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gradient with
forward sensitivity analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p) = |, ttof g(t,y) dt. It can be shown that the product between the Hessian of G (with
respect to the parameters p) and some vector u can be computed as

——u=[(AT"®In,) yppu + y, 1] —to
where A, u, and s are solutions of
*ﬂ:fgqu(/\T@In)fnyJrgny; ﬂ(tf):()
—A=fIA4gr5 Aty =0
s=fys; s(to) = Yopu

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,. The forward-
over-adjoint approach hinges crucially on the fact that s can be computed at the cost of a forward sensitivity analysis
with respect to a single parameter (the last ODE problem above) which is possible due to the linearity of the forward
sensitivity equations (2.14).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two backward integra-
tions of a system of ODEs of size /N. For more details, including the corresponding formulas for a pointwise model
functional output, see [56].

To allow the foward-over-adjoint approach described above, CVODES provides support for:
¢ the integration of multiple backward problems depending on the same underlying forward problem (2.3), and

* the integration of backward problems and computation of backward quadratures depending on both the states y
and forward sensitivities (for this particular application, s) of the original problem (2.3).

22 Chapter 2. Mathematical Considerations

Chapter 3

Code Organization

The CVODES package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

The overall organization of the CVODES package is shown in Fig. 3.1. The basic elements of the structure are a module
for the basic integration algorithm (including forward sensitivity analysis), a module for adjoint sensitivity analysis,
and support for the solution of nonlinear and linear systems that arise in the case of a stiff system.

SUNDIALS
[CVODES H CVADJOINT]

! l

CVLS CVNLS
Linear Solver Interface Nonlinear Solver Interface

Vector | | Matrix | | Linear Solver | | Nonlinear Solver

CVDIAG - Diagonal
Linear Solver
\4

Preconditioner Modules
(cvBBDPRE | CVBANDPRE |

Fig. 3.1: Overall structure diagram of the CVODES package. Modules specific to CVODES begin with “CV” (CVLS,
CVNLS, CVDIAG, CVBBDPRE, and CVBANDPRE), all other items correspond to generic SUNDIALS vector, ma-
trix, and solver modules.

The central integration module, implemented in the files CVODES.h, cvode_impl.h, and CVODES. c, deals with the
evaluation of integration coefficients, estimation of local error, selection of stepsize and order, and interpolation to user
output points, among other issues.

CVODES utilizes generic linear and nonlinear solver modules defined by the SUNLinearSolver API (see Chapter §8)
and SUNNonlinearSolver API (see Chapter §9), respectively. As such, CVODES has no knowledge of the method

23

User Documentation for CVODES, v7.4.0

being used to solve the linear and nonlinear systems that arise. For any given user problem, there exists a single nonlinear
solver interface and, if necessary, one of the linear system solver interfaces is specified, and invoked as needed during
the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward sensitivity equations
simultaneously with the original IVP. The sensitivity variables may be included in the local error control mechanism of
the main integrator. CVODES provides three different strategies for dealing with the correction stage for the sensitivity
variables: CV_SIMULTANEOUS, CV_STAGGERED and CV_STAGGERED1 (see §2.7 and §5.3.2.1). The CVODES package
includes an algorithm for the approximation of the sensitivity equations right-hand sides by difference quotients, but
the user has the option of supplying these right-hand sides directly.

The adjoint sensitivity module (file cvodea. c) provides the infrastructure needed for the backward integration of any
system of ODEs which depends on the solution of the original IVP, in particular the adjoint system and any quadratures
required in evaluating the gradient of the objective functional. This module deals with the setup of the checkpoints,
the interpolation of the forward solution during the backward integration, and the backward integration of the adjoint
equations.

At present, the package includes two linear solver interfaces. The primary linear solver interface, CVLS, supports
both direct and iterative linear solvers built using the generic SUNLinearSolver API (see Chapter §8). These solvers
may utilize a SUNMatrix object (see Chapter §7) for storing Jacobian information, or they may be matrix-free. Since
CVODES can operate on any valid SUNLinearSolver implementation, the set of linear solver modules available to
CVODES will expand as new SUNLinearSolver modules are developed.

Additionally, CVODES includes the diagonal linear solver interface, CVDIAG, that creates an internally generated
diagonal approximation to the Jacobian.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, CVODES includes algorithms
for their approximation through difference quotients, although the user also has the option of supplying a routine to
compute the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, CVODES includes an algorithm for the approximation by
difference quotients of the product Mv. Again, the user has the option of providing routines for this operation, in two
phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [16, 18], together with the example and demonstration programs included with CVODES,
offer considerable assistance in building preconditioners.

CVODES’ linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization,
(2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solu-
tion phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the
integration, and only as required to achieve convergence.

CVODES also provides two preconditioner modules, for use with any of the Krylov iterative linear solvers. The first
one, CVBANDPRE, is intended to be used with NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS and
provides a banded difference-quotient Jacobian-based preconditioner, with corresponding setup and solve routines.
The second preconditioner module, CVBBDPRE, works in conjunction with NVECTOR_PARALLEL and generates a
preconditioner that is a block-diagonal matrix with each block being a banded matrix.

All state information used by CVODES to solve a given problem is saved in a structure, and a pointer to that structure
is returned to the user. There is no global data in the CVODES package, and so, in this respect, it is reentrant. State
information specific to the linear solver is saved in a separate structure, a pointer to which resides in the CVODES
memory structure. The reentrancy of CVODES was motivated by the anticipated multicomputer extension, but is also
essential in a uniprocessor setting where two or more problems are solved by intermixed calls to the package from
within a single user program.

24 Chapter 3. Code Organization

Chapter 4

Getting Started

The packages that make up SUNDIALS are built upon shared classes for vectors, matrices, and algebraic solvers. In
addition, the packages all leverage some other common infrastructure, which we discuss in this section.

SUNDIALS

v

v v

v v

[CVODE]

[CVODES] [ARKODE] [

IDA

] [KINSOL]

!
1]

.

)

[
[
[
[
[
[
[
[

[]
[)

Trilinos

Matrix-fre

[

)

—

SPTFQMR SPBCG]

Fig. 4.1: High-level diagram of the SUNDIALS suite.

Vectors Matrices Linear Solvers Nonlinear Solvers
Serial] [Parallel (MPI)] [Dense] [Band] Matrix-based rton] [Fixed Point
ervesce) (_opanite | |(sweme) (S | |LLoeree J[[_we]
LAPACK LAPACK
OpenMP DEV] [CUDA] [cuSPARSE] [MAGMA Dense] [Dense][Band]
SuperLU
HIP] [RAJA] [Ginkgo Dense] [oneMKL Dense] KLY
Kokkos] [syYcL] [s“,;g‘f,'.'u][CuSOLVER]
ManyVector][MPI ManyVector] [MAGMA Dense][Ginkgo]
MPI + X] Rarkhyp [oneMKL Dense] [Kokkok Kernel]

25

User Documentation for CVODES, v7.4.0

4.1 Data Types

SUNDIALS defines several data types in the header file sundials_types.h. These types are used in the SUNDIALS
API and internally in SUNDIALS. It is not necessary to use these types in your application, but the type must be
compatible with the SUNDIALS types in the API when calling SUNDIALS functions. The types that are defined are:

* sunrealtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices

e suncountertype — the integer type used for counter variables

* sunbooleantype — the type used for logic operations within SUNDIALS
e SUNOutputFormat — an enumerated type for SUNDIALS output formats

e SUNComm — a simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with
MPL

4.1.1 Floating point types

type sunrealtype

The type sunrealtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines SUN_BIG_REAL to be the largest value rep-
resentable as a sunrealtype, SUN_SMALL_REAL to be the smallest value representable as a sunrealtype, and SUN_-
UNIT_ROUNDOFF to be the difference between 1.0 and the minimum sunrealtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called SUN_RCONST. It is this macro that needs the ability
to branch on the definition of sunrealtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call SUN_RCONST(1.0) automatically expands to 1.0 if sunrealtype is double,
to 1.0F if sunrealtype is float, orto 1.0L if sunrealtype is long double. SUNDIALS uses the SUN_RCONST
macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
sunrealtype. For example, the macro SUNRabs expands to the C function fabs when sunrealtype is double,
fabsf when sunrealtype is float, and fabsl when sunrealtype is long double.

A user program which uses the type sunrealtype, the SUN_RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs use
sunrealtype, SUN_RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for sunrealtype) and call the appropriate math
library functions directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying
the code to use sunrealtype, SUN_RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use
the corresponding precision (see §11.3).

26 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

4.1.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.3).

4.1.3 Integer type used for counters

type suncountertype

The type suncountertype is used for counter variables in SUNDIALS (e.g., number of stpes) and is the same
as long int.

Added in version 7.3.0.

4.1.4 Boolean type

type sunbooleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type sunboolean-
type as an int.

The advantage of using the name sunbooleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type sunbooleantype are intended to
have only the two values: SUNFALSE or SUNTRUE.

SUNFALSE
False (0)

SUNTRUE
True (1)

4.1.5 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

4.1. Data Types 27

User Documentation for CVODES, v7.4.0

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

4.1.6 MPI types

type SUNComm

A simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with MPI. This
type exists solely to ensure SUNDIALS can support MPI and non-MPI builds.

SUN_COMM_NULL
A macro defined as ® when SUNDIALS is built without MPI, or as MPI_COMM_NULL when built with MPI.

4.2 The SUNContext Type

Added in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

type SUNContext
An opaque pointer used by SUNDIALS objects for error handling, logging, profiling, etc.

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:
SUNErrCode SUNContext_Create(SUNComm comm, SUNContext *sunctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is

private.
Parameters
* comm — the MPI communicator or SUN_COMM_NULL if not using MPL
* sunctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns

SUNErrCode indicating success or failure.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(SUN_COMM_NULL, &sunctx);

package_mem CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
(continues on next page)

28 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

(continued from previous page)

package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

SUNErrCode SUNContext_Free(SUNContext *sunctx)
Frees the SUNContext object.

Parameters
* sunctx — pointer to a valid SUNContext object, NULL upon successful return.

Returns
SUNErrCode indicating success or failure.

Warning

When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

SUNErrCode SUNContext_GetLastError (SUNContext sunctx)

Gets the last error code set by a SUNDIALS function call. The function then resets the last error code to SUN_-
SUCCESS.

Parameters
* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PeekLastError (SUNContext sunctx)

Gets the last error code set by a SUNDIALS function call. The function does not reset the last error code to
SUN_SUCCESS.

Parameters
* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PushErrHandler (SUNContext sunctx, SUNErrHandlerFn err_fn, void
*err_user_data)

Pushes a new SUNErrHandlerFn onto the error handler stack so that it is called when an error occurs inside of
SUNDIALS.

Parameters
* sunctx — a valid SUNContext object.

* err_fn - a callback function of type SUNErrHandlerFn to be pushed onto the error handler
stack.

» err_user_data — a pointer that will be passed back to the callback function when it is
called.

4.2. The SUNContext Type 29

User Documentation for CVODES, v7.4.0

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_PopErrHandler (SUNContext sunctx)
Pops the last SUNErrHandlerFn off of the error handler stack.

Parameters
* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_ClearErrHandlers (SUNContext sunctx)

Clears the entire error handler stack. After doing this it is important to push an error handler onto the stack with
SUNContext_PushErrHandler otherwise errors will be ignored.

Parameters
* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_GetProfiler (SUNContext sunctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler - [in,out] a pointer to the SUNProfiler object associated with this context; will
be NULL if profiling is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetProfiler (SUNContext sunctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler — a SUNProfiler object to associate with this context; this is ignored if profiling
is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetLogger (SUNContext sunctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger — a SUNLogger object to associate with this context; this is ignored if logging is not
enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

30 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

SUNErrCode SUNContext_GetLogger (SUNContext sunctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger - [in,out] a pointer to the SUNLogger object associated with this context; will be
NULL if logging is not enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

1. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

» Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations
execute sequentially, if both are initialized at the same time with the same SUNContext, behavior is unde-
fined.

It is OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has
completed and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have
been destroyed.

2. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; 1 < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

¥

// Solve
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {
retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
(continues on next page)

4.2. The SUNContext Type 31

User Documentation for CVODES, v7.4.0

} else {
retval = CVodeReInit(cvode_mem[tid],
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

}

00))B

(continued from previous page)

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...
CVodeFree (&cvode_mem) ;

SUNContext_Free(&sunctx) ;
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are

much cheaper than the CVODE create/free routines.

32

Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(SUNComm comm = SUN_COMM_NULL)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

}

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.2. The SUNContext Type

33

User Documentation for CVODES, v7.4.0

4.3 Error Checking

Added in version 7.0.0.

Until version 7.0.0, error reporting and handling was inconsistent throughout SUNDIALS. Starting with version 7.0.0
all of SUNDIALS (the core, implementations of core modules, and packages) reports error messages through the
SUNLogger API. Furthermore, functions in the SUNDIALS core API (i.e., SUN or N_V functions only) either return a
SUNErrCode, or (if they don’t return a SUNErrCode) they internally record an error code (if an error occurs) within
the SUNContext for the execution stream. This “last error” is accessible via the SUNContext_GetLastError() or

SUNContext_PeekLastError () functions.

typedef int SUNErrCode

Thus, in user code, SUNDIALS core API functions can be checked for errors in one of two ways:

SUNContext sunctx;
SUNErrCode sunerr;
N_Vector v;

int length;
sunrealtype dotprod;

// Every code that uses SUNDIALS must create a SUNContext.
sunctx = SUNContext_Create(...);

// Create a SUNDIALS serial vector.
// Some functions do not return an error code.

// We have to check for errors in these functions using SUNContext_

length = 2;

v = N_VNew_Serial(length, sunctx);

sunerr = SUNContext_GetLastError(sunctx);

if (sunerr) { /* an error occurred, do something */ }

// If the function returns a SUNErrCode, we can check it directly
sunerr = N_VLinearCombination(...);
if (sunerr) { /* an error occurred, do something */ }

// Another function that does not return a SUNErrCode.
dotprod = N_VDotProd(...);
SUNContext_GetLastError(sunctx) ;
if (sunerr) {
/* an error occurred, do something */
} else {
print("dotprod = %.2f\n", dotprod);
}

The function SUNGetErrMsg () can be used to get a message describing the error code.

const char *SUNGetErrMsg (SUNErrCode code)

Returns a message describing the error code.
Parameters
* code - the error code

Returns
a message describing the error code.

GetLastError.

34

Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

Note

It is recommended in most cases that users check for an error after calling SUNDIALS functions. However, users
concerned with getting the most performance might choose to exclude or limit these checks.

Warning

If a function returns a SUNErrCode then the return value is the only place the error is available i.e., these functions
do not store their error code as the “last error” so it is invalid to use SUNContext_GetLastError () to check these
functions for errors.

4.3.1 Error Handler Functions

When an error occurs in SUNDIALS, it calls error handler functions that have been pushed onto the error handler
stack in last-in first-out order. Specific error handlers can be enabled by pushing them onto the error handler stack with
the function SUNContext_PushErrHandler (). They may disabled by calling SUNContext_PopErrHandler() or
SUNContext_ClearErrHandlers (). A SUNDIALS error handler function has the type

typedef void (*SUNErrHandlerFn)(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

SUNDIALS provides a few different error handlers that can be used, or a custom one defined by the user can be
provided (useful for linking SUNDIALS errors to your application’s error handling). The default error handler is
SUNLogErrHandlerFn() which logs an error to a specified file or stderr if no file is specified.

The error handlers provided in SUNDIALS are:

void SUNLogErrHandlerFn (int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error that occurred using the SUNLogger from sunctx. This is the default error handler.
Parameters
¢ line - the line number at which the error occurred
 func - the function in which the error occurred
o file - the file in which the error occurred

* msg — the message to log, if this is NULL then the default error message for the error code
will be used

* err_code - the error code for the error that occurred
* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

void SUNAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error and aborts the program if an error occurred.
Parameters

¢ line — the line number at which the error occurred

4.3. Error Checking 35

User Documentation for CVODES, v7.4.0

¢ func — the function in which the error occurred

file — the file in which the error occurred

* msg — this parameter is ignored

* err_code - the error code for the error that occurred

* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

void SUNMPIAbortErrHandlerFn (int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

Logs the error and calls MPI_Abort if an error occurred.
Parameters

e line - the line number at which the error occurred
 func - the function in which the error occurred
o file - the file in which the error occurred
* msg — this parameter is ignored
e err_code - the error code for the error that occurred
» err_user_data — the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

4.4 Status and Error Logging

Added in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.4.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to the maximum desired output level
when configuring SUNDIALS. See the SUNDIALS_LOGGING_LEVEL documentation for the numeric values corre-
sponding to errors, warnings, info output, and debug output where errors < warnings < info output < debug output
< extra debug output. By default only warning and error messages are logged.

Note

As of version 7.0.0, enabling MPI in SUNDIALS enables MPI-aware logging.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

36 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

If SUNDIALS_LOGGING_LEVEL was set at build-time to a level lower than the corresponding environment variable, then
setting the environment variable will do nothing. For example, if the logging level is set to 2 (errors and warnings),
setting SUNLOGGER_INFO_FILENAME will do nothing.

Warning

A non-default logger should be created and attached to the context object prior to any other SUNDIALS calls in
order to capture all log events.

Error or warning logs are a single line output with an error or warning message

[level] [rank] [scope] [label] message describing the error or warning

Informational or debugging logs are either a single line output with a comma-separated list of key-value pairs of the
form

[level] [rank] [scope] [label] keyl = value, key2 = value

or multiline output with one value per line for keys corresponding to a vector or array e.g.,

[level] [rank] [scope] [label] y(:) =
y[0]
y[1]

In the example log outputs above, the values in brackets have the following meaning:
e level is the log level of the message and will be ERROR, WARNING, INFO, or DEBUG

e rank is the MPI rank the message was written from (® by default or if SUNDIALS was built without MPI
enabled)

* scope is the message scope i.e., the name of the function from which the message was written

e label provides additional context or information about the logging output e.g., begin-step,
end-linear-solve, etc.

Note

When extra debugging output is enabled, the output will include vector values (so long as the N_Vector used
supports printing). Depending on the problem size, this may result in very large logging files.

4.4. Status and Error Logging 37

User Documentation for CVODES, v7.4.0

4.4.2 Logger API

The central piece of the Logger API is the SUNLogger type:
type SUNLogger

An opaque pointer containing logging information.

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.
enum SUNLogLevel
The SUNDIALS logging level
enumerator SUN_LOGLEVEL_ALL
Represents all output levels
enumerator SUN_LOGLEVEL_NONE
Represents none of the output levels
enumerator SUN_LOGLEVEL_ERROR
Represents error-level logging messages
enumerator SUN_LOGLEVEL_WARNING
Represents warning-level logging messages
enumerator SUN_LOGLEVEL_INFO
Represents info-level logging messages
enumerator SUN_LOGLEVEL_DEBUG
Represents deubg-level logging messages
The SUNLogger class provides the following methods.
int SUNLogger_Create (SUNComm comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.
Arguments:
e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger —[in,out] On input this is a pointer to a SUNLogger, on output it will point to a new SUNLogger
instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (SUNComm comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

38 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

* logger —[in,out] On input this is a pointer to a SUNLogger, on output it will point to anew SUNLogger

instance.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger — a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger —a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)
Sets the filename for info output.

Arguments:

* logger —a SUNLogger object.

e info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char

*msg_txt, ...)
Queues a message to the output log level.

Arguments:

4.4. Status and Error Logging

39

User Documentation for CVODES, v7.4.0

* logger —a SUNLogger object.
e 1v1 - the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
¢ label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning

When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to pass any user
input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

* 1vl — the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger — a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.

40 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

4.4.3 Example Usage

As noted above, enabling logging must be done when configuring SUNDIALS by setting the CMake option SUN-
DIALS_LOGGING_LEVEL to the desired logging level. When running a program with SUNDIALS logging enabled,
a default logger is created and attached to the SUNContext instance at creation. Environment variables or run-time
functions can be used to determine where the logging output is written. For example, consider the CVODE Roberts
example, where we can direct the informational output to the file sun.log as follows

SUNDIALS_INFO_FILENAME=sun.log ./examples/cvode/serial/cvRoberts_dns

Alternatively, the following examples demonstrate how to use the logging interface via the C API:

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff_diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

To assist with extracting informational logging data from output files the tools directory contains a Python module,
suntools, that provides utilities for parsing log files. Some example scripts using the suntools module are included
in the tools directory. For example, we can plot the step size history from the CVODE Roberts problem with

./log_example.py sun.log

4.5 Performance Profiling

Added in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [13] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.5.2).

4.5.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §11.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note

The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.

4.5. Performance Profiling 41

https://software.llnl.gov/Caliper/

User Documentation for CVODES, v7.4.0

Warning

While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively impact
performance. As such, it is recommended that profiling is enabled judiciously.

4.5.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e.

type SUNProfiler

An opaque pointer containing profiling information.

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(SUNComm comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
¢ comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
e title — atitle or description of the profiler

* p - [in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:
* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL

Returns:

42 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)

Starts timing the region indicated by the name.
Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime (SUNProfiler p, const char *name, double *time)

Get the elapsed time for the timer “name” in seconds.
Arguments:

* p—a SUNProfiler object

* name — the name for the profiling region of interest

* time — upon return, the elapsed time for the timer
Returns:

e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)

Get the timer resolution in seconds.
Arguments:

* p—a SUNProfiler object

e resolution — upon return, the resolution for the timer
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
 fp — the file handler to print to

Returns:

4.5. Performance Profiling 43

User Documentation for CVODES, v7.4.0

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

* p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.5.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

JE Ly

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

umax = N_VMaxNorm(u);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u) ;
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.6 Getting Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ len — allocated length of the version character array.

Return value:

44 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

* (if successful
* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
e patch — SUNDIALS release patch version number.
e label — string to hold the SUNDIALS release label.
* len — allocated length of the label character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.7 Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* The SUNDIALS core types, utilities, and data structures via the fsundials_core_mod module.
 All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod, and farkode_sprk-
step_mod modules provide interfaces to the ARKStep, ERKStep, MRIStep, and SPRKStep integrators
respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.

¢ IDA via the fida_mod module.
¢ IDAS via the fidas_mod module.
¢ KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

4.7. Fortran Interface 45

User Documentation for CVODES, v7.4.0

! this is needed to access core SUNDIALS types, utilities, and data structures
! this is needed to access CVODE functions and types
! this is needed to access the OpenMP implementation of the N_Vector class

use fsundials_core_mod
use fcvode_mod
use fnvector_openmp_mod

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fcore_mod.<so|a>, lib-
sundials_core.<so|a>, libsundials_fnvecpenmp_mod.<so|a>, libsundials_nvecopenmp.<so|a>, lib-
sundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>. The use statements mirror the #include
statements needed when using the C APL

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.7.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.7.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation. For details on where the Fortran 2003 module
(.mod) files and libraries are installed see §11.

The Fortran 2003 interface modules were generated with SWIG Fortran [45], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
SUNDIALS core fsundials_core_mode
ARKODE farkode_mod

ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP
ARKODE::SPRKSTEP

farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
farkode_sprkstep_mod

CVODE fcvode_mod
CVODES fcvodes_mod
IDA fida_mod
IDAS fidas_mod
KINSOL fkinsol_mod

NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE

fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod
Not interfaced

Not interfaced

continues on next page

46

Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

SUNMATRIX_SPARSE
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

fsunmatrix_sparse_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced

4.7.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the

type equivalencies with the parameter direction in mind.

Warning

double-precision.

Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the sunrealtype is

Changed in version 7.1.0: The Fortran interfaces can now be built with 32-bit sunindextype in addition to 64-bit

sunindextype.
Table 4.2: C/Fortran-2003 Equivalent Types
C Type Parameter Direction Fortran 2003 type
SUNComm in, inout, out, return integer(c_int)
SUNErrCode in, inout, out, return integer(c_int)
in, inout, out, return real (c_double)

double
int in, inout, out, return

long in, inout, out, return
sunbooleantype in, inout, out, return
sunrealtype in, inout, out, return
sunindextype in, inout, out, return
double* in, inout, out
double* return

int* in, inout, out

integer(c_int)

integer(c_long)

integer(c_int)

real (c_double)

integer(c_long)

real (c_double), dimension(*)

real (c_double), pointer, dimension(:)
real(c_int), dimension(*)

continues on next page

4.7. Fortran Interface

47

User Documentation for CVODES, v7.4.0

Table 4.2 — continued from previous page

C Type Parameter Direction Fortran 2003 type

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

long* return real(c_long), pointer, dimension(:)
sunrealtype® in, inout, out real (c_double), dimension(*)
sunrealtype® return real (c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
sunrealtype[] in, inout, out real (c_double), dimension(*)
sunindextypel] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type (SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

IR in, inout, out, return type(c_ptr)

1S in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)

4.7.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.7.1 discusses
equivalencies of data types in the two languages.

4.7.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
x = N_VNew_Serial(N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

48 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

4.7.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate

the differences.

C code:

N_Vector x;
sunrealtype* xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial (N, sunctx);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)

real (c_double) 11 xdata(N)
integer(c_long) :: leniw(1l), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer (x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.7. Fortran Interface

49

User Documentation for CVODES, v7.4.0

4.7.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.7.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.7.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type (c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1 A
type(N_Vector), pointer it x, b

! Disassociate A
A => nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.

(continues on next page)

50 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

(continued from previous page)

! Therefore, we cannot pass a c_null ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.7.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with sen-
sitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIndexVec-
torArray wrapping N_VGetVecAtIndexVectorArray (). The example below demonstrates accessing a vector in a
vector array.

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, Xx);

/* Fill each array with ones */
for (int i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) 11 vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, X)

! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.

4.7. Fortran Interface 51

User Documentation for CVODES, v7.4.0

4.7.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_core_mod.
SUNErrCode SUNDIALSFileOpen(const char *filename, const char *mode, FILE **fp)

The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Parameters

» filename - the path to the file, that should have Fortran type character (kind=C_CHAR,
len=*). There are two special filenames: stdout and stderr — these two filenames will
result in output going to the standard output file and standard error file, respectively.

* mode - the I/O mode to use for the file. This should have the Fortran type charac-
ter (kind=C_CHAR, len=*). The string begins with one of the following characters:

r to open a text file for reading

T+ to open a text file for reading/writing

w to truncate a text file to zero length or create it for writing

w+ to open a text file for reading/writing or create it if it does
not exist

a to open a text file for appending, see documentation of fopen for
your system/compiler

a+ to open a text file for reading/appending, see documentation for
fopen for your system/compiler

» fp — The FILE* that will be open when the function returns. This should be a type(c_ptr) in
the Fortran.

Returns
A SUNErrCode

Usage example:
type(c_ptr) :: fp

! Open up the file output.log for writing
ierr = FSUNDIALSFileOpen("output.log", "w+", £p)

! The C function ARKStepPrintMem takes void* arkode_mem and FILE* fp as arguments
call FARKStepPrintMem(arkode_mem, fp)

! Close the file
ierr = FSUNDIALSFileClose(fp)

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and take a FILE** as

the last input parameter rather then return a FILE*.

SUNErrCode SUNDIALSFileClose (FILE **fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Parameters

52 Chapter 4. Getting Started

20

21

22

23

24

25

User Documentation for CVODES, v7.4.0

» fp — the C FILE* that was previously obtained from fopen. This should have the Fortran
type type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALS-
FileOpen()

Returns
A SUNErrCode

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and the fp parameter was
changed from FILE* to FILE**.

4.7.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.7.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v yarr(2)

(continues on next page)

4.7. Fortran Interface 53

User Documentation for CVODES, v7.4.0

(continued from previous page)

! fill in the RHS function:

P[0 0]*[(-1+ur2-r(t))/(2*w] + [0]
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.8 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs or through user-supplied callback functions. Thus, under the model, the overall structure
of the user’s calling program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS
in CPU-only environments.

4.8.1 SUNDIALS GPU Programming Model

As described in [12], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3-Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilities will be leveraged since SUNDI-
ALS operates on data through these APIs.

54 Chapter 4. Getting Started

User Documentation for CVODES, v7.4.0

In addition, SUNDIALS provides a memory management helper module (see §10) to support applications which im-

plement their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

oneAPI Unmanaged Memory UVM

Module CUDA ROCn/HIP
NVECTOR_CUDA X

NVECTOR_HIP X X
NVECTOR_SYCL X3 X3
NVECTOR_RAJA X X
NVECTOR_KOKKOS X X
NVECTOR_OPENMPDEV X X2

X XX

KR X R

KR X R

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! x! x!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFQOMR X! X! X! x! x!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! X!

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON x! X! x! X! X!
SUNNONLINSOL_FIXEDPOINT X! x! x! x! x!

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.

4.8. Features for GPU Accelerated Computing

55

User Documentation for CVODES, v7.4.0

3.

Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evaluation function, or the preconditioner evaluation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.

56

Chapter 4. Getting Started

Chapter 5

Using CVODES

5.1 Using CVODES for IVP Solution

This chapter is concerned with the use of CVODES for the solution of initial value problems (IVPs). The following
sections treat the header files and the layout of the user’s main program, and provide descriptions of the CVODES
user-callable functions and user-supplied functions.

The sample programs described in the companion document [62] may also be helpful. Those codes may be used as
templates (with the removal of some lines used in testing) and are included in the CVODES package.

Users with applications written in Fortran should see §4.7, which describes interfacing with CVODES from Fortran.

The user should be aware that not all SUNLinearSolver and SUNMatrix modules are compatible with all N_Vec-
tor implementations. Details on compatibility are given in the documentation for each SUNMatrix module (§7) and
each SUNLinearSolver module (§8). For example, NVECTOR_PARALLEL is not compatible with the dense, banded,
or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver modules. Please
check §7 and §8 to verify compatibility between these modules. In addition to that documentation, we note that the
CVBANDPRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector implementations, and the preconditioner module CVBBDPRE can only be used with NVEC-
TOR_PARALLEL. It is not recommended to use a threaded vector module with SuperLU_MT unless it is the NVECTOR_-
OPENMP module, and SuperLU_MT is also compiled with OpenMP.

CVODES uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

5.1.1 Access to library and header files

At this point, it is assumed that the installation of CVODES, following the procedure described in §11, has been com-
pleted successfully. In the proceeding text, the directories 1ibdir and incdir are the installation library and include
directories, respectively. For a default installation, these are instdir/lib and instdir/include, respectively, where
instdir is the directory where SUNDIALS was installed.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by CVODES. CVODES symbols are
found in libdir/libsundials_cvodes.1lib. Thus, in addition to linking to 1libdir/libsundials_core.lib,
CVODES users need to link to the CVODES library. Symbols for additional SUNDIALS modules, vectors and alge-
braic solvers, are found in

57

User Documentation for CVODES, v7.4.0

<libdir>/libsundials_nvec*.1lib
<libdir>/libsundials_sunmat*.1lib
<libdir>/libsundials_sunlinsol*.1lib
<libdir>/libsundials_sunnonlinsol*.1lib
<libdir>/libsundials_sunmem*.1ib

The file extension .1ib is typically .so for shared libraries and . a for static libraries.

The relevant header files for CVODES are located in the subdirectories incdir/include/cvodes. To use CVODES
the application needs to include the header file for CVODES in addition to the SUNDIALS core header file:

#include <sundials/sundials_core.h> // Provides core SUNDIALS types
#include <cvodes/cvodes.h> // CVODES provides linear multistep methods with sensitivity analys

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h.
See §6 for the appropriate name.

If using a non-default nonlinear solver module, or when interacting with a SUNNonlinearSolver module directly, the
calling program must also include a SUNNonlinearSolver implementation header file, of the form sunnonlinsol/
sunnonlinsol_*.h where * is the name of the nonlinear solver module (see §9 for more information).

If using a nonlinear solver that requires the solution of a linear system of the form (2.8) (e.g., the default Newton
iteration), then a linear solver module header file will be required. In this case it will be necessary to include the
header file for a SUNLinearSolver solver, which is of the form sunlinsol/sunlinsol_***_.h (see §8 for more
information).

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/

sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver (see §7 for more
information).

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example (see [62]),
preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_SPGMR linear solver is
used, the header sundials_dense.h is included for access to the underlying generic dense matrix arithmetic routines.

Warning

Note that an application cannot link to both the CVODES and CVODE libraries because both contain user-callable
functions with the same names (to ensure that CVODES is backward compatible with CVODE). Therefore, appli-
cations that contain both ODE problems and ODEs with sensitivity analysis, should use CVODES.

5.1.2 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP. Most of
the steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implemen-
tations used. For the steps that are not, refer to §6, §7, §8, and §9 for the specific name of the function to be called or
macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate For example, call MPI_Init to initialize
MPI if used, or set the number of threads to use within the threaded vector functions if used.

2. Create the SUNDIALS context object Call SUNContext_Create() to allocate the SUNContext object.

3. Set problem dimensions etc. This generally includes the problem size N, and may include the local vector length
Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

58 Chapter 5. Using CVODES

User Documentation for CVODES, v7.4.0

4. Set vector of initial values To set the vector of initial values, use the appropriate functions defined by the par-
ticular N_Vector implementation.

For native SUNDIALS vector implementations, use a call of the form y® = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y®).

For HYPRE and PETSC vector wrappers, first create and initialize the underlying vector, and then create an
N_Vector wrapper with a call of the form y® = N_VMake_***(yvec), where yvec is a HYPRE or PETSC
vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for these
vector wrappers.

See §6 for details.

5. Create CVODES object Call CVodeCreate () to create the CVODES memory block and to specify the linear
multistep method. CVodeCreate () returns a pointer to the CVODES memory structure.

See §5.1.3.1 for details.

6. Initialize CVODES solver Call CVodeInit() to provide required problem specifications, allocate internal
memory for CVODES, and initialize CVODES. CVodeInit () returns a flag, the value of which indicates either
success or an illegal argument value.

See §5.1.3.1 for details.

7. Specify integration tolerances Call CVodeSStolerances() or CVodeSVtolerances() to specify either a
scalar relative tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodelWWFtolerances () to specify a function which sets directly the
weights used in evaluating WRMS vector norms.

See §5.1.3.2 for details.

8. Create matrix object If a nonlinear solver requiring a linear solve will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must be created by
calling the appropriate constructor function defined by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where **¥* is the name of the matrix (see §7 for details).

9. Create linear solver object If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton
iteration), then the desired linear solver object must be created by calling the appropriate constructor function
defined by the particular SUNLinearSolver implementation.

For any of the SUNDIALS-supplied SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_*(...); where * can be replaced with “Dense”,
“SPGMR”, or other options, as discussed in §5.1.3.5 and §8.

10. Set linear solver optional inputs Call functions from the selected linear solver module to change optional inputs
specific to that linear solver. See the documentation for each SUNLinearSolver module in §8 for details.

11. Attach linear solver module If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton
iteration), then initialize the CVLS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with a call ier = CVodeSetLinearSolver(cvode_mem, NLS) (for details see §5.1.3.5):

Alternately, if the CVODES-specific diagonal linear solver module, CVDIAG, is desired, initialize the linear
solver module and attach it to CVODES with the call to CVodeSetLinearSolver().

12. Set optional inputs Call CVodeSet*** functions to change any optional inputs that control the behavior of
CVODES from their default values. See §5.1.3.10 for details.

5.1. Using CVODES for IVP Solution 59

User Documentation for CVODES, v7.4.0

13.

14.

15.

16.

17.

18.
19.

Create nonlinear solver object (optional) If using a non-default nonlinear solver (see §5.1.3.6), then create the
desired nonlinear solver object by calling the appropriate constructor function defined by the particular SUN-
NonlinearSolver implementation (e.g., NLS = SUNNonlinSol_***(...); where *** is the name of the
nonlinear solver (see §9 for details).

Attach nonlinear solver module (optional) If using a non-default nonlinear solver, then initialize the nonlinear
solver interface by attaching the nonlinear solver object by calling ier = CVodeSetNonlinearSolver (see
§5.1.3.6 for details).

Set nonlinear solver optional inputs (optional) Call the appropriate set functions for the selected nonlinear
solver module to change optional inputs specific to that nonlinear solver. These must be called after CVodeInit ()
if using the default nonlinear solver or after attaching a new nonlinear solver to CVODES, otherwise the optional
inputs will be overridden by CVODES defaults. See §9 for more information on optional inputs.

Specify rootfinding problem (optional) Call CVodeRootInit () to initialize a rootfinding problem to be solved
during the integration of the ODE system. See §5.1.3.7, and see §5.1.3.10 for relevant optional input calls.

Advance solution in time For each point at which output is desired, call ier = CVode(cvode_mem, tout,
yout, tret itask). Here itask specifies the return mode. The vector yout (which can be the same as the
vector y® above) will contain y(t). See CVode () for details.

Get optional outputs Call CV*Get* functions to obtain optional output. See §5.1.3.12 for details.
Destroy objects

Upon completion of the integration call the following functions, as necessary, to destroy any objects created
above:

* Call N_VDestroy() to free vector objects.

e Call SUNMatDestroy () to free matrix objects.

Call SUNLinSolFree() to free linear solvers objects.

Call SUNNonlinSolFree() to free nonlinear solvers objects.

* Call CVodeFree () to free the memory allocated by CVODES.

L]

Call SUNContext_Free() to free the SUNDIALS context.

20. Finalize MPI, if used Call MPI_Finalize to terminate MPI.

5.1.3 User-callable functions

This section describes the CVODES functions that are called by the user to setup and then solve an IVP. Some of these
are required. However, starting with §5.1.3.10, the functions listed involve optional inputs/outputs or restarting, and
those paragraphs may be skipped for a casual use of CVODES. In any case, refer to §5.1.2 for the correct order of these

calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.1.3.10).

60

Chapter 5. Using CVODES

User Documentation for CVODES, v7.4.0

5.1.3.1 CVODES initialization and deallocation functions
The following three functions must be called in the order listed. The last one is to be called only after the IVP solution
is complete, as it frees the CVODES memory block created and allocated by the first two calls.

void *CVodeCreate (int Imm, SUNContext sunctx)
The function CVodeCreate () instantiates a CVODES solver object and specifies the solution method.

Arguments:

e 1mm — specifies the linear multistep method and must be one of two possible values: CV_ADAMS or
CV_BDF.

* sunctx —the SUNContext object (see §4.2)
Return Value:

¢ If successful, CVodeCreate () returns a pointer to the newly created CVODES memory block. Oth-
erwise, it returns NULL.

Notes:
The recommended choices for 1mm are CV_ADAMS for nonstiff problems and CV_BDF for stiff problems.
The default Newton iteration is recommended for stiff problems, and the fixed-point solver (previously re-
ferred to as the functional iteration in this guide) is recommended for nonstiff problems. For details on how
to attach a different nonlinear solver module to CVODES see the description of CVodeSetNonlinear-
Solver().

int CVodeInit (void *cvode_mem, CVRAsFn f, sunrealtype t0, N_Vector y0)

The function CVodeInit provides required problem and solution specifications, allocates internal memory, and
initializes CVODES.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

e f —is the C function which computes the right-hand side function f in the ODE. This function has the
form £(t, y, ydot, user_data) (for full details see §5.1.4.1).

* t0 —is the initial value of t.
* y0 —is the initial value of y.
Return Value:
e CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — An input argument to CVodeInit has an illegal value.

Notes:
If an error occurred, CVodeInit also sends an error message to the error handler function.

void CVodeFree (void **cvode_mem);

The function CVodeFree frees the memory allocated by a previous call to CVodeCreate ().
Arguments:
* Pointer to the CVODES memory block.

Return Value:

5.1. Using CVODES for IVP Solution 61

User Documentation for CVODES, v7.4.0

¢ The function CVodeFree has no return value.

5.1.3.2 CVODES tolerance specification functions
One of the following three functions must be called to specify the integration tolerances (or directly specify the weights
used in evaluating WRMS vector norms). Note that this call must be made after the call to CVodeInit().

int CVodeSStolerances (void *cvode_mem, sunrealtype reltol, sunrealtype abstol)
The function CVodeSStolerances specifies scalar relative and absolute tolerances.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
* reltol —is the scalar relative error tolerance.
* abstol —is the scalar absolute error tolerance.
Return value:
* CV_SUCCESS - The call was successful.
e CV_MEM_NULL — The CVODES memory block was not initialized.
e CV_NO_MALLOC — The allocation function returned NULL.
e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeSVtolerances (void *cvode_mem, sunrealtype reltol, N_Vector abstol)
The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute tolerances.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
* reltol —is the scalar relative error tolerance.
* abstol —is the vector of absolute error tolerances.
Return value:
* CV_SUCCESS — The call was successful.
e CV_MEM_NULL — The CVODES memory block was not initialized.
e CV_NO_MALLOC — The allocation function returned NULL.

e CV_ILL_INPUT - The relative error tolerance was negative or the absolute tolerance had a negative
component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the state vector y.

int CVodeWFtolerances (void *cvode_mem, CVEw:Fn efun)

The function CVodeWFtolerances specifies a user-supplied function efun that sets the multiplicative error
weights W_i for use in the weighted RMS norm, which are normally defined by (2.7).

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
¢ efun - is the C function which defines the ewt vector (see CVEwtFn).

Return value:

62 Chapter 5. Using CVODES

User Documentation for CVODES, v7.4.0

e CV_SUCCESS - The call was successful.
e CV_MEM_NULL — The CVODES memory block was not initialized.
e CV_NO_MALLOC — The allocation function returned NULL.

5.1.3.3 General advice on choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 10~ means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~2. On the other hand, reltol should not
be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around 10~ 1?).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y[i] starts at some nonzero value, but in time decays to zero, then pure relative error control on y[i] makes no
sense (and is overly costly) after y[i] is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector)
needs to be set to that noise level. If the different components have different noise levels, then abstol should be a
vector. See the example cvsRoberts_dns in the CVODES package, and the discussion of it in the CVODES Examples
document [62]. In that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate noise levels are
completely problem-dependent. The user or modeler hopefully has some idea as to what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the error committed on
each individual time step. The final (global) errors are some sort of accumulation of those per-step errors. A good rule
of thumb is to reduce the tolerances by a factor of .01 from the actual desired limits on errors. So if you want .01%
accuracy (globally), a good choice is reltol = 1075, But in any case, it is a good idea to do a few experiments with
the tolerances to see how the computed solution values vary as tolerances are reduced.

5.1.3.4 Advice on controlling unphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (hence unphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again this
requires some knowledge of the noise level of these components, which may or may not be different for different
components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there (for
the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context of the
output medium. Then the internal values carried by the solver are unaffected. Remember that a small negative value in
y returned by CVODES, with magnitude comparable to abstol or less, is equivalent to zero as far as the computation
is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector y to a non-negative
value, as a “solution” to this problem. This can cause instability. If the f routine cannot tolerate a zero or negative
value (e.g. because there is a square root or log of it), then the offending value should be changed to zero or a tiny
positive number in a temporary variable (not in the input y vector) for the purposes of computing f (¢, y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side function. However, because this option involves some extra overhead cost,
it should only be exercised if the use of absolute tolerances to control the computed values is unsuccessful.

5.1. Using CVODES for IVP Solution 63

User Documentation for CVODES, v7.4.0

5.1.3.5 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.8) (e.g., the default
Newton iteration), there are two CVODES linear solver interfaces currently available for this task: CVLS and CVDIAG.

The first corresponds to the main linear solver interface in CVODES, that supports all valid SUNLinearSolver mod-
ules. Here, matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian
matrix J = df/dy, the Newton matrix M = I — ~J, and factorizations used throughout the solution process. Con-
versely, matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equa-
tions, and only require the action of the matrix on a vector, Mv. With most of these methods, preconditioning can be
done on the left only, the right only, on both the left and right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver sections in §5.1.3.10 and §5.1.4.

If preconditioning is done, user-supplied functions define linear operators corresponding to left and right preconditioner
matrices P; and P, (either of which could be the identity matrix), such that the product P; P, approximates the matrix
M =1T1—~Jof (2.9).

The CVDIAG linear solver interface supports a direct linear solver, that uses only a diagonal approximation to .J.

To specify a generic linear solver to CVODES, after the call to CVodeCreate () but before any calls to CVode (),
the user’s program must create the appropriate SUNLinearSolver object and call the function CVodeSetLinear-
Solver(), as documented below. To create the SUNLinearSolver object, the user may call one of the SUNDIALS-
packaged SUNLinearSolver module constructor routines via a call of the form SUNLinearSolver LS = SUNLin-
Sol_*(...);

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in §7 and §8.

Once this solver object has been constructed, the user should attach it to CVODES via a call to CVodeSetLinear-
Solver (). The first argument passed to this function is the CVODES memory pointer returned by CVodeCreate();
the second argument is the desired SUNLinearSolver object to use for solving linear systems. The third argument is
an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers,
the third argument should be NULL). A call to this function initializes the CVLS linear solver interface, linking it to the
main CVODES integrator, and allows the user to specify additional parameters and routines pertinent to their choice
of linear solver.

To instead specify the CVODES-specific diagonal linear solver interface, the user’s program must call CVDiag(), as
documented below. The first argument passed to this function is the CVODES memory pointer returned by CVode-
Create().

int CVodeSetLinearSolver (void *cvode_mem, SUNLinearSolver LS, SUNMatrix J)

The function CVodeSetLinearSolver attaches a generic SUNLinearSolver object LS and corresponding tem-
plate Jacobian SUNMatrix object J (if applicable) to CVODES, initializing the CVLS linear solver interface.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e LS — SUNLinearSolver object to use for solving linear systems of the form (2.8).

e J — SUNMatrix object for used as a template for the Jacobian (or NULL if not applicable).
Return value:

e CVLS_SUCCESS — The CVLS initialization was successful.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

64 Chapter 5. Using CVODES

User Documentation for CVODES, v7.4.0

e CVLS_ILL_INPUT — The CVLS interface is not compatible with the LS or J input objects or is incom-
patible with the current N_Vector module.

* CVLS_SUNLS_FAIL — A call to the LS object failed.
e CVLS_MEM_FAIL — A memory allocation request failed.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size (see §7 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices M = I —~.J, even if J itself has zeros in nonzero locations
of I. The reasoning for this is that M is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store M then it will need to be resized internally by CVODES.

Added in version 4.0.0: Replaces the deprecated functions CVD1sSetLinearSolver and CVSpilsSetLinear-
Solver.

int CVDiag(void *cvode_mem)

The function CVDiag selects the CVDIAG linear solver. The user’s main program must include the cvode_-
diag.h header file.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
Return value:
* CVDIAG_SUCCESS — The CVDIAG initialization was successful.
* CVDIAG_MEM_NULL — The cvode_mem pointer is NULL.
e CVDIAG_ILL_INPUT — The CVDIAG solver is not compatible with the current N_Vector module.
e CVDIAG_MEM_FAIL — A memory allocation request failed.

Notes:
The CVDIAG solver is the simplest of all of the available CVODES linear solvers. The CVDIAG solver
uses an approximate diagonal Jacobian formed by way of a difference quotient. The user does not have the
option of supplying a function to compute an approximate diagonal Jacobian.

5.1.3.6 Nonlinear solver interface function

By default CVODES uses the SUNNonlinearSolver implementation of Newton’s method defined by the SUNNON-
LINSOL_NEWTON module. To specify a different nonlinear solver in CVODES, the user’s program must create a
SUNNonlinearSolver object by calling the appropriate constructor routine. The user must then attach the SUNNon-
linearSolver object by calling CVodeSetNonlinearSolver (), as documented below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolver () mustbe called after CVodeInit ().
If any calls to CVode () have been made, then CVODES will need to be reinitialized by calling CVodeReInit () to
ensure that the nonlinear solver is initialized correctly before any subsequent calls to CVode ().

The first argument passed to the routine CVodeSetNonlinearSolver () is the CVODES memory pointer returned by
CVodeCreate () and the second argument is the SUNNonlinearSolver object to use for solving the nonlinear system
(2.8) or (2.6). A call to this function attaches the nonlinear solver to the main CVODES integrator.

int CVodeSetNonlinearSolver (void *cvode _mem, SUNNonlinearSolver NLS)
The function CVodeSetNonlinearSolver attaches a SUNNonlinearSolver object (NLS) to CVODES.

Arguments:

5.1. Using CVODES for IVP Solution 65

User Documentation for CVODES, v7.4.0

* cvode_mem — pointer to the CVODES memory block.

e NLS — SUNNonlinearSolver object to use for solving nonlinear systems (2.5) or (2.6).
Return value:

e CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - The SUNNonlinearSolver object is NULL, does not implement the required non-
linear solver operations, is not of the correct type, or the residual function, convergence test function,
or maximum number of nonlinear iterations could not be set.

Notes:
When forward sensitivity analysis capabilities are enabled and the CV_STAGGERED or CV_STAGGERED1
corrector method is used this function sets the nonlinear solver method for correcting state variables (see
§5.3.2.3 for more details).

5.1.3.7 Rootfinding initialization function

While solving the IVP, CVODES has the capability to find the roots of a set of user-defined functions. To activate the
root finding algorithm, call the following function. This is normally called only once, prior to the first call to CVode (),
but if the rootfinding problem is to be changed during the solution, CVodeRootInit () can also be called prior to a
continuation call to CVode ().

int CVodeRootInit (void *cvode_mem, int nrtfn, CVRootFn g)

The function CVodeRootInit specifies that the roots of a set of functions g;(t, y) are to be found while the IVP
is being solved.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
e nrtfn - is the number of root functions g;.

g —is the C function which defines the nrtfn functions g; (¢, y) whose roots are sought. See §5.1.4.4
for details.

Return value:
* CV_SUCCESS — The call was successful.
e CV_MEM_NULL — The cvode_mem argument was NULL.
e CV_MEM_FAIL — A memory allocation failed.
e CV_ILL_INPUT - The function g is NULL, but nrtfn>0.

Notes:
If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no rootfinding problem
but the prior one did, then call CVodeRootInit with nrtfn=0.

66 Chapter 5. Using CVODES

User Documentation for CVODES, v7.4.0

5.1.3.8 Projection initialization function

When solving an IVP with a constraint equation, CVODES has the capability to project the solution onto the constraint
manifold after each time step. To activate the projection capability with a user-defined projection function, call the
following set function:

int CVodeSetProjFn(void *cvode_mem, CVProjFn proj)

The function CVodeSetProjFn enables or disables projection with a user-defined projection function.
Arguments:

* cvode_mem — is a pointer to the CVODES memory block returned by CVodeCreate ().

e proj — is the C function which defines the projection. See CVProjFn for details.
Return value:

» CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The cvode_mem argument was NULL.

e CV_MEM_FAIL — A memory allocation failed.

e CV_ILL_INPUT - The projection function is NULL or the method type is not CV_BDF.

Notes:
At this time projection is only supported with BDF methods. If a new IVP is to be solved with a call to
CVodeReInit, where the new IVP does not have a constraint equation but the prior one did, then call
CVodeSetProjFrequency with an input of 0 to disable projection.

Added in version 6.2.0.

5.1.3.9 CVODES solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where CVODES is to return a solution. But these modes are
modified if the user has set a stop time (with CVodeSetStopTime ()) or requested rootfinding.

int CVode (void *cvode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)

The function CVode integrates the ODE over an interval in t.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* tout — the next time at which a computed solution is desired.
* yout — the computed solution vector.
* tret — the time reached by the solver (output).

* itask — a flag indicating the job of the solver for the next user step. The CV_NORMAL option causes
the solver to take internal steps until it has reached or just passed the user-specified tout parameter.
The solver then interpolates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to take just one internal step and then return the solution at the point reached by
that step.

Return value:
e CV_SUCCESS - CVode succeeded and no roots were found.

e CV_TSTOP_RETURN — CVode succeeded by reaching the stopping point specified through the optional
input function CVodeSetStopTime ().

5.1. Using CVODES for IVP Solution 67

User Documentation for CVODES, v7.4.0

Notes:

CV_ROOT_RETURN — CVode succeeded and found one or more roots. In this case, tret is the location
of the root. If nrtfn > 1, call CVodeGetRootInfo () to see which g; were found to have a root.

CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

CV_NO_MALLOC — The CVODES memory was not allocated by a call to CVodeInit().

CV_ILL_INPUT - One of the inputs to CVode was illegal, or some other input to the solver was illegal
or missing. The latter category includes the following situations:

(a) The tolerances have not been set.
(b) A component of the error weight vector became zero during internal time-stepping.

(c) The linear solver initialization function (called by the user after calling CVodeCreate()) failed
to set the linear solver-specific 1solve field in cvode_mem.

(d) A root of one of the root functions was found both at a point ¢ and also very near .

CV_TOO_CLOSE — The initial time ¢y and the output time ¢,,,; are too close to each other and the user
did not specify an initial step size.

CV_TOO_MUCH_WORK — The solver took mxstep internal steps but still could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

CV_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.

CV_ERR_FAILURE — Either error test failures occurred too many times (MXNEF = 7) during one inter-
nal time step, or with |A| = hyin.

CV_CONV_FAILURE — Either convergence test failures occurred too many times (MXNCF = 10) during
one internal time step, or with |h| = Apip.

CV_LINIT_FAIL — The linear solver interface’s initialization function failed.

CV_LSETUP_FAIL — The linear solver interface’s setup function failed in an unrecoverable manner.
CV_LSOLVE_FAIL — The linear solver interface’s solve function failed in an unrecoverable manner.
CV_CONSTR_FAIL — The inequality constraints were violated and the solver was unable to recover.
CV_RHSFUNC_FAIL — The right-hand side function failed in an unrecoverable manner.
CV_FIRST_RHSFUNC_FAIL — The right-hand side function had a recoverable error at the first call.

CV_REPTD_RHSFUNC_ERR — Convergence test failures occurred too many times due to repeated re-
coverable errors in the right-hand side function. This flag will also be returned if the right-hand side
function had repeated recoverable errors during the estimation of an initial step size.

CV_UNREC_RHSFUNC_ERR — The right-hand function had a recoverable error, but no recovery was
possible. This failure mode is rare, as it can occur only if the right-hand side function fails recoverably
after an error test failed while at order one.

CV_RTFUNC_FAIL — The rootfinding function failed.

The vector yout can occupy the same space as the vector y0 of initial conditions that was passed to
CVodeInit.

In the CV_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough
scale of the independent variable.

68

Chapter 5. Using CVODES

User Documentation for CVODES, v7.4.0

If a stop time is enabled (through a call to CVodeSetStopTime), then CVode returns the solution at tstop.
Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to CVodeSetStopTime).

All failure return values are negative and so the test flag < 0 will trap all CVode failures.

On any error return in which one or more internal steps were taken by CVode, the returned values of tret
and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from the previous CVode return.

5.1.3.10 Optional input functions

There are numerous optional input parameters that control the behavior of the CVODES solver. CVODES provides
functions that can be used to change these optional input parameters from their default values. The main inputs are
divided into the following categories:

* Table 5.1 lists the main CVODES optional input functions,
» Table 5.2 lists the CVLS linear solver interface optional input functions,

 Table 5.3 lists the CVNLS nonlinear solver interface optional input functions,

Table 5.4 lists the CVODES step size adaptivity optional input functions, and

Table 5.5 lists the rootfinding optional input functions.

Table 5.6 lists the projection optional input functions.

These optional inputs are described in detail in the remainder of this section. Note that the diagonal linear solver module
has no optional inputs. For the most casual use of CVODES, the reader can skip to §5.1.4..

‘We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors.

The optional input calls can, unless otherwise noted, be executed in any order. A call to an CVodeSet*** function can,
unless otherwise noted, be made at any time from the user’s calling program and, if successful, takes effect immediately.

Main solver optional input functions

Table 5.1: Optional inputs for CVODES

Optional input Function name Default
User data CVodeSetUserData() NULL
Maximum order for BDF method CVodeSetMaxOrd() 5
Maximum order for Adams method CVodeSetMaxOrd () 12
Maximum no. of internal steps before ¢,,; CVodeSetMaxNumSteps () 500
Maximum no. of warnings for t, + h =t,, CVodeSetMaxHnilWarns () 10

Flag to activate stability limit detection CVodeSetStabLimDet () SUNFALSE
Initial step size CVodeSetInitStep() estimated
Minimum absolute step size CVodeSetMinStep() 0.0
Maximum absolute step size CVodeSetMaxStep() 00

Value of ¢, CVodeSetStopTime () undefined
Interpolate at ¢4, CVodeSetInterpolateStopTime() SUNFALSE
Disable the stop time CVodeClearStopTime () N/A
Maximum no. of error test failures CVodeSetMaxErrTestFails() 7
Inequality constraints on solution CVodeSetConstraints()

5.1. Using CVODES for IVP Solution 69

User Documentation for CVODES, v7.4.0

int CVodeSetUserData (void *cvode_mem, void *user_data)

The function CVodeSetUserData specifies the user data block user_data and attaches it to the main CVODES
memory block.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* user_data — pointer to the user data.
Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:

If specified, the pointer to user_data is passed to all user-supplied functions that have it as an
argument. Otherwise, a NULL pointer is passed.

Warning

If user_data is needed in user linear solver or preconditioner functions, the call to CVodeSetUser-
Data must be made before the call to specify the linear solver.

int CVodeSetMonitorFn(void *cvode_mem, CVMonitorFn monitorfn)

The function CVodeSetMonitorFn specifies a user function, monitorfn, to be called at some interval of suc-
cessfully completed CVODES time steps.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e monitorfn — user-supplied monitor function (NULL by default); a NULL input will turn off monitoring.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The frequency with which the monitor function is called can be set with the function CVodeSetMonitor-
Frequency.

Warning

Modifying the solution in this function will result in undefined behavior. This function is only intended
to be used for monitoring the integrator. SUNDIALS must be built with the CMake option SUNDIALS_-
BUILD_WITH_MONITORING, to utilize this function. See §11 for more information.

int CVodeSetMonitorFrequency (void *cvode_mem, long int nst)

The function CVodeSetMonitorFrequency specifies the interval, measured in successfully completed
CVODES time-steps, at which the monitor function should be called.

Arguments:

70 Chapter 5. Using CVODES

User Documentation for CVODES, v7.4.0

* cvode_mem — pointer to the CVODES memory block.

* nst — number of successful steps in between calls to the monitor function 0 by default; a 0 input will
turn off monitoring.

Return value:
* CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The CVODES memory block was not initialized CVodeCreate ().

Notes:
The monitor function that will be called can be set with CVodeSetMonitorFn.

Warning

Modifying the solution in this function will result in undefined behavior. This function is only intended
to be used for monitoring the integrator. SUNDIALS must be built with the CMake option SUNDIALS_-
BUILD_WITH_MONITORING, to utilize this function. See §11 for more information.

int CVodeSetMaxOrd (void *cvode_mem, int maxord)

The function CVodeSetMaxOrd specifies the maximum order of the linear multistep method.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ maxord — value of the maximum method order. This must be positive.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — The specified value maxord is < 0, or larger than its previous value.

Notes:
The default value is ADAMS_Q_MAX = 12 for the Adams-Moulton method and BDF_Q_MAX = 5 for the
BDF method. Since maxord affects the memory requirements for the internal CVODES memory block, its
value cannot be increased past its previous value.

An input value greater than the default will result in the default value.

int CVodeSetMaxNumSteps (void *cvode_mem, long int mxsteps)

The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken by the solver in its
attempt to reach the next output time.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* mxsteps — maximum allowed number of steps.
Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

5.1. Using CVODES for IVP Solution 71

User Documentation for CVODES, v7.4.0

Notes:
Passing mxsteps = 0 results in CVODES using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int CVodeSetMaxHnilWarns (void *cvode_mem, int mxhnil)

The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued by the solver warning
that ¢ + h = ¢ on the next internal step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* mxhnil — maximum number of warning messages (> 0).
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized throu