pyspark.pandas.DataFrame.max¶
- 
DataFrame.max(axis: Union[int, str, None] = None, numeric_only: bool = None) → Union[int, float, bool, str, bytes, decimal.Decimal, datetime.date, datetime.datetime, None, Series]¶
- Return the maximum of the values. - Parameters
- axis{index (0), columns (1)}
- Axis for the function to be applied on. 
- numeric_onlybool, default None
- If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. False is supported; however, the columns should be all numeric or all non-numeric. 
 
- Returns
- maxscalar for a Series, and a Series for a DataFrame.
 
 - Examples - >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) - On a DataFrame: - >>> df.max() a 3.0 b 0.3 dtype: float64 - >>> df.max(axis=1) 0 1.0 1 2.0 2 3.0 3 NaN dtype: float64 - On a Series: - >>> df['a'].max() 3.0