| spark.lda {SparkR} | R Documentation | 
spark.lda fits a Latent Dirichlet Allocation model on a SparkDataFrame. Users can call
summary to get a summary of the fitted LDA model, spark.posterior to compute
posterior probabilities on new data, spark.perplexity to compute log perplexity on new
data and write.ml/read.ml to save/load fitted models.
spark.lda(data, ...)
spark.posterior(object, newData)
spark.perplexity(object, data)
## S4 method for signature 'SparkDataFrame'
spark.lda(
  data,
  features = "features",
  k = 10,
  maxIter = 20,
  optimizer = c("online", "em"),
  subsamplingRate = 0.05,
  topicConcentration = -1,
  docConcentration = -1,
  customizedStopWords = "",
  maxVocabSize = bitwShiftL(1, 18)
)
## S4 method for signature 'LDAModel'
summary(object, maxTermsPerTopic)
## S4 method for signature 'LDAModel,SparkDataFrame'
spark.perplexity(object, data)
## S4 method for signature 'LDAModel,SparkDataFrame'
spark.posterior(object, newData)
## S4 method for signature 'LDAModel,character'
write.ml(object, path, overwrite = FALSE)
| data | A SparkDataFrame for training. | 
| ... | additional argument(s) passed to the method. | 
| object | A Latent Dirichlet Allocation model fitted by  | 
| newData | A SparkDataFrame for testing. | 
| features | Features column name. Either libSVM-format column or character-format column is valid. | 
| k | Number of topics. | 
| maxIter | Maximum iterations. | 
| optimizer | Optimizer to train an LDA model, "online" or "em", default is "online". | 
| subsamplingRate | (For online optimizer) Fraction of the corpus to be sampled and used in each iteration of mini-batch gradient descent, in range (0, 1]. | 
| topicConcentration | concentration parameter (commonly named  | 
| docConcentration | concentration parameter (commonly named  | 
| customizedStopWords | stopwords that need to be removed from the given corpus. Ignore the parameter if libSVM-format column is used as the features column. | 
| maxVocabSize | maximum vocabulary size, default 1 << 18 | 
| maxTermsPerTopic | Maximum number of terms to collect for each topic. Default value of 10. | 
| path | The directory where the model is saved. | 
| overwrite | Overwrites or not if the output path already exists. Default is FALSE which means throw exception if the output path exists. | 
spark.lda returns a fitted Latent Dirichlet Allocation model.
summary returns summary information of the fitted model, which is a list.
The list includes
|  | concentration parameter commonly named  | 
|  | concentration parameter commonly named  | 
|  | log likelihood of the entire corpus | 
|  | log perplexity | 
|  | TRUE for distributed model while FALSE for local model | 
|  | number of terms in the corpus | 
|  | top 10 terms and their weights of all topics | 
|  | whole terms of the training corpus, NULL if libsvm format file used as training set | 
|  | Log likelihood of the observed tokens in the training set, given the current parameter estimates: log P(docs | topics, topic distributions for docs, Dirichlet hyperparameters) It is only for distributed LDA model (i.e., optimizer = "em") | 
|  | Log probability of the current parameter estimate: log P(topics, topic distributions for docs | Dirichlet hyperparameters) It is only for distributed LDA model (i.e., optimizer = "em") | 
spark.perplexity returns the log perplexity of given SparkDataFrame, or the log
perplexity of the training data if missing argument "data".
spark.posterior returns a SparkDataFrame containing posterior probabilities
vectors named "topicDistribution".
spark.lda since 2.1.0
summary(LDAModel) since 2.1.0
spark.perplexity(LDAModel) since 2.1.0
spark.posterior(LDAModel) since 2.1.0
write.ml(LDAModel, character) since 2.1.0
topicmodels: https://cran.r-project.org/package=topicmodels
## Not run: 
##D text <- read.df("data/mllib/sample_lda_libsvm_data.txt", source = "libsvm")
##D model <- spark.lda(data = text, optimizer = "em")
##D 
##D # get a summary of the model
##D summary(model)
##D 
##D # compute posterior probabilities
##D posterior <- spark.posterior(model, text)
##D showDF(posterior)
##D 
##D # compute perplexity
##D perplexity <- spark.perplexity(model, text)
##D 
##D # save and load the model
##D path <- "path/to/model"
##D write.ml(model, path)
##D savedModel <- read.ml(path)
##D summary(savedModel)
## End(Not run)