% \iffalse meta-comment % %% File: l3fp-random.dtx % % Copyright (C) 2016-2024 The LaTeX Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{^^A % The \pkg{l3fp-random} module\\ % Floating point random numbers % } % \author{^^A % The \LaTeX{} Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % \date{Released 2024-12-25} % % \maketitle % % \begin{documentation} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3fp-random} implementation} % % \begin{macrocode} %<*package> % \end{macrocode} % % \begin{macrocode} %<@@=fp> % \end{macrocode} % % \begin{macro}[EXP]{\@@_parse_word_rand:N , \@@_parse_word_randint:N} % Those functions may receive a variable number of arguments. We % won't use the argument~|?|. % \begin{macrocode} \cs_new:Npn \@@_parse_word_rand:N { \@@_parse_function:NNN \@@_rand_o:Nw ? } \cs_new:Npn \@@_parse_word_randint:N { \@@_parse_function:NNN \@@_randint_o:Nw ? } % \end{macrocode} % \end{macro} % % \subsection{Engine support} % % Obviously, every word \enquote{random} below means % \enquote{pseudo-random}, as we have no access to entropy (except a % very unreliable source of entropy: the time it takes to run some % code). % % The primitive random number generator (RNG) is provided as % \cs{tex_uniformdeviate:D}. Under the hood, it maintains an array of % $55$ $28$-bit numbers, updated with a linear recursion relation % (similar to Fibonacci numbers) modulo $2^{28}$. When % \cs{tex_uniformdeviate:D} \meta{integer} is called (for brevity denote % by~$N$ the \meta{integer}), the next $28$-bit number is read from the % array, scaled by $N/2^{28}$, and rounded. To prevent $0$ and $N$ from % appearing half as often as other numbers, they are both mapped to the % result~$0$. % % This process means that \cs{tex_uniformdeviate:D} only gives a uniform % distribution from $0$ to $N-1$ if $N$ is a divisor of $2^{28}$, so we % will mostly call the RNG with such power of~$2$ arguments. If $N$ % does not divide $2^{28}$, then the relative non-uniformity (difference % between probabilities of getting different numbers) is about % $N/2^{28}$. This implies that detecting deviation from $1/N$ of the % probability of a fixed value X requires about $2^{56}/N$ random % trials. But collective patterns can reduce this to about % $2^{56}/N^2$. For instance with $N=3\times 2^{k}$, the modulo~$3$ % repartition of such random numbers is biased with a non-uniformity % about $2^k/2^{28}$ (which is much worse than the circa $3/2^{28}$ % non-uniformity from taking directly $N=3$). This is detectable after % about $2^{56}/2^{2k} = 9\cdot 2^{56}/N^2$ random numbers. For $k=15$, % $N=98304$, this means roughly $2^{26}$ calls to the RNG % (experimentally this takes at the very least 16 seconds on a 2 giga-hertz % processor). While this bias is not quite problematic, it is % uncomfortably close to being so, and it becomes worse as $N$ is % increased. In our code, we shall thus combine several results from % the RNG\@. % % The RNG has three types of unexpected correlations. First, everything % is linear modulo~$2^{28}$, hence the lowest $k$ bits of the random % numbers only depend on the lowest $k$ bits of the seed (and of course % the number of times the RNG was called since setting the seed). The % recommended way to get a number from $0$ to $N-1$ is thus to scale the % raw $28$-bit integer, as the engine's RNG does. We will go further % and in fact typically we discard some of the lowest bits. % % Second, suppose that we call the RNG with the same argument~$N$ to get % a set of $K$ integers in $[0,N-1]$ (throwing away repeats), and % suppose that $N>K^3$ and $K>55$. The recursion used to construct more % $28$-bit numbers from previous ones is linear: % $x_n = x_{n-55} - x_{n-24}$ or $x_n = x_{n-55}-x_{n-24}+2^{28}$. % After rescaling and rounding we find that the result $N_n\in[0,N-1]$ % is among $N_{n-55} - N_{n-24} + \{-1,0,1\}$ modulo~$N$ (a more % detailed analysis shows that $0$ appears with frequency close % to~$3/4$). The resulting set thus has more triplets $(a,b,c)$ than % expected obeying $a=b+c$ modulo~$N$. Namely it will have of order % $(K-55)\times 3/4$ such triplets, when one would expect $K^3/(6N)$. % This starts to be detectable around $N=2^{18}>55^3$ (earlier if one % keeps track of positions too, but this is more subtle than it looks % because the array of $28$-bit integers is read backwards by the % engine). Hopefully the correlation is subtle enough to not affect % realistic documents so we do not specifically mitigate against this. % Since we typically use two calls to the RNG per \cs{int_rand:nn} we % would need to investigate linear relations between the $x_{2n}$ on the % one hand and between the $x_{2n+1}$ on the other hand. Such relations % will have more complicated coefficients than $\pm 1$, which alleviates % the issue. % % Third, consider successive batches of $165$ calls to the RNG (with % argument $2^{28}$ or with argument~$2$ for instance), then most % batches have more odd than even numbers. Note that this does not mean % that there are more odd than even numbers overall. Similar issues are % discussed in Knuth's TAOCP volume 2 near exercise 3.3.2-31. We do not % have any mitigation strategy for this. % % Ideally, our algorithm should be: % \begin{itemize} % \item Uniform. The result should be as uniform as possible assuming % that the RNG's underlying $28$-bit integers are uniform. % \item Uncorrelated. The result should not have detectable % correlations between different seeds, similar to the lowest-bit ones % mentioned earlier. % \item Quick. The algorithm should be fast in \TeX{}, so no % \enquote{bit twiddling}, but \enquote{digit twiddling} is ok. % \item Simple. The behaviour must be documentable precisely. % \item Predictable. The number of calls to the RNG should be the same % for any \cs{int_rand:nn}, because then the algorithm can be modified % later without changing the result of other uses of the RNG\@. % \item Robust. It should work even for \cs{int_rand:nn} |{| |-| % \cs{c_max_int} |}| |{| \cs{c_max_int} |}| where the range is not % representable as an integer. In fact, we also provide later a % floating-point |randint| whose range can go all the way up to % $2\times 10^{16}-1$ possible values. % \end{itemize} % Some of these requirements conflict. For instance, uniformity cannot % be achieved with a fixed number of calls to the RNG\@. % % Denote by $\operatorname{random}(N)$ one call to % \cs{tex_uniformdeviate:D} with argument~$N$, and by % $\operatorname{ediv}(p,q)$ the \eTeX{} rounding division giving % $\lfloor p/q+1/2\rfloor$. Denote by $\meta{min}$, $\meta{max}$ and % $R=\meta{max}-\meta{min}+1$ the arguments of \cs{int_min:nn} and the % number of possible outcomes. Note that $R\in [1,2^{32}-1]$ cannot % necessarily be represented as an integer (however, $R-2^{31}$ can). % Our strategy is to get two $28$-bit integers $X$ and $Y$ from the RNG, % split each into $14$-bit integers, as $X=X_1\times 2^{14}+X_0$ and % $Y=Y_1\times 2^{14}+Y_0$ then return essentially % $\meta{min} + \lfloor R (X_1\times 2^{-14} + Y_1\times 2^{-28} + % Y_0\times 2^{-42} + X_0\times 2^{-56})\rfloor$. For small~$R$ the % $X_0$ term has a tiny effect so we ignore it and we can compute % $R\times Y/2^{28}$ much more directly by $\operatorname{random}(R)$. % \begin{itemize} % \item If $R \leq 2^{17}-1$ then return % $\operatorname{ediv}(R\operatorname{random}(2^{14}) + % \operatorname{random}(R) + 2^{13}, 2^{14}) - 1 + \meta{min}$. The % shifts by $2^{13}$ and $-1$ convert \eTeX{} division to truncated % division. The bound on $R$ ensures that the number obtained after % the shift is less than \cs{c_max_int}. The non-uniformity is at % most of order $2^{17}/2^{42} = 2^{-25}$. % \item Split $R=R_2\times 2^{28}+R_1\times 2^{14}+R_0$, where % $R_2\in [0,15]$. Compute % $\meta{min} + R_2 X_1 2^{14} + (R_2 Y_1 + R_1 X_1) + % \operatorname{ediv}(R_2 Y_0 + R_1 Y_1 + R_0 X_1 + % \operatorname{ediv}(R_2 X_0 + R_0 Y_1 + \operatorname{ediv}((2^{14} % R_1 + R_0) (2^{14} Y_0 + X_0), 2^{28}), 2^{14}), 2^{14})$ then map a % result of $\meta{max}+1$ to $\meta{min}$. Writing each % $\operatorname{ediv}$ in terms of truncated division with a shift, % and using % $\lfloor(p+\lfloor r/s\rfloor)/q\rfloor = % \lfloor(ps+r)/(sq)\rfloor$, what we compute is equal to % $\lfloor\meta{exact}+2^{-29}+2^{-15}+2^{-1}\rfloor$ with % $\meta{exact}=\meta{min} + R \times 0.X_1Y_1Y_0X_0$. Given we map % $\meta{max}+1$ to $\meta{min}$, the shift has no effect on % uniformity. The non-uniformity is bounded by $R/2^{56}<2^{-24}$. It % may be possible to speed up the code by dropping tiny terms such as % $R_0 X_0$, but the analysis of non-uniformity proves too difficult. % % To avoid the overflow when the computation yields $\meta{max}+1$ % with $\meta{max}=2^{31}-1$ (note that $R$ is then arbitrary), we % compute the result in two pieces. Compute % $\meta{first} = \meta{min} + R_2 X_1 2^{14}$ if $R_2<8$ or % $\meta{min} + 8 X_1 2^{14} + (R_2-8) X_1 2^{14}$ if $R_2\geq 8$, the % expressions being chosen to avoid overflow. Compute % $\meta{second} = R_2 Y_1 + R_1 X_1 + \operatorname{ediv}({\dots})$, % at most % $R_2 2^{14} + R_1 2^{14} + R_0\leq 2^{28} + 15\times 2^{14} - 1$, % not at risk of overflowing. We have % $\meta{first}+\meta{second}=\meta{max}+1=\meta{min}+R$ if and only % if $\meta{second} = R1 2^{14} + R_0 + R_2 2^{14}$ and % $2^{14} R_2 X_1 = 2^{28} R_2 - 2^{14} R_2$ (namely $R_2=0$ or % $X_1=2^{14}-1$). In that case, return \meta{min}, otherwise return % $\meta{first}+\meta{second}$, which is safe because it is at most % \meta{max}. Note that the decision of what to return does not need % \meta{first} explicitly so we don't actually compute it, just put it % in an integer expression in which \meta{second} is eventually added % (or not). % \item To get a floating point number in $[0,1)$ just call the % $R=10000\leq 2^{17}-1$ procedure above to produce four blocks of four % digits. % \item To get an integer floating point number in a range (whose size % can be up to $2\times 10^{16}-1$), work with fixed-point numbers: % get six times four digits to build a fixed point number, multiply by % $R$ and add $\meta{min}$. This requires some care because % \pkg{l3fp-extended} only supports non-negative numbers. % \end{itemize} % % \begin{variable}{\c__kernel_randint_max_int} % Constant equal to $2^{17}-1$, the maximal size of a range that % \cs{int_range:nn} can do with its \enquote{simple} algorithm. % \begin{macrocode} \int_const:Nn \c__kernel_randint_max_int { 131071 } % \end{macrocode} % \end{variable} % % \begin{macro}[EXP]{\__kernel_randint:n} % Used in an integer expression, \cs{__kernel_randint:n} |{|$R$|}| % gives a random number % $1+\lfloor(R\operatorname{random}(2^{14}) + % \operatorname{random}(R))/2^{14}\rfloor$ that is in $[1,R]$. % Previous code was computing $\lfloor p/2^{14}\rfloor$ as % $\operatorname{ediv}(p-2^{13},2^{14})$ but that wrongly gives $-1$ % for $p=0$. % \begin{macrocode} \cs_new:Npn \__kernel_randint:n #1 { (#1 * \tex_uniformdeviate:D 16384 + \tex_uniformdeviate:D #1 + 8192 ) / 16384 } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP] % {\@@_rand_myriads:n, \@@_rand_myriads_loop:w, \@@_rand_myriads_get:w} % Used as \cs{@@_rand_myriads:n} |{XXX}| with one letter |X| % (specifically) per block of four digit we want; it expands to |;| % followed by the requested number of brace groups, each containing % four (pseudo-random) digits. Digits are produced as a random number % in $[10000,19999]$ for the usual reason of preserving leading zeros. % \begin{macrocode} \cs_new:Npn \@@_rand_myriads:n #1 { \@@_rand_myriads_loop:w #1 \prg_break: X \prg_break_point: ; } \cs_new:Npn \@@_rand_myriads_loop:w #1 X { #1 \exp_after:wN \@@_rand_myriads_get:w \int_value:w \@@_int_eval:w 9999 + \__kernel_randint:n { 10000 } \@@_rand_myriads_loop:w } \cs_new:Npn \@@_rand_myriads_get:w 1 #1 ; { ; {#1} } % \end{macrocode} % \end{macro} % % \subsection{Random floating point} % % \begin{macro}[EXP]{\@@_rand_o:Nw, \@@_rand_o:w} % First we check that |random| was called without argument. Then get % four blocks of four digits and convert that fixed point number to a % floating point number (this correctly sets the exponent). This has % a minor bug: if all of the random numbers are zero then the result % is correctly~$0$ but it raises the \texttt{underflow} flag; it % should not do that. % \begin{macrocode} \cs_new:Npn \@@_rand_o:Nw ? #1 @ { \tl_if_empty:nTF {#1} { \exp_after:wN \@@_rand_o:w \exp:w \exp_end_continue_f:w \@@_rand_myriads:n { XXXX } { 0000 } { 0000 } ; 0 } { \msg_expandable_error:nnnnn { fp } { num-args } { rand() } { 0 } { 0 } \exp_after:wN \c_nan_fp } } \cs_new:Npn \@@_rand_o:w ; { \exp_after:wN \@@_sanitize:Nw \exp_after:wN 0 \int_value:w \@@_int_eval:w \c_zero_int \@@_fixed_to_float_o:wN } % \end{macrocode} % \end{macro} % % \subsection{Random integer} % % \begin{macro}[EXP]{\@@_randint_o:Nw} % \begin{macro}[EXP] % { % \@@_randint_default:w, % \@@_randint_badarg:w, % \@@_randint_o:w, % \@@_randint_auxi_o:ww, % \@@_randint_auxii:wn, % \@@_randint_auxiii_o:ww, % \@@_randint_auxiv_o:ww, % \@@_randint_auxv_o:w, % } % Enforce that there is one argument (then add first argument~$1$) % or two arguments. Call \cs{@@_randint_badarg:w} on each; this % function inserts |1| \cs{exp_stop_f:} to end the \cs{if_case:w} % statement if either the argument is not an integer or if its % absolute value is $\geq 10^{16}$. Also bail out if % \cs{@@_compare_back:ww} yields~|1|, meaning that the bounds are % not in the right order. Otherwise an auxiliary converts each % argument times $10^{-16}$ (hence the shift in exponent) to a % $24$-digit fixed point number (see \pkg{l3fp-extended}). % Then compute the number of choices, $\meta{max}+1-\meta{min}$. % Create a random $24$-digit fixed-point number with % \cs{@@_rand_myriads:n}, then use a fused multiply-add instruction % to multiply the number of choices to that random number and add it % to \meta{min}. Then truncate to $16$ digits (namely select the % integer part of $10^{16}$ times the result) before converting back % to a floating point number (\cs{@@_sanitize:Nw} takes care of zero). % To avoid issues with negative numbers, add $1$ to all fixed point % numbers (namely $10^{16}$ to the integers they represent), except % of course when it is time to convert back to a float. % \begin{macrocode} \cs_new:Npn \@@_randint_o:Nw ? { \@@_parse_function_one_two:nnw { randint } { \@@_randint_default:w \@@_randint_o:w } } \cs_new:Npn \@@_randint_default:w #1 { \exp_after:wN #1 \c_one_fp } \cs_new:Npn \@@_randint_badarg:w \s_@@ \@@_chk:w #1#2#3; { \@@_int:wTF \s_@@ \@@_chk:w #1#2#3; { \if_meaning:w 1 #1 \if_int_compare:w \@@_use_i_until_s:nw #3 ; > \c_@@_prec_int \c_one_int \fi: \fi: } { \c_one_int } } \cs_new:Npn \@@_randint_o:w #1; #2; @ { \if_case:w \@@_randint_badarg:w #1; \@@_randint_badarg:w #2; \if:w 1 \@@_compare_back:ww #2; #1; \c_one_int \fi: \c_zero_int \@@_randint_auxi_o:ww #1; #2; \or: \@@_invalid_operation_tl_o:ff { randint } { \@@_array_to_clist:n { #1; #2; } } \exp:w \fi: \exp_after:wN \exp_end: } \cs_new:Npn \@@_randint_auxi_o:ww #1 ; #2 ; #3 \exp_end: { \fi: \@@_randint_auxii:wn #2 ; { \@@_randint_auxii:wn #1 ; \@@_randint_auxiii_o:ww } } \cs_new:Npn \@@_randint_auxii:wn \s_@@ \@@_chk:w #1#2#3#4 ; { \if_meaning:w 0 #1 \exp_after:wN \use_i:nn \else: \exp_after:wN \use_ii:nn \fi: { \exp_after:wN \@@_fixed_continue:wn \c_@@_one_fixed_tl } { \exp_after:wN \@@_ep_to_fixed:wwn \int_value:w \@@_int_eval:w #3 - \c_@@_prec_int , #4 {0000} {0000} ; { \if_meaning:w 0 #2 \exp_after:wN \use_i:nnnn \exp_after:wN \@@_fixed_add_one:wN \fi: \exp_after:wN \@@_fixed_sub:wwn \c_@@_one_fixed_tl } \@@_fixed_continue:wn } } \cs_new:Npn \@@_randint_auxiii_o:ww #1 ; #2 ; { \@@_fixed_add:wwn #2 ; {0000} {0000} {0000} {0001} {0000} {0000} ; \@@_fixed_sub:wwn #1 ; { \exp_after:wN \use_i:nn \exp_after:wN \@@_fixed_mul_add:wwwn \exp:w \exp_end_continue_f:w \@@_rand_myriads:n { XXXXXX } ; } #1 ; \@@_randint_auxiv_o:ww #2 ; \@@_randint_auxv_o:w #1 ; @ } \cs_new:Npn \@@_randint_auxiv_o:ww #1#2#3#4#5 ; #6#7#8#9 { \if_int_compare:w \if_int_compare:w #1#2 > #6#7 \exp_stop_f: 1 \else: \if_int_compare:w #1#2 < #6#7 \exp_stop_f: - \fi: \fi: #3#4 > #8#9 \exp_stop_f: \@@_use_i_until_s:nw \fi: \@@_randint_auxv_o:w {#1}{#2}{#3}{#4}#5 } \cs_new:Npn \@@_randint_auxv_o:w #1#2#3#4#5 ; #6 @ { \exp_after:wN \@@_sanitize:Nw \int_value:w \if_int_compare:w #1 < 10000 \exp_stop_f: 2 \else: 0 \exp_after:wN \exp_after:wN \exp_after:wN \@@_reverse_args:Nww \fi: \exp_after:wN \@@_fixed_sub:wwn \c_@@_one_fixed_tl {#1} {#2} {#3} {#4} {0000} {0000} ; { \exp_after:wN \exp_stop_f: \int_value:w \@@_int_eval:w \c_@@_prec_int \@@_fixed_to_float_o:wN } 0 \exp:w \exp_after:wN \exp_end: } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\int_rand:nn, \@@_randint:ww} % Evaluate the argument and filter out the case where the lower % bound~|#1| is more than the upper bound~|#2|. Then determine % whether the range is narrower than \cs{c__kernel_randint_max_int}; % |#2-#1| may overflow for very large positive~|#2| and negative~|#1|. % If the range is narrow, call \cs{__kernel_randint:n} \Arg{choices} % where \meta{choices} is the number of possible outcomes. If the % range is wide, use somewhat slower code. % \begin{macrocode} \cs_new:Npn \int_rand:nn #1#2 { \int_eval:n { \exp_after:wN \@@_randint:ww \int_value:w \int_eval:n {#1} \exp_after:wN ; \int_value:w \int_eval:n {#2} ; } } \cs_new:Npn \@@_randint:ww #1; #2; { \if_int_compare:w #1 > #2 \exp_stop_f: \msg_expandable_error:nnnn { kernel } { randint-backward-range } {#1} {#2} \@@_randint:ww #2; #1; \else: \if_int_compare:w \@@_int_eval:w #2 \if_int_compare:w #1 > \c_zero_int - #1 < \@@_int_eval:w \else: < \@@_int_eval:w #1 + \fi: \c__kernel_randint_max_int \@@_int_eval_end: \__kernel_randint:n { \@@_int_eval:w #2 - #1 + 1 \@@_int_eval_end: } - 1 + #1 \else: \__kernel_randint:nn {#1} {#2} \fi: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \__kernel_randint:nn, \@@_randint_split_o:Nw, \@@_randint_split_aux:w, % \@@_randinat_wide_aux:w, \@@_randinat_wide_auxii:w, % } % Any $n\in[-2^{31}+1,2^{31}-1]$ is uniquely written as % $2^{14}n_1+n_2$ with $n_1\in[-2^{17},2^{17}-1]$ and % $n_2\in[0,2^{14}-1]$. Calling \cs{@@_randint_split_o:Nw} $n$ |;| % gives $n_1$|;| $n_2$|;| and expands the next token once. We do this % for two random numbers and apply \cs{@@_randint_split_o:Nw} twice to % fully decompose the range~$R$. One subtlety is that we compute % $R-2^{31}=\meta{max}-\meta{min}-(2^{31}-1)\in[-2^{31}+1,2^{31}-1]$ % rather than $R$ to avoid overflow. % % Then we have \cs{@@_randint_wide_aux:w} \meta{X_1}|;|\meta{X_0}|;| % \meta{Y_1}|;|\meta{Y_0}|;| \meta{R_2}|;|\meta{R_1}|;|\meta{R_0}|;.| % and we apply the algorithm described earlier. % \begin{macrocode} \cs_new:Npn \__kernel_randint:nn #1#2 { #1 \exp_after:wN \@@_randint_wide_aux:w \int_value:w \exp_after:wN \@@_randint_split_o:Nw \tex_uniformdeviate:D 268435456 ; \int_value:w \exp_after:wN \@@_randint_split_o:Nw \tex_uniformdeviate:D 268435456 ; \int_value:w \exp_after:wN \@@_randint_split_o:Nw \int_value:w \@@_int_eval:w 131072 + \exp_after:wN \@@_randint_split_o:Nw \int_value:w \__kernel_int_add:nnn {#2} { -#1 } { -\c_max_int } ; . } \cs_new:Npn \@@_randint_split_o:Nw #1#2 ; { \if_meaning:w 0 #1 0 \exp_after:wN ; \int_value:w 0 \else: \exp_after:wN \@@_randint_split_aux:w \int_value:w \@@_int_eval:w (#1#2 - 8192) / 16384 ; + #1#2 \fi: \exp_after:wN ; } \cs_new:Npn \@@_randint_split_aux:w #1 ; { #1 \exp_after:wN ; \int_value:w \@@_int_eval:w - #1 * 16384 } \cs_new:Npn \@@_randint_wide_aux:w #1;#2; #3;#4; #5;#6;#7; . { \exp_after:wN \@@_randint_wide_auxii:w \int_value:w \@@_int_eval:w #5 * #3 + #6 * #1 + (#5 * #4 + #6 * #3 + #7 * #1 + (#5 * #2 + #7 * #3 + (16384 * #6 + #7) * (16384 * #4 + #2) / 268435456) / 16384 ) / 16384 \exp_after:wN ; \int_value:w \@@_int_eval:w (#5 + #6) * 16384 + #7 ; #1 ; #5 ; } \cs_new:Npn \@@_randint_wide_auxii:w #1; #2; #3; #4; { \if_int_odd:w 0 \if_int_compare:w #1 = #2 \else: \exp_stop_f: \fi: \if_int_compare:w #4 = \c_zero_int 1 \fi: \if_int_compare:w #3 = 16383 ~ 1 \fi: \exp_stop_f: \exp_after:wN \prg_break: \fi: \if_int_compare:w #4 < 8 \exp_stop_f: + #4 * #3 * 16384 \else: + 8 * #3 * 16384 + (#4 - 8) * #3 * 16384 \fi: + #1 \prg_break_point: } % \end{macrocode} % \end{macro} % % \begin{macro}{\int_rand:n, \@@_randint:n} % Similar to \cs{int_rand:nn}, but needs fewer checks. % \begin{macrocode} \cs_new:Npn \int_rand:n #1 { \int_eval:n { \exp_args:Nf \@@_randint:n { \int_eval:n {#1} } } } \cs_new:Npn \@@_randint:n #1 { \if_int_compare:w #1 < \c_one_int \msg_expandable_error:nnnn { kernel } { randint-backward-range } { 1 } {#1} \@@_randint:ww #1; 1; \else: \if_int_compare:w #1 > \c__kernel_randint_max_int \__kernel_randint:nn { 1 } {#1} \else: \__kernel_randint:n {#1} \fi: \fi: } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintChanges % % \PrintIndex