% Macros for dealing with very large and very small numbers in `Mlog form'. % A number x in Mlog form represents mexp(x) if x is an even multiple of % epsilon and -mexp(x) if x is an odd multiple of epsilon, where epsilon=1/65536 % is the basic unit for MetaPost's fixpoint numbers. Such numbers can represent % values large as 3.8877e+55 or as small as 1.604e-28. (Anything less than that % is treated as zero.) % Mlog_str <string> convert a string like "6.02e23" to Mlog form % Mexp_str <M_numeric> convert from Mlog form to a string like "6.02e23" % Meform(q) find (x,y) such that q is the Mlog form of x*10^y % Mlog <numeric> convert a number to Mlog form % Mexp <M_numeric> convert from Mlog form into ordinary numeric form % Mabs <M_numeric> absolute value % Mlog_Str <string or numeric> convert to Mlog form; unknown results in unknown % <M_numeric> Madd <M_numeric> add % <M_numeric> Msub <M_numeric> subtract % <M_numeric> Mmul <M_numeric> multiply % <M_numeric> Mdiv <M_numeric> divide % <M_numeric> Mleq <M_numeric> the boolean operator <= % Mzero constant that represents zero % Mten constant that represents 10.0 % All other externally visible names start with `M' and end with `_'. warningcheck := 0; % Need warningcheck:=0 anytime these macros are in use if unknown Mzero: % If we have not already seen this file newinternal Mzero; Mzero := -16384; % Anything at least this small is treated as zero input string.mp % Ideal value of mlog(10) is 589.4617838 or 38630967.46/65536. To get an even % numerator, we round to 38630968/65536 or 589.4617920. newinternal Mten; Mten := 589.46179; % Convert x*10^y to Mlog form, assuming x is already in Mlog form. primarydef x M_e_ y = (x+Mten*y) enddef; def Mgobble_ text t = enddef; pair M_iv_; M_iv_=(0,4); % String s is a number in scientific notatation with no leading spaces. % Convert it to Mlog form. vardef Mlog_str primary s = save k, t, e, r; string t; if substring(0,1) of s="-": r=-epsilon; t=substring (1,infinity) of s; else: r=0; t=s; fi let e = Mgobble_; if begingroup scantokens substring M_iv_ of t endgroup >= 1000: k = cspan(t,isdigit); t := substring M_iv_ of t & "." & substring(4,k) of t & substring (k if substring(k,k+1) of t=".": +1 fi, infinity) of t; r := r + (k-4)*Mten; fi let e = M_e_; r + Mlog scantokens t enddef; % Convert x from Mlog form into a pair whose xpart gives a mantissa and whose % ypart gives a power of ten. The constant 1768.38985 is slightly more than % 3Mten as is required to ensure that 3Mten-epsilon<=q+e*Mten<4Mten-epsilon. % This forces the xpart of the result to be between 1000 and 10000. vardef Meform(expr q) = if q<=Mzero: (0,0) else: save e; e=floor((q-1768.38985)/Mten); (Mexp(q-e*Mten), e) fi enddef; % Perform the inverse of Mlog_str, converting from Mlog form to a string. vardef Mexp_str primary x = save p; pair p; p=Meform(x); decimal xpart p if ypart p<>0: & "e" & decimal ypart p fi enddef; vardef Mabs primary x = x*.5*2 enddef; % Convert a number to Mlog form vardef Mlog primary x = if x>0: Mabs mlog x elseif x<0: epsilon + Mabs mlog(-x) else: Mzero fi enddef; % Convert a number from Mlog form vardef Mexp primary x = if x=Mabs x: mexp x else: -mexp x fi enddef; primarydef a Mmul b = if (a<=Mzero) or (b<=Mzero): Mzero else: (a+b) fi enddef; primarydef a Mdiv b = if a<=Mzero: Mzero else: (a-b) fi enddef; % 256ln(1579)=123556596.0003/65536=1885.3240356445 secondarydef a Madd b = if a>=b: (Mlog(1579 + Mexp(b Mmul (1885.32404-a))) + a-1885.32404) else: b Madd a fi enddef; secondarydef a Msub b = a Madd (b-epsilon) enddef; tertiarydef a Mleq b = (if a=Mabs a: if b=Mabs b: a<=b else: false fi elseif b=Mabs b: true : b<=a fi ) enddef; vardef Mlog_Str primary x = if unknown x: whatever elseif string x: Mlog_str x else: Mlog x fi enddef; fi % end the if..fi that encloses this file