#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import glob
import os
import struct
import sys
import unittest
import difflib
import functools
import math
from decimal import Decimal
from time import time, sleep
from typing import (
    Any,
    Optional,
    Union,
    Dict,
    List,
    Callable,
)
from itertools import zip_longest
have_scipy = False
have_numpy = False
try:
    import scipy  # noqa: F401
    have_scipy = True
except ImportError:
    # No SciPy, but that's okay, we'll skip those tests
    pass
try:
    import numpy as np  # noqa: F401
    have_numpy = True
except ImportError:
    # No NumPy, but that's okay, we'll skip those tests
    pass
from pyspark import SparkConf
from pyspark.errors import PySparkAssertionError, PySparkException
from pyspark.errors.exceptions.captured import CapturedException
from pyspark.errors.exceptions.base import QueryContextType
from pyspark.find_spark_home import _find_spark_home
from pyspark.sql.dataframe import DataFrame
from pyspark.sql import Row
from pyspark.sql.types import StructType, StructField
from pyspark.sql.functions import col, when
__all__ = ["assertDataFrameEqual", "assertSchemaEqual"]
SPARK_HOME = _find_spark_home()
def read_int(b):
    return struct.unpack("!i", b)[0]
def write_int(i):
    return struct.pack("!i", i)
def eventually(
    timeout=30.0,
    catch_assertions=False,
):
    """
    Wait a given amount of time for a condition to pass, else fail with an error.
    This is a helper utility for PySpark tests.
    Parameters
    ----------
    condition : function
        Function that checks for termination conditions. condition() can return:
            - True or None: Conditions met. Return without error.
            - other value: Conditions not met yet. Continue. Upon timeout,
              include last such value in error message.
              Note that this method may be called at any time during
              streaming execution (e.g., even before any results
              have been created).
    timeout : int
        Number of seconds to wait.  Default 30 seconds.
    catch_assertions : bool
        If False (default), do not catch AssertionErrors.
        If True, catch AssertionErrors; continue, but save
        error to throw upon timeout.
    """
    assert timeout > 0
    assert isinstance(catch_assertions, bool)
    def decorator(condition: Callable) -> Callable:
        assert isinstance(condition, Callable)
        @functools.wraps(condition)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            start_time = time()
            lastValue = None
            numTries = 0
            while time() - start_time < timeout:
                numTries += 1
                if catch_assertions:
                    try:
                        lastValue = condition(*args, **kwargs)
                    except AssertionError as e:
                        lastValue = e
                else:
                    lastValue = condition(*args, **kwargs)
                if lastValue is True or lastValue is None:
                    return
                print(f"\nAttempt #{numTries} failed!\n{lastValue}")
                sleep(0.01)
            if isinstance(lastValue, AssertionError):
                raise lastValue
            else:
                raise AssertionError(
                    "Test failed due to timeout after %g sec, with last condition returning: %s"
                    % (timeout, lastValue)
                )
        return wrapper
    return decorator
class QuietTest:
    def __init__(self, sc):
        self.log4j = sc._jvm.org.apache.log4j
    def __enter__(self):
        self.old_level = self.log4j.LogManager.getRootLogger().getLevel()
        self.log4j.LogManager.getRootLogger().setLevel(self.log4j.Level.FATAL)
    def __exit__(self, exc_type, exc_val, exc_tb):
        self.log4j.LogManager.getRootLogger().setLevel(self.old_level)
class PySparkTestCase(unittest.TestCase):
    def setUp(self):
        from pyspark import SparkContext
        self._old_sys_path = list(sys.path)
        class_name = self.__class__.__name__
        self.sc = SparkContext("local[4]", class_name)
    def tearDown(self):
        self.sc.stop()
        sys.path = self._old_sys_path
class ReusedPySparkTestCase(unittest.TestCase):
    @classmethod
    def conf(cls):
        """
        Override this in subclasses to supply a more specific conf
        """
        return SparkConf()
    @classmethod
    def setUpClass(cls):
        from pyspark import SparkContext
        cls.sc = SparkContext("local[4]", cls.__name__, conf=cls.conf())
    @classmethod
    def tearDownClass(cls):
        cls.sc.stop()
    def test_assert_vanilla_mode(self):
        from pyspark.sql import is_remote
        self.assertFalse(is_remote())
    def quiet(self):
        from pyspark.testing.utils import QuietTest
        return QuietTest(self.sc)
class ByteArrayOutput:
    def __init__(self):
        self.buffer = bytearray()
    def write(self, b):
        self.buffer += b
    def close(self):
        pass
def search_jar(project_relative_path, sbt_jar_name_prefix, mvn_jar_name_prefix):
    # Note that 'sbt_jar_name_prefix' and 'mvn_jar_name_prefix' are used since the prefix can
    # vary for SBT or Maven specifically. See also SPARK-26856
    project_full_path = os.path.join(SPARK_HOME, project_relative_path)
    # We should ignore the following jars
    ignored_jar_suffixes = ("javadoc.jar", "sources.jar", "test-sources.jar", "tests.jar")
    # Search jar in the project dir using the jar name_prefix for both sbt build and maven
    # build because the artifact jars are in different directories.
    sbt_build = glob.glob(
        os.path.join(project_full_path, "target/scala-*/%s*.jar" % sbt_jar_name_prefix)
    )
    maven_build = glob.glob(os.path.join(project_full_path, "target/%s*.jar" % mvn_jar_name_prefix))
    jar_paths = sbt_build + maven_build
    jars = [jar for jar in jar_paths if not jar.endswith(ignored_jar_suffixes)]
    if not jars:
        return None
    elif len(jars) > 1:
        raise RuntimeError("Found multiple JARs: %s; please remove all but one" % (", ".join(jars)))
    else:
        return jars[0]
def _terminal_color_support():
    try:
        # determine if environment supports color
        script = "$(test $(tput colors)) && $(test $(tput colors) -ge 8) && echo true || echo false"
        return os.popen(script).read()
    except Exception:
        return False
def _context_diff(actual: List[str], expected: List[str], n: int = 3):
    """
    Modified from difflib context_diff API,
    see original code here: https://github.com/python/cpython/blob/main/Lib/difflib.py#L1180
    """
    def red(s: str) -> str:
        red_color = "\033[31m"
        no_color = "\033[0m"
        return red_color + str(s) + no_color
    prefix = dict(insert="+ ", delete="- ", replace="! ", equal="  ")
    for group in difflib.SequenceMatcher(None, actual, expected).get_grouped_opcodes(n):
        yield "*** actual ***"
        if any(tag in {"replace", "delete"} for tag, _, _, _, _ in group):
            for tag, i1, i2, _, _ in group:
                for line in actual[i1:i2]:
                    if tag != "equal" and _terminal_color_support():
                        yield red(prefix[tag] + str(line))
                    else:
                        yield prefix[tag] + str(line)
        yield "\n"
        yield "*** expected ***"
        if any(tag in {"replace", "insert"} for tag, _, _, _, _ in group):
            for tag, _, _, j1, j2 in group:
                for line in expected[j1:j2]:
                    if tag != "equal" and _terminal_color_support():
                        yield red(prefix[tag] + str(line))
                    else:
                        yield prefix[tag] + str(line)
class PySparkErrorTestUtils:
    """
    This util provide functions to accurate and consistent error testing
    based on PySpark error classes.
    """
    def check_error(
        self,
        exception: PySparkException,
        error_class: str,
        message_parameters: Optional[Dict[str, str]] = None,
        query_context_type: Optional[QueryContextType] = None,
        pyspark_fragment: Optional[str] = None,
    ):
        query_context = exception.getQueryContext()
        assert bool(query_context) == (query_context_type is not None), (
            "`query_context_type` is required when QueryContext exists. "
            f"QueryContext: {query_context}."
        )
        # Test if given error is an instance of PySparkException.
        self.assertIsInstance(
            exception,
            PySparkException,
            f"checkError requires 'PySparkException', got '{exception.__class__.__name__}'.",
        )
        # Test error class
        expected = error_class
        actual = exception.getErrorClass()
        self.assertEqual(
            expected, actual, f"Expected error class was '{expected}', got '{actual}'."
        )
        # Test message parameters
        expected = message_parameters
        actual = exception.getMessageParameters()
        self.assertEqual(
            expected, actual, f"Expected message parameters was '{expected}', got '{actual}'"
        )
        # Test query context
        if query_context:
            expected = query_context_type
            actual_contexts = exception.getQueryContext()
            for actual_context in actual_contexts:
                actual = actual_context.contextType()
                self.assertEqual(
                    expected, actual, f"Expected QueryContext was '{expected}', got '{actual}'"
                )
                if actual == QueryContextType.DataFrame:
                    assert (
                        pyspark_fragment is not None
                    ), "`pyspark_fragment` is required when QueryContextType is DataFrame."
                    expected = pyspark_fragment
                    actual = actual_context.pysparkFragment()
                    self.assertEqual(
                        expected,
                        actual,
                        f"Expected PySpark fragment was '{expected}', got '{actual}'",
                    )
[docs]def assertSchemaEqual(
    actual: StructType,
    expected: StructType,
    ignoreNullable: bool = True,
    ignoreColumnOrder: bool = False,
    ignoreColumnName: bool = False,
):
    r"""
    A util function to assert equality between DataFrame schemas `actual` and `expected`.
    .. versionadded:: 3.5.0
    Parameters
    ----------
    actual : StructType
        The DataFrame schema that is being compared or tested.
    expected : StructType
        The expected schema, for comparison with the actual schema.
    ignoreNullable : bool, default True
        Specifies whether a column’s nullable property is included when checking for
        schema equality.
        When set to `True` (default), the nullable property of the columns being compared
        is not taken into account and the columns will be considered equal even if they have
        different nullable settings.
        When set to `False`, columns are considered equal only if they have the same nullable
        setting.
        .. versionadded:: 4.0.0
    ignoreColumnOrder : bool, default False
        Specifies whether to compare columns in the order they appear in the DataFrame or by
        column name.
        If set to `False` (default), columns are compared in the order they appear in the
        DataFrames.
        When set to `True`, a column in the expected DataFrame is compared to the column with the
        same name in the actual DataFrame.
        .. versionadded:: 4.0.0
    ignoreColumnName : bool, default False
        Specifies whether to fail the initial schema equality check if the column names in the two
        DataFrames are different.
        When set to `False` (default), column names are checked and the function fails if they are
        different.
        When set to `True`, the function will succeed even if column names are different.
        Column data types are compared for columns in the order they appear in the DataFrames.
        .. versionadded:: 4.0.0
    Notes
    -----
    When assertSchemaEqual fails, the error message uses the Python `difflib` library to display
    a diff log of the `actual` and `expected` schemas.
    Examples
    --------
    >>> from pyspark.sql.types import StructType, StructField, ArrayType, IntegerType, DoubleType
    >>> s1 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])
    >>> s2 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])
    >>> assertSchemaEqual(s1, s2)  # pass, schemas are identical
    Different schemas with `ignoreNullable=False` would fail.
    >>> s3 = StructType([StructField("names", ArrayType(DoubleType(), True), False)])
    >>> assertSchemaEqual(s1, s3, ignoreNullable=False)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    PySparkAssertionError: [DIFFERENT_SCHEMA] Schemas do not match.
    --- actual
    +++ expected
    - StructType([StructField('names', ArrayType(DoubleType(), True), True)])
    ?                                                                 ^^^
    + StructType([StructField('names', ArrayType(DoubleType(), True), False)])
    ?                                                                 ^^^^
    >>> df1 = spark.createDataFrame(data=[(1, 1000), (2, 3000)], schema=["id", "number"])
    >>> df2 = spark.createDataFrame(data=[("1", 1000), ("2", 5000)], schema=["id", "amount"])
    >>> assertSchemaEqual(df1.schema, df2.schema)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    PySparkAssertionError: [DIFFERENT_SCHEMA] Schemas do not match.
    --- actual
    +++ expected
    - StructType([StructField('id', LongType(), True), StructField('number', LongType(), True)])
    ?                               ^^                               ^^^^^
    + StructType([StructField('id', StringType(), True), StructField('amount', LongType(), True)])
    ?                               ^^^^                              ++++ ^
    Compare two schemas ignoring the column order.
    >>> s1 = StructType(
    ...     [StructField("a", IntegerType(), True), StructField("b", DoubleType(), True)]
    ... )
    >>> s2 = StructType(
    ...     [StructField("b", DoubleType(), True), StructField("a", IntegerType(), True)]
    ... )
    >>> assertSchemaEqual(s1, s2, ignoreColumnOrder=True)
    Compare two schemas ignoring the column names.
    >>> s1 = StructType(
    ...     [StructField("a", IntegerType(), True), StructField("c", DoubleType(), True)]
    ... )
    >>> s2 = StructType(
    ...     [StructField("b", IntegerType(), True), StructField("d", DoubleType(), True)]
    ... )
    >>> assertSchemaEqual(s1, s2, ignoreColumnName=True)
    """
    if not isinstance(actual, StructType):
        raise PySparkAssertionError(
            error_class="UNSUPPORTED_DATA_TYPE",
            message_parameters={"data_type": type(actual)},
        )
    if not isinstance(expected, StructType):
        raise PySparkAssertionError(
            error_class="UNSUPPORTED_DATA_TYPE",
            message_parameters={"data_type": type(expected)},
        )
    def compare_schemas_ignore_nullable(s1: StructType, s2: StructType):
        if len(s1) != len(s2):
            return False
        zipped = zip_longest(s1, s2)
        for sf1, sf2 in zipped:
            if not compare_structfields_ignore_nullable(sf1, sf2):
                return False
        return True
    def compare_structfields_ignore_nullable(actualSF: StructField, expectedSF: StructField):
        if actualSF is None and expectedSF is None:
            return True
        elif actualSF is None or expectedSF is None:
            return False
        if actualSF.name != expectedSF.name:
            return False
        else:
            return compare_datatypes_ignore_nullable(actualSF.dataType, expectedSF.dataType)
    def compare_datatypes_ignore_nullable(dt1: Any, dt2: Any):
        # checks datatype equality, using recursion to ignore nullable
        if dt1.typeName() == dt2.typeName():
            if dt1.typeName() == "array":
                return compare_datatypes_ignore_nullable(dt1.elementType, dt2.elementType)
            elif dt1.typeName() == "struct":
                return compare_schemas_ignore_nullable(dt1, dt2)
            else:
                return True
        else:
            return False
    if ignoreColumnOrder:
        actual = StructType(sorted(actual, key=lambda x: x.name))
        expected = StructType(sorted(expected, key=lambda x: x.name))
    if ignoreColumnName:
        actual = StructType(
            [StructField(str(i), field.dataType, field.nullable) for i, field in enumerate(actual)]
        )
        expected = StructType(
            [
                StructField(str(i), field.dataType, field.nullable)
                for i, field in enumerate(expected)
            ]
        )
    if (ignoreNullable and not compare_schemas_ignore_nullable(actual, expected)) or (
        not ignoreNullable and actual != expected
    ):
        generated_diff = difflib.ndiff(str(actual).splitlines(), str(expected).splitlines())
        error_msg = "\n".join(generated_diff)
        raise PySparkAssertionError(
            error_class="DIFFERENT_SCHEMA",
            message_parameters={"error_msg": error_msg},
        ) 
from typing import TYPE_CHECKING
if TYPE_CHECKING:
    import pandas
    import pyspark.pandas
[docs]def assertDataFrameEqual(
    actual: Union[DataFrame, "pandas.DataFrame", "pyspark.pandas.DataFrame", List[Row]],
    expected: Union[DataFrame, "pandas.DataFrame", "pyspark.pandas.DataFrame", List[Row]],
    checkRowOrder: bool = False,
    rtol: float = 1e-5,
    atol: float = 1e-8,
    ignoreNullable: bool = True,
    ignoreColumnOrder: bool = False,
    ignoreColumnName: bool = False,
    ignoreColumnType: bool = False,
    maxErrors: Optional[int] = None,
    showOnlyDiff: bool = False,
    includeDiffRows=False,
):
    r"""
    A util function to assert equality between `actual` and `expected`
    (DataFrames or lists of Rows), with optional parameters `checkRowOrder`, `rtol`, and `atol`.
    Supports Spark, Spark Connect, pandas, and pandas-on-Spark DataFrames.
    For more information about pandas-on-Spark DataFrame equality, see the docs for
    `assertPandasOnSparkEqual`.
    .. versionadded:: 3.5.0
    Parameters
    ----------
    actual : DataFrame (Spark, Spark Connect, pandas, or pandas-on-Spark) or list of Rows
        The DataFrame that is being compared or tested.
    expected : DataFrame (Spark, Spark Connect, pandas, or pandas-on-Spark) or list of Rows
        The expected result of the operation, for comparison with the actual result.
    checkRowOrder : bool, optional
        A flag indicating whether the order of rows should be considered in the comparison.
        If set to `False` (default), the row order is not taken into account.
        If set to `True`, the order of rows is important and will be checked during comparison.
        (See Notes)
    rtol : float, optional
        The relative tolerance, used in asserting approximate equality for float values in actual
        and expected. Set to 1e-5 by default. (See Notes)
    atol : float, optional
        The absolute tolerance, used in asserting approximate equality for float values in actual
        and expected. Set to 1e-8 by default. (See Notes)
    ignoreNullable : bool, default True
        Specifies whether a column’s nullable property is included when checking for
        schema equality.
        When set to `True` (default), the nullable property of the columns being compared
        is not taken into account and the columns will be considered equal even if they have
        different nullable settings.
        When set to `False`, columns are considered equal only if they have the same nullable
        setting.
        .. versionadded:: 4.0.0
    ignoreColumnOrder : bool, default False
        Specifies whether to compare columns in the order they appear in the DataFrame or by
        column name.
        If set to `False` (default), columns are compared in the order they appear in the
        DataFrames.
        When set to `True`, a column in the expected DataFrame is compared to the column with the
        same name in the actual DataFrame.
        .. versionadded:: 4.0.0
    ignoreColumnName : bool, default False
        Specifies whether to fail the initial schema equality check if the column names in the two
        DataFrames are different.
        When set to `False` (default), column names are checked and the function fails if they are
        different.
        When set to `True`, the function will succeed even if column names are different.
        Column data types are compared for columns in the order they appear in the DataFrames.
        .. versionadded:: 4.0.0
    ignoreColumnType : bool, default False
        Specifies whether to ignore the data type of the columns when comparing.
        When set to `False` (default), column data types are checked and the function fails if they
        are different.
        When set to `True`, the schema equality check will succeed even if column data types are
        different and the function will attempt to compare rows.
        .. versionadded:: 4.0.0
    maxErrors : bool, optional
        The maximum number of row comparison failures to encounter before returning.
        When this number of row comparisons have failed, the function returns independent of how
        many rows have been compared.
        Set to None by default which means compare all rows independent of number of failures.
        .. versionadded:: 4.0.0
    showOnlyDiff : bool, default False
        If set to `True`, the error message will only include rows that are different.
        If set to `False` (default), the error message will include all rows
        (when there is at least one row that is different).
        .. versionadded:: 4.0.0
    includeDiffRows: bool, False
        If set to `True`, the unequal rows are included in PySparkAssertionError for further
        debugging. If set to `False` (default), the unequal rows are not returned as a data set.
        .. versionadded:: 4.0.0
    Notes
    -----
    When `assertDataFrameEqual` fails, the error message uses the Python `difflib` library to
    display a diff log of each row that differs in `actual` and `expected`.
    For `checkRowOrder`, note that PySpark DataFrame ordering is non-deterministic, unless
    explicitly sorted.
    Note that schema equality is checked only when `expected` is a DataFrame (not a list of Rows).
    For DataFrames with float/decimal values, assertDataFrame asserts approximate equality.
    Two float/decimal values a and b are approximately equal if the following equation is True:
    ``absolute(a - b) <= (atol + rtol * absolute(b))``.
    `ignoreColumnOrder` cannot be set to `True` if `ignoreColumnNames` is also set to `True`.
    `ignoreColumnNames` cannot be set to `True` if `ignoreColumnOrder` is also set to `True`.
    Examples
    --------
    >>> df1 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
    >>> df2 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
    >>> assertDataFrameEqual(df1, df2)  # pass, DataFrames are identical
    >>> df1 = spark.createDataFrame(data=[("1", 0.1), ("2", 3.23)], schema=["id", "amount"])
    >>> df2 = spark.createDataFrame(data=[("1", 0.109), ("2", 3.23)], schema=["id", "amount"])
    >>> assertDataFrameEqual(df1, df2, rtol=1e-1)  # pass, DataFrames are approx equal by rtol
    >>> df1 = spark.createDataFrame(data=[(1, 1000), (2, 3000)], schema=["id", "amount"])
    >>> list_of_rows = [Row(1, 1000), Row(2, 3000)]
    >>> assertDataFrameEqual(df1, list_of_rows)  # pass, actual and expected data are equal
    >>> import pyspark.pandas as ps  # doctest: +SKIP
    >>> df1 = ps.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]})  # doctest: +SKIP
    >>> df2 = ps.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]})  # doctest: +SKIP
    >>> # pass, pandas-on-Spark DataFrames are equal
    >>> assertDataFrameEqual(df1, df2)  # doctest: +SKIP
    >>> df1 = spark.createDataFrame(
    ...     data=[("1", 1000.00), ("2", 3000.00), ("3", 2000.00)], schema=["id", "amount"])
    >>> df2 = spark.createDataFrame(
    ...     data=[("1", 1001.00), ("2", 3000.00), ("3", 2003.00)], schema=["id", "amount"])
    >>> assertDataFrameEqual(df1, df2)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    PySparkAssertionError: [DIFFERENT_ROWS] Results do not match: ( 66.66667 % )
    *** actual ***
    ! Row(id='1', amount=1000.0)
      Row(id='2', amount=3000.0)
    ! Row(id='3', amount=2000.0)
    *** expected ***
    ! Row(id='1', amount=1001.0)
      Row(id='2', amount=3000.0)
    ! Row(id='3', amount=2003.0)
    Example for ignoreNullable
    >>> from pyspark.sql.types import StructType, StructField, StringType, LongType
    >>> df1_nullable = spark.createDataFrame(
    ...     data=[(1000, "1"), (5000, "2")],
    ...     schema=StructType(
    ...         [StructField("amount", LongType(), True), StructField("id", StringType(), True)]
    ...     )
    ... )
    >>> df2_nullable = spark.createDataFrame(
    ...     data=[(1000, "1"), (5000, "2")],
    ...     schema=StructType(
    ...         [StructField("amount", LongType(), True), StructField("id", StringType(), False)]
    ...     )
    ... )
    >>> assertDataFrameEqual(df1_nullable, df2_nullable, ignoreNullable=True)  # pass
    >>> assertDataFrameEqual(
    ...     df1_nullable, df2_nullable, ignoreNullable=False
    ... )  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    PySparkAssertionError: [DIFFERENT_SCHEMA] Schemas do not match.
    --- actual
    +++ expected
    - StructType([StructField('amount', LongType(), True), StructField('id', StringType(), True)])
    ?                                                                                      ^^^
    + StructType([StructField('amount', LongType(), True), StructField('id', StringType(), False)])
    ?                                                                                      ^^^^
    Example for ignoreColumnOrder
    >>> df1_col_order = spark.createDataFrame(
    ...     data=[(1000, "1"), (5000, "2")], schema=["amount", "id"]
    ... )
    >>> df2_col_order = spark.createDataFrame(
    ...     data=[("1", 1000), ("2", 5000)], schema=["id", "amount"]
    ... )
    >>> assertDataFrameEqual(df1_col_order, df2_col_order, ignoreColumnOrder=True)
    Example for ignoreColumnName
    >>> df1_col_names = spark.createDataFrame(
    ...     data=[(1000, "1"), (5000, "2")], schema=["amount", "identity"]
    ... )
    >>> df2_col_names = spark.createDataFrame(
    ...     data=[(1000, "1"), (5000, "2")], schema=["amount", "id"]
    ... )
    >>> assertDataFrameEqual(df1_col_names, df2_col_names, ignoreColumnName=True)
    Example for ignoreColumnType
    >>> df1_col_types = spark.createDataFrame(
    ...     data=[(1000, "1"), (5000, "2")], schema=["amount", "id"]
    ... )
    >>> df2_col_types = spark.createDataFrame(
    ...     data=[(1000.0, "1"), (5000.0, "2")], schema=["amount", "id"]
    ... )
    >>> assertDataFrameEqual(df1_col_types, df2_col_types, ignoreColumnType=True)
    Example for maxErrors (will only report the first mismatching row)
    >>> df1 = spark.createDataFrame([(1, "A"), (2, "B"), (3, "C")])
    >>> df2 = spark.createDataFrame([(1, "A"), (2, "X"), (3, "Y")])
    >>> assertDataFrameEqual(df1, df2, maxErrors=1)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    PySparkAssertionError: [DIFFERENT_ROWS] Results do not match: ( 33.33333 % )
    *** actual ***
      Row(_1=1, _2='A')
    ! Row(_1=2, _2='B')
    *** expected ***
      Row(_1=1, _2='A')
    ! Row(_1=2, _2='X')
    Example for showOnlyDiff (will only report the mismatching rows)
    >>> df1 = spark.createDataFrame([(1, "A"), (2, "B"), (3, "C")])
    >>> df2 = spark.createDataFrame([(1, "A"), (2, "X"), (3, "Y")])
    >>> assertDataFrameEqual(df1, df2, showOnlyDiff=True)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    PySparkAssertionError: [DIFFERENT_ROWS] Results do not match: ( 66.66667 % )
    *** actual ***
    ! Row(_1=2, _2='B')
    ! Row(_1=3, _2='C')
    *** expected ***
    ! Row(_1=2, _2='X')
    ! Row(_1=3, _2='Y')
    The `includeDiffRows` parameter can be used to include the rows that did not match
    in the PySparkAssertionError. This can be useful for debugging or further analysis.
    >>> df1 = spark.createDataFrame(
    ...     data=[("1", 1000.00), ("2", 3000.00), ("3", 2000.00)], schema=["id", "amount"])
    >>> df2 = spark.createDataFrame(
    ...     data=[("1", 1001.00), ("2", 3000.00), ("3", 2003.00)], schema=["id", "amount"])
    >>> try:
    ...     assertDataFrameEqual(df1, df2, includeDiffRows=True)
    ... except PySparkAssertionError as e:
    ...     spark.createDataFrame(e.data).show()  # doctest: +NORMALIZE_WHITESPACE
    +-----------+-----------+
    |         _1|         _2|
    +-----------+-----------+
    |{1, 1000.0}|{1, 1001.0}|
    |{3, 2000.0}|{3, 2003.0}|
    +-----------+-----------+
    """
    if actual is None and expected is None:
        return True
    elif actual is None:
        raise PySparkAssertionError(
            error_class="INVALID_TYPE_DF_EQUALITY_ARG",
            message_parameters={
                "expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
                "arg_name": "actual",
                "actual_type": None,
            },
        )
    elif expected is None:
        raise PySparkAssertionError(
            error_class="INVALID_TYPE_DF_EQUALITY_ARG",
            message_parameters={
                "expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
                "arg_name": "expected",
                "actual_type": None,
            },
        )
    has_pandas = False
    try:
        # If pandas dependencies are available, allow pandas or pandas-on-Spark DataFrame
        import pandas as pd
        has_pandas = True
    except ImportError:
        # no pandas, so we won't call pandasutils functions
        pass
    has_arrow = False
    try:
        import pyarrow
        has_arrow = True
    except ImportError:
        pass
    if has_pandas and has_arrow:
        import pyspark.pandas as ps
        from pyspark.testing.pandasutils import PandasOnSparkTestUtils
        if (
            isinstance(actual, pd.DataFrame)
            or isinstance(expected, pd.DataFrame)
            or isinstance(actual, ps.DataFrame)
            or isinstance(expected, ps.DataFrame)
        ):
            # handle pandas DataFrames
            # assert approximate equality for float data
            return PandasOnSparkTestUtils().assert_eq(
                actual, expected, almost=True, rtol=rtol, atol=atol, check_row_order=checkRowOrder
            )
    from pyspark.sql.utils import get_dataframe_class
    # if is_remote(), allow Connect DataFrame
    SparkDataFrame = get_dataframe_class()
    if not isinstance(actual, (DataFrame, SparkDataFrame, list)):
        raise PySparkAssertionError(
            error_class="INVALID_TYPE_DF_EQUALITY_ARG",
            message_parameters={
                "expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
                "arg_name": "actual",
                "actual_type": type(actual),
            },
        )
    elif not isinstance(expected, (DataFrame, SparkDataFrame, list)):
        raise PySparkAssertionError(
            error_class="INVALID_TYPE_DF_EQUALITY_ARG",
            message_parameters={
                "expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
                "arg_name": "expected",
                "actual_type": type(expected),
            },
        )
    if ignoreColumnOrder:
        actual = actual.select(*sorted(actual.columns))
        expected = expected.select(*sorted(expected.columns))
    def rename_dataframe_columns(df: DataFrame) -> DataFrame:
        """Rename DataFrame columns to sequential numbers for comparison"""
        renamed_columns = [str(i) for i in range(len(df.columns))]
        return df.toDF(*renamed_columns)
    if ignoreColumnName:
        actual = rename_dataframe_columns(actual)
        expected = rename_dataframe_columns(expected)
    def cast_columns_to_string(df: DataFrame) -> DataFrame:
        """Cast all DataFrame columns to string for comparison"""
        for col_name in df.columns:
            # Add logic to remove trailing .0 for float columns that are whole numbers
            df = df.withColumn(
                col_name,
                when(
                    (col(col_name).cast("float").isNotNull())
                    & (col(col_name).cast("float") == col(col_name).cast("int")),
                    col(col_name).cast("int").cast("string"),
                ).otherwise(col(col_name).cast("string")),
            )
        return df
    if ignoreColumnType:
        actual = cast_columns_to_string(actual)
        expected = cast_columns_to_string(expected)
    def compare_rows(r1: Row, r2: Row):
        def compare_vals(val1, val2):
            if isinstance(val1, list) and isinstance(val2, list):
                return len(val1) == len(val2) and all(
                    compare_vals(x, y) for x, y in zip(val1, val2)
                )
            elif isinstance(val1, Row) and isinstance(val2, Row):
                return all(compare_vals(x, y) for x, y in zip(val1, val2))
            elif isinstance(val1, dict) and isinstance(val2, dict):
                return (
                    len(val1.keys()) == len(val2.keys())
                    and val1.keys() == val2.keys()
                    and all(compare_vals(val1[k], val2[k]) for k in val1.keys())
                )
            elif isinstance(val1, float) and isinstance(val2, float):
                if abs(val1 - val2) > (atol + rtol * abs(val2)):
                    return False
            elif isinstance(val1, Decimal) and isinstance(val2, Decimal):
                if abs(val1 - val2) > (Decimal(atol) + Decimal(rtol) * abs(val2)):
                    return False
            else:
                if val1 != val2:
                    return False
            return True
        if r1 is None and r2 is None:
            return True
        elif r1 is None or r2 is None:
            return False
        return compare_vals(r1, r2)
    def assert_rows_equal(
        rows1: List[Row], rows2: List[Row], maxErrors: int = None, showOnlyDiff: bool = False
    ):
        zipped = list(zip_longest(rows1, rows2))
        diff_rows_cnt = 0
        diff_rows = []
        has_diff_rows = False
        rows_str1 = ""
        rows_str2 = ""
        # count different rows
        for r1, r2 in zipped:
            if not compare_rows(r1, r2):
                diff_rows_cnt += 1
                has_diff_rows = True
                if includeDiffRows:
                    diff_rows.append((r1, r2))
                rows_str1 += str(r1) + "\n"
                rows_str2 += str(r2) + "\n"
                if maxErrors is not None and diff_rows_cnt >= maxErrors:
                    break
            elif not showOnlyDiff:
                rows_str1 += str(r1) + "\n"
                rows_str2 += str(r2) + "\n"
        generated_diff = _context_diff(
            actual=rows_str1.splitlines(), expected=rows_str2.splitlines(), n=len(zipped)
        )
        if has_diff_rows:
            error_msg = "Results do not match: "
            percent_diff = (diff_rows_cnt / len(zipped)) * 100
            error_msg += "( %.5f %% )" % percent_diff
            error_msg += "\n" + "\n".join(generated_diff)
            data = diff_rows if includeDiffRows else None
            raise PySparkAssertionError(
                error_class="DIFFERENT_ROWS", message_parameters={"error_msg": error_msg}, data=data
            )
    # only compare schema if expected is not a List
    if not isinstance(actual, list) and not isinstance(expected, list):
        if ignoreNullable:
            assertSchemaEqual(actual.schema, expected.schema)
        elif actual.schema != expected.schema:
            generated_diff = difflib.ndiff(
                str(actual.schema).splitlines(), str(expected.schema).splitlines()
            )
            error_msg = "\n".join(generated_diff)
            raise PySparkAssertionError(
                error_class="DIFFERENT_SCHEMA",
                message_parameters={"error_msg": error_msg},
            )
    if not isinstance(actual, list):
        if actual.isStreaming:
            raise PySparkAssertionError(
                error_class="UNSUPPORTED_OPERATION",
                message_parameters={"operation": "assertDataFrameEqual on streaming DataFrame"},
            )
        actual_list = actual.collect()
    else:
        actual_list = actual
    if not isinstance(expected, list):
        if expected.isStreaming:
            raise PySparkAssertionError(
                error_class="UNSUPPORTED_OPERATION",
                message_parameters={"operation": "assertDataFrameEqual on streaming DataFrame"},
            )
        expected_list = expected.collect()
    else:
        expected_list = expected
    if not checkRowOrder:
        # rename duplicate columns for sorting
        actual_list = sorted(actual_list, key=lambda x: str(x))
        expected_list = sorted(expected_list, key=lambda x: str(x))
    assert_rows_equal(actual_list, expected_list, maxErrors=maxErrors, showOnlyDiff=showOnlyDiff) 
def _test() -> None:
    import doctest
    from pyspark.sql import SparkSession
    import pyspark.testing.utils
    globs = pyspark.testing.utils.__dict__.copy()
    spark = SparkSession.builder.master("local[4]").appName("testing.utils tests").getOrCreate()
    globs["spark"] = spark
    (failure_count, test_count) = doctest.testmod(
        pyspark.testing.utils,
        globs=globs,
        optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE,
    )
    spark.stop()
    if failure_count:
        sys.exit(-1)
if __name__ == "__main__":
    _test()