The glossaries package v4.9: a guide for

beginners

Nicola L.C. Talbot
dickimaw—books.com

2025-11-09

The glossaries package is very flexible, but this means that it has a lot of options,
and since a user guide is supposed to provide a complete list of all the high-level
user commands, the main user manual is quite big. This can be rather daunting for
beginners, so this document is a brief introduction just to help get you started. If
you find yourself saying, “but how can I do...?” then it’s time to move on to the
main user manual (glossaries—user.pdf).

I’'ve made some statements in this document that don’t actually tell you the full
truth, but it would clutter the document and cause confusion if I keep writing “except
when ...” or “but you can also do this, that or the other” or “you can do it this way
but you can also do it that way, but that way may cause complications under certain
circumstances”.

Contents

1 Getting Started

2 Defining Terms

3 Using Entries

4 Displaying a List of Entries

5 Customising the Glossary

6 Multiple Glossaries

7 Hyperlinks (glossaries and hyperref)

8 Cross-References

11

19

21

32

35

40

42

https://www.dickimaw-books.com/

9 Further Information 44

Symbols 44
Glossary 45
Command Summary 46
Command Summary: A e 46
Command Summary: G e 46
Command Summary: L oL oo 49
Command Summary: M 50
Command Summary: N 50
Command Summary: P 52
Command Summary: S 52
Index 54

1 Getting Started

As with all packages, you need to load glossaries with \usepackage, but there are certain
packages that must be loaded before glossaries, if they are required: hyperref, babel, polyglossia,
inputenc and fontenc. (You don’t have to load these packages, but if you want them, you must
load them before glossaries.)

[i
|
If you require multilingual support you must also install the relevant language mod-

ule. Each language module is called glossaries—(language), where (language) is
the root language name. For example, glossaries—french orglossaries
—german. If a language module is required, the glossaries package will automatically
try to load it and will give a warning if the module isn’t found.

Once you have loaded the glossaries package, you need to define your terms in the preamble
and then you can use them throughout the document. Here’s a simple example:

\documentclass{article}

\usepackage{glossaries}

% define a term:
\newglossaryentry{ex}{name={sample},
description={an example}}
\begin{document}

Here's my \gls{ex} term.

\end{document}

The above defines a simple term identified by the label “ex”. When the term is referenced by its
label with \ g1 s, the provided text (“sample”) is inserted into the document:

Here’s my sample term.

Note that a description has been given in the definition but it doesn’t appear in the document yet.

In general, it’s best to choose a label that’s easy to remember and makes the source code
(reasonably) easy to read. In the above example, a better label would be “sample”, the same as
the term itself. However, bear in mind that labels mustn’t contain non-expandable content. The
next example defines a term that’s actually a symbol. In this case, the label must be different from
the provided term, which contains the commands to typeset the symbol:

\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{emptyset}{
name={\ensuremath{\emptyset}},
description={the empty set}}
\begin{document}

The empty set is denoted \gls{emptyset}.
\end{document}

This produces:

The empty set is denoted .

The next example defines a term with the label “svm” that has both a long form (“support
vector machine”) and a short form (“SVM”):

,

\documentclass{article}
\usepackage{glossaries}
\setacronymstyle{long—-short}
\newacronym{svm}{SVM} { support vector machine}
\begin{document}

First use: \gls{svm}. Second use: \gls{svm}.
\end{document}

This has used a different command to define the term, but the term is still referenced with \gls
in the same way as before. However, the text produced by \ g1 s now varies:

First use: support vector machine (SVM). Second use: SVM.

In this case, the text (the “link text”) produced by \g1ls{svm} changed after the first use.
The first use produced the long form followed by the short form in parentheses because I set the
acronym style to long—short. The subsequent use just showed the short form.

I suggest you try the above examples to make sure you have the package correctly installed.
If you get an “undefined control sequence” error for any of the examples provided in this guide,
check that the version number at the top of this document matches the version you have installed.
(Open the 10g file and search for the line that starts with “Package: glossaries” followed by a
date and version.)

(]
=
Be careful of fragile commands. If a command causes a problem when used in one of the

\newglossaryentry fields, consider adding \gl snoexpandfields before
you start defining your entries. Where possible use robust semantic commands.

Abbreviations are slightly different if you use the extension package glossaries—extra (which
needs to be installed separately). This automatically loads glossaries so you don’t need to explic-

itly load it:

\documentclass{article}
\usepackage{glossaries—-extra}

% commands provided by glossaries—-extra:
\setabbreviationstyle{long—-short}
\newabbreviation{svm}{SVM}{support vector machine}
\begin{document}

First use: \gls{svm}. Second use: \gls{svm}.

\end{document}

Since long—short happens to be the default for \newabbreviation you may omit the
\setabbreviationstyle line in this example.

If you still want to use \newacronym (rather than \newabbreviation) then you
need the optional argument of \setabbreviationstyle:

\documentclass{article}
\usepackage{glossaries—-extra}
\setabbreviationstyle[acronym] {long—-short}
\newacronym{svm}{SVM}{support vector machine}
\begin{document}

First use: \gls{svm}. Second use: \gls{svm}.
\end{document}

In this example, if you omit the \setabbreviationstyle line you will notice a dif-
ference because the short—nolong style (not the long—short style) is the default with \new-
acronym. With the short—nolong style the first use simply shows just the short form.

(i)

| ——

[You can’t use \ setacronymstyle with glossaries—extra.

If you like, you can put all your definitions in another file (for example, defns . tex) and
load that file in the preamble using \ loadglsent ries with the filename as the argument.
For example:

=

\loadglsentries{defns}

If you find you have a really large number of definitions that are hard to manage in a tex file,
you might want to have a look at bib2gl s (installed separately) which requires a bib format
instead.

Avoid explicitly using formatting commands in abbreviation definitions as they can interfere
with the underlying mechanism. Instead, the formatting should be done by the style. For example,
suppose I want to replace SVM with \textsc{svm}, then I need to select a style that uses
\textsc, like this (for the base glossaries style):

,

\documentclass{article}
\usepackage{glossaries}
\setacronymstyle{long—sc—short}
\newacronym{svm}{svm}{support vector machine}
\begin{document}

First use: \gls{svm}. Second use: \gls{svm}.
\end{document}

The abbreviation styles have a different naming scheme with glossaries—extra:

\documentclass{article}
\usepackage{glossaries—extra}

% commands provided by glossaries-—-extra:
\setabbreviationstyle{long—short-sc}
\newabbreviation{svm}{svm}{support vector machine}

\begin{document}

First use: \gls{svm}. Second use: \gls{svm}.
\end{document}

With glossaries—extra you can have different abbreviation styles for different categories. Many
of these styles have their own associated formatting commands that can be redefined for minor
adjustments. See the glossaries—extra manual for further details or Gallery: Mixing Styles.!

As you can hopefully see from the above examples, there are two main ways of defining a
term: as a general entry (\newglossaryentry) or as an abbreviation (\newacronym
or, with glossaries—extra, \newabbreviation).

(@]

=
Regardless of the method of defining a term, the term is always given a label which is used

to uniquely identify the term (like the standard \ 1abe1/\ref or \ cite mechanism).
The label may be the same as the text produced with \gls (provided it doesn’t contain
any formatting commands) or may be completely different.

The labels are identified in bold in the following:

\newglossaryentry{elite}{name={élite},
description={select group}}
\newglossaryentry{set}{name={set},
description={collection of distinct elements}}
\newglossaryentry{sym.set}{
name={\ensuremath{\mathcal{S}}},
description={a set}}
\newacronym{tool.cnc}{CNC}

{computer numerical control}
\newacronym{police.cnc} {CNC}

{civil nuclear constabulary}
\newacronym{miltary.cnc}{CNC}{commander in chief}

With modern TgX installations you should now be able to use UTF-8 characters in the label,
but beware of active characters. For example, babel makes some punctuation characters, such as
: (colon), active for certain languages. This means that the character behaves like a command
which is unsuitable for a label.

For example, the following works:

\documentclass{article}
\usepackage{glossaries}

'dickimaw-books.com/gallery/index.php?label=sample-name-font

https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font
https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font

\.

\newglossaryentry{sym:set}{name={\ensuremath
{\mathcal{S}}},

description={a set}}

\begin{document}

\gls{sym:set}

\end{document}

However, if babel is loaded with £ rench then the : (colon) character becomes active.

\.

\documentclass{article}
\usepackage [T1l]{fontenc}
\usepackage [french] {babel}
\usepackage{glossaries}

% the colon : is a normal character here
\newglossaryentry{sym:set }{
name={\ensuremath{\mathcal{S}}},
description={a set}}

\begin{document}
% the colon : i1is now an active character
\gls{sym:set}

\end{document}

You may find that the above example seems to work, but a problem will occur if hyperref and a
glossary list are added to the document as the active character will interfere with the hyperlink
target name.

(i]

|8
Don’tuse \ g1s in chapter or section headings as it can have some unpleasant side-effects.

Instead use \glsentrytext for regular entries and either \gl sentryshort or
\glsentrylong for acronyms. Alternatively use glossaries—extra which provides
special commands for use in section headings and captions, such as \glsfmttext
and \glsfmtshort.

The above examples are reasonably straightforward. The difficulty comes if you want to display

a sorted list of all the entries you have used in the document. The glossaries—extra package
provides an easy way of listing all the defined entries:

\documentclass{article}
\usepackage [sort=none] {glossaries—-extra}

\newglossaryentry{potato}{name={potato},
plural={potatoes},
description={starchy tuber}}

\newglossaryentry{cabbage}{name={cabbage},
description={vegetable with thick green
or purple leaves}}

\newglossaryentry{turnip}{name={turnip},
description={round pale root vegetable}}

\newglossaryentry{carrot }{name={carrot},
description={orange root}}

\begin{document}

Chop the \gls{cabbage}, \glspl{potato} and
\glspl{carrot}.

\printunsrtglossaries % list all entries
\end{document}

However this method doesn’t sort the entries (they’re listed in order of definition) and it will
display all the defined entries, regardless of whether or not you've used them all in the document,
so “turnip” appears in the glossary even though there’sno \gls{turnip} (or similar) in the
document.

The sort=none option isn’t essential in this case (there’s no other sort option available
for this document), but it prevents the automatic construction of the sort value and so slightly
improves the document build time.

This example document uses the same command (\printunsrtglossaries) that’s
used with b1b2gls (Option 4) but with b1b2gls you instead need to use the record
package option (not sort) and one or more instances of \GlsXtrLoadResources in
the preamble (more on this later).

Most users prefer to have an automatically sorted list that only contains entries that have been
used in the document, optionally with a page list (indexing). The glossaries package provides
three options: use TgX to perform the sorting (Option 1); use makeindex to perform the sort-
ing (Option 2); use x1ndy to perform the sorting (Option 3). The extension package glossaries
—extra provides a fourth method: use bib2gls (Option 4).

The first option (using TgX) is the simplest method, as it doesn’t require an external tool. It

works best with at least version 3.0 of the datatool—base package, which is provided with data-
tool (and automatically loaded by glossaries). That version introduced the ability to provide
localisation support, which needs to be installed separately. (See the datatool manual for further
details.)

To use this method, add \makenoidxglossaries to the preamble (before the en-
tries are defined) and put \printnoidxglossaries at the place where you want your

glossary. For example:

\documentclass{article}

\usepackage{glossaries}

[e)

\makenoidxglossaries % use TeX to sort

\newglossaryentry{potato}{name={potato},
plural={potatoes},
description={starchy tuber}}

\newglossaryentry{cabbage}{name={cabbage},
description={vegetable with thick green
or purple leaves}}

\newglossaryentry{turnip}{name={turnip},
description={round pale root vegetable}}

\newglossaryentry{carrot }{name={carrot},
description={orange root}}

\begin{document}
Chop the \gls{cabbage}, \glspl{potato} and
\glspl{carrot}.

\printnoidxglossaries
\end{document}

Try this out and run TEX (or pdfIfTEX) twice. The first run won’t show the glossary. It will
only appear on the second run. This doesn’t include “turnip” in the glossary because that term
hasn’t been referenced (with commands like \g1ls{turnip}) in the document.

The glossary has a vertical gap between the “carrot” term and the “potato” term. This is
because the entries in the glossaries are grouped according to their first letter. If you don’t want
this gap, just add nogroupskip to the package options:

[\usepackage [nogroupskip] {glossaries}

or you may want to try out a style that shows the group headings:

8 [B

\usepackage [style=indexgroup] {glossaries}

If you try out this example you may also notice that the description is followed by a full stop (pe-
riod) and a number. The number is the location in the document where the entry was referenced
(page 1 in this case), so you can look up the term in the glossary and be directed to the relevant
pages. It may be that you don’t want this back-reference, in which case you can suppress it using
the nonumberlist package option:

B

[\usepackage [nonumberlist] {glossaries}

If you don’t like the terminating full stop, you can suppress that with the nopost dot package
option:

\usepackage [nopostdot] {glossaries}

B

The glossaries—extra package has this option as the default, so if you want terminating full stop,
you need to explicitly add it with the postdot option:

=

[\usepackage [postdot]{glossaries—extra}

You may have noticed that I've used another command in the above examples: \glspl. This
displays the plural form. By default, this is just the singular form with the letter “s” appended,
but in the case of “potato” I had to specify the correct plural using the plural key.

Using TgX to sort the entries is the simplest but least efficient method. If you have a large
glossary, then you will have a much faster build time if you use makeindex (Option 2) or
xindy (Option 3) or bib2gls (Option 4). If you are using extended Latin or non-Latin
characters, then xindy or bib2gls are the recommended methods. These methods are
described in more detail in §4.

The rest of this document briefly describes the main commands provided by the glossaries
package. (Most of these are also available with glossaries—extra but may behave slightly differ-

ently.)

10

2 Defining Terms

When you use the glossaries package, you need to define glossary entries before you can reference
them. This is best done in the document preamble, as shown in the earlier examples, or in a
separate file that’s input in the preamble.

These entries could be a word, phrase, abbreviation or symbol. They’re usually accompanied
by a description, which could be a short sentence or an in-depth explanation that spans multiple
paragraphs. The simplest method of defining an entry is to use:

X

\newglossaryentry{ (label)} { (key=value list) }

where (label) is a unique label that identifies this entry. (Don’t include the angle brackets ().
They just indicate the parts of the code that you need to change when you use this command in
your document.) The two most important keys are name and description:

\newglossaryentry{ (label)}

{
name={ (name) },
description={/(description)},
(other options)

}

The (name) is the word, phrase or symbol you are defining, and (description) is the description
to be displayed in the glossary.

This command is a “short” command, which means that (description) can’t contain a paragraph
break. If you have a long description, you can instead use:

X

\longnewglossaryentry{(label)} { (key=value list) } { (description) }

In this case the name key is in the second argument but the description is supplied in the third
argument instead of via a key.

\longnewglossaryentry/{ {label)}
{

name={ (name) },

(other options)

}
{ (description) }

Examples:

1. Define the term “set” with the label set:

11

\newglossaryentry{set}
{
name={set},
description={a collection of objects}

}

2. Define the symbol () with the label emptyset:

\newglossaryentry{emptyset}

{
name={\ensuremath{\emptyset}},
description={the empty set}

t

(This will also need a sort key if you use Options 1 or 3, see below.)

3. Define the phrase “Fish Age” with the label £1shage:

\longnewglossaryentry{fishage}

{name={Fish Age}}

{%
A common name for the Devonian geologic period
spanning from the end of the Silurian Period to
the beginning of the Carboniferous Period.

This age was known for its remarkable variety of
fish species.

(The percent character discards the end of line character that would otherwise cause an
unwanted space to appear at the start of the description.)

4. If you are using UTF-8 characters with the inputenc package, make sure you have mfirstuc
v2.08+ installed:

Ei

% mfirstuc v2.08+
\newglossaryentry{élite}
{

12

name={élite},
description={select group or class}

}

If you have an older version of mfirstuc then any initial character that is an extended Latin
or non-Latin character must be grouped in order to work with sentence-casing commands,
such as \G1s. An older version possibly also means there may not be support for UTF-8
characters in labels either:

r

% mfirstuc v2.07 or older
\newglossaryentry{elite}
{

name={{é}lite},
description={select group or class}

}

Likewise if accent commands are used:

\newglossaryentry{elite}

{
name={{\'ellite},
description={select group or class}

}

.

If you use bib2gls with glossaries—extra then the terms must be defined in a bib file.

For example:

% Encoding: UTF-8

@entry{set,
name={set},
description={a collection of objects}

}

@entry{emptyset,
name={\ensuremath{\emptyset}},
description={the empty set}

}

13

@entry{fishage,
name={Fish Age},
description={A common name for the Devonian
geologic period spanning from the end of the
Silurian Period to the beginning of the
Carboniferous Period.

This age was known for its remarkable variety of
fish species.}

}

@entry{élite,
name={élite},
description={select group or class}

}

(The bib format doesn’t allow spaces in labels so you can’t have £1sh age as the label, but
you can have £1 sh—age.) This method requires glossaries—extra’s re cord package option:

=

\usepackage [record] {glossaries—extra}

The bib file is specified in the resource command. For example, if the bib file is called
entries.bib then put the following line in the document preamble:

=

\GlsXtrLoadResources[src={entries}]

You can have a comma-separated list. For example, if you also have entries defined in the file
entries2.bib:

Ei

[\GlsXtrLoadResources[src={entries, entries2}]

There are other keys you can use when you define an entry. For example, the name key
indicates how the term should appear in the list of entries (glossary), but if the term should
appear differently when you reference it with \ g1 s { (label) } in the document, you need to use
the text key as well.

For example:

14

\newglossaryentry{latinalph}
{
name={alphabet, Latin},
text={Latin alphabet},
description={alphabet consisting of the letters
a, \ldots, z, A, \ldots, Z}
}

This will appear in the text as “Latin alphabet” but will be listed in the glossary as “alphabet,
Latin” (and therefore sorted under “A” not “L”). With bilb2gls this entry is defined in the

bib file as:

dentry{latinalph,
name={alphabet, Latin},
text={Latin alphabet},
description={alphabet consisting of the letters
a, \ldots, z, A, \ldots, Z}
t

Another commonly used key is pLlural for specifying the plural of the term. This defaults

6 "

to the value of the t ext key with an “s” appended, but if this is incorrect, justuse the p lural

key to override it:

\newglossaryentry{oesophagus}
{
name={e,sophagus},
plural={esophagi},
description={canal from mouth to stomach}

}

Abbreviations can be defined using:

\newacronym [(options)] { (label) } { (short) } { (long) }

where (label) is the label (as per \newglossaryentry), (short) is the short form and
(long) is the long form. For example, the following defines an abbreviation:

=

\newacronym{svm}{SVM}{support vector machine}

15

This internally uses \newglossaryentry to define an entry with the label svm. By
default, the name key is set to (short) (“SVM” in the above example) and the description
key is set to (long) (“support vector machine” in the above example). If, instead, you want to be
able to specify your own description you can do this using the optional argument:

\newacronym

[description={statistical pattern recognition
technique}]

{svm} {SVM} {support vector machine}

Before you define your acronyms, you need to specify which style to use with:

\setacronymstyle [(glossary-type)] { (style-name) }

where (style-name) is the name of the style. There are a number of predefined styles, such as:
long—short (on first use display the long form with the short form in parentheses); short—long
(on first use display the short form with the long form in parentheses); long—short—desc (like
long—short but you need to specify the description); or short—long—desc (like short—long but
you need to specify the description). There are some other styles as well that use \textsc to
typeset the acronym in small-caps or that use a footnote on first use. See the main user guide for
further details.

The glossaries—extra package provides improved abbreviation handling with a lot more pre-
defined styles.> With this extension package, abbreviations are defined using:

X

\newabbreviation [(options)] { (label) } { (short) } { (long) }

You can still use \newacronym but it’s redefined to use the new abbreviation interface. The
style must now be set using:

7

\setabbreviationstyle [{category)] { (style-name) }

The default (category) is abbreviation. If you use \newacronym the category is
acronym, which is why you need to use the optional argument if you define abbreviations
with \newacronym when glossaries—extra has been loaded:

[\setabbreviationstyle[acronym] {{style name)}

If you use bib2gls then abbreviations are defined in the bib file in the format:

’dickimaw-books.com/gallery/index.php?label=sample—abbr-styles

16

https://www.dickimaw-books.com/gallery/index.php?label=sample-abbr-styles
https://www.dickimaw-books.com/gallery/index.php?label=sample-abbr-styles
https://www.dickimaw-books.com/gallery/index.php?label=sample-abbr-styles

@abbreviation{(label),
long={(long form)},
short={(short form) }

}

The plural forms for abbreviations can be specified using the Longplural and short-
plural keys. For example:

Ei

\newacronym
[longplural={diagonal matrices}]
{dm} {DM} {diagonal matrix}

or (with glossaries—extra):

(¢}

\newabbreviation $ glossaries—-extra.sty
[longplural={diagonal matrices}]
{dm} {DM} {diagonal matrix}

If omitted, the defaults are again obtained by appending an “s” to the singular versions. (The
glossaries—extra package provides a way of not appending “s” for abbreviation plurals via cate-
gory attributes.) With bib2gls, the definition in the bib file is:

@abbreviation{dm,
short={DM},
long={diagonal matrix},
longplural={diagonal matrices}

}

It’s also possible to have both a name and a corresponding symbol. Just use the name key for
the name and the symbo 1 key for the symbol. For example:

\newglossaryentry{emptyset}

{
name={empty set},
symbol={\ensuremath{\emptyset}},
description={the set containing no elements}

}

or with bib2gls the definition in the bib file is:

17

@entry{emptyset,
name={empty set},
symbol={\ensuremath{\emptyset}},
description={the set containing no elements}

}

If you want commands such as \emptyset in the name field then you must supply a sort
value with Options 1 and 3 otherwise you’ll end up with errors from TgX or xindy. With
Option 2 (makeindex) you're unlikely to get an error, but you may find the resulting order is

a little odd. For example:

\newglossaryentry{emptyset}
{
name={\ensuremath{\emptyset}},
sort={empty set},
description={the set containing no elements}

}

This displays the symbol as () but sorts according to “empty set”. You may want to consider using
glossaries—extra’s symbol s package option which provides

X

\glsxtrnewsymbol [(key=value list)] { (label) } { (sym) }
requires \usepackage [symbols] {glossaries—-extra}

This internally uses \newglossaryentry but automatically sets the sort key to the

(label). For example:

\documentclass{article}

\usepackage [symbols]{glossaries—extra}

\makeglossaries

\glsxtrnewsymbol
[description={the set containing no elements}]
{emptyset}% label (and sort wvalue)
{\ensuremath{\emptyset}}% symbol

\begin{document}

\gls{emptyset}

\printglossaries

\end{document}

Now the sort value is automatically set to the label “emptyset”.

18

With bib2gls you can define this entry in the bib file as

@entry{emptyset,
name={\ensuremath{\emptyset}},
description={the set containing no elements}

}

in which case bib2gls will try to interpret the name field to determine the sort value. Al-
ternatively you can use:

=

@symbol{emptyset,
name={\ensuremath{\emptyset}},
description={the set containing no elements}

}

which will use the label (empt yset) as the sort value. (You don’t need the symbo 1l s pack-
age option in this case, unless you want a separate symbols list.) The corresponding document
(where the definition is in the file ent ries .bib) is now:

\documentclass{article}
\usepackage [record] {glossaries—extra}
\GlsXtrLoadResources|[src={entries}]
\begin{document}

\gls{emptyset}

\printunsrtglossaries

\end{document}

Note that, while the sort key is advised for symbols when using \makeglossaries
or \makenoidxglossaries, the sort field shouldn’t be used with bib2gls. In-
stead, bib2gls has its own algorithm for determining the sort value based on the entry type
(@entry, @symbol etc) and various settings. See bib2gls gallery: sorting® for further details.

3 Using Entries

Once you have defined your entries, as described above, you can reference them in your docu-
ment. There are a number of commands to do this, but the most common one is:

X
\gls [(options)] { (label)} [(insert)] modifiers: * +

3dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

19

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

where (label) is the label you assigned to the entry when you defined it. For example, \g1s
{fishage} will display “Fish Age” in the text (given the definition from the previous section).
If you are using bilb2 g1 s then this will display ? ? (like \ref and \cite)untiibib2gls
has created the relevant files and I£TEX is rerun.

If you are using the hyperref package (remember to load it before glossaries) \ g1 s will create
a hyperlink to the corresponding entry in the glossary. If you want to suppress the hyperlink for
a particular instance, use the starred form \ g1 s* for example, \gls*{fishage}. The
other commands described in this section all have a similar starred form.

If the entry was defined as an acronym (using \newacronym with glossaries described
above) or an abbreviation (using \newabbreviat ion with glossaries—extra), then \gls
will display the full form the first time it’s used (first use) and just the short form on subsequent
use. For example, if the style is set to long—short, then \gls{svm} will display “support
vector machine (SVM)” the first time it’s used, but the next occurrence of \gls{svm} will
justdisplay “SVM”. (If you use \ newa c ronym with glossaries—extra the default doesn’t show
the long form on first use. You’ll need to change the style first, as described earlier.)

If you want the plural form, you can use:

X
\glspl [(options)] {(label) } [(insert)] modifiers: * +

instead of \ g1 s { (label) }. For example, \glspl {set} displays “sets”.
If the term appears at the start of a sentence, you can convert the first letter to uppercase
(sentence case) using:

X
\G1s [(options)] { (label) } [(insert)] modifiers: * +
for the singular form or
X
\G1lspl [(options)] { (label) } [(insert)] modifiers: * +

for the plural form. For example:

Bl

[\Glspl{set} are collections.

produces “Sets are collections”.
If you've specified a symbol using the symbo 1l key, you can display it using:

X
\glssymbol [(options)] { (label) } [(insert)] modifiers: * +

For example

20

\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{emptyset}
{
name={empty set},
symbol={\ensuremath{\emptyset}},
description={the set containing no elements}
}
\begin{document}
The \gls{emptyset} is denoted \glssymbol{emptyset}.
\end{document}

The empty set is denoted (.

4 Displaying a List of Entries

In §1, I mentioned that there are three options you can choose from to create an automatically
sorted glossary with the base glossaries package. These are also available with the extension
package glossaries—extra along with a fourth option. These four options are listed below in a little
more detail. Table 1 on the following page summarises the main advantages and disadvantages.
(There’s a more detailed summary in the main glossaries user manual.) See also Incorporating
makeglossaries or makeglossaries-lite or bib2gls into the document build.*

Note that makeindex and xindy are general purpose indexing applications that are de-
veloped independently of glossaries and glossaries—extra. This makes them harder to integrate,
as glossaries have more complex requirements than a simple index, particularly for documents
where some terms may only appear in the description of another term. (There’s also the possi-
bility that they may change in a manner that becomes incompatible with glossaries or may even
be declared obsolete.) The bib2gls application, on the other hand, is designed specifically
for, and developed alongside, the glossaries—extra package.

Option 1 (“noidx”)

This method works best with at least version 3.0 of the datatool—base package (which is
supplied with datatool and automatically loaded by glossaries). If available, ensure that
you have the applicable language support. (At the time of writing, only datatool—english
is available.) Note that it does have limitations, such as no range formations in the location
list and it can be slower than using an indexing application.

If you have an old version of datatool, this method can be very slow and if you want a
sorted list, it can be problematic with extended or non-Latin alphabets.

*dickimaw-books.com/latex/buildglossaries/

21

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

Table 1: Comparison of Glossary Options

Option1 Option 2 Option3 Option 4

Requires glossaries—extra? b 4 b 4 X v
Requires an external X v v v
application?

Requires Perl? X X v X
Requires Java? X X X v
Can sort extended Latin or X X v v
non-Latin alphabets?

Efficient sort algorithm? X v v v
Can use different sort v b 4 b 4 v
methods for each glossary?

Any problematic sort v 4 v X
values?

Can form ranges in the X v v v
location lists?

Can have non-standard v X v1 v
locations?

“Requires corresponding datatool v3.0+ localisation support.
TRequires some setting up.

For example, with datatool v3.0+ and datatool—english installed:

[\usepackage[locales=en] {glossaries}

or:

\usepackage[english] {babel}
\usepackage{glossaries}

1. Add \makenoidxglossaries to your preamble (before you start defining
your entries, as described in §2).

2. Put

[\printnoidxglossary [sort=(order), (other options)]

where you want your list of entries to appear. The sort (order) may be one of: word
(word ordering), 1etter (letter ordering), case (case-sensitive ordering), de £
(in order of definition) or use (in order of use). Alternatively, use

22

\printnoidxglossaries

to display all your glossaries (if you have more than one).

This option allows you to have different sort methods. For example:

=

\printnoidxglossary[sort=word]% main glossary
\printnoidxglossary|

type=symbols, $ symbols glossary

sort=use]

3. Run ETEX twice on your document. (As you would do to make a table of contents
appear.) For example, click twice on the “typeset” or “build” or “PDFIATEX” button
in your editor.

Here’s a complete document (myDoc . tex):

\documentclass{article}
\usepackage{glossaries}
\makenoidxglossaries% use TeX to sort

\newglossaryentry{sample}{name={sample},
description={an example}}

\begin{document}
A \gls{sample}.

% i1terate over all indexed entries:
\printnoidxglossaries
\end{document}

Document build:

pdflatex myDoc
pdflatex myDoc

Option 2 (makeindex)

This option uses an application called makeindex to sort the entries. This application

23

comes with all modern TEX distributions, but it’s hard-coded for the non-extended Latin
alphabet. This process involves making IZTEX write the glossary information to a tempo-
rary file which makeindex reads. Then makeindex writes a new file containing
the code to typeset the glossary. KTEX then reads this file on the next run. The make-
1ndex application is automatically invoked by the helper makeglossaries script,
which works out all the appropriate settings from the aux file.

1. Add \makeglossaries to your preamble (before you start defining your en-
tries).

2. Put

\printglossary [{options)]

where you want your list of entries (glossary) to appear. (The sort key isn’t avail-
able in (options).) Alternatively, use

[\printglossaries

which will display all glossaries (if you have more than one).

[i
=
All glossaries are sorted using the same method which may be identified with

one of the package options: sort=standard (default), sort=use or
sort=def.

3. Run I5TEX on your document. This creates files with the extensions glo and 1 st
(for example, if your ISTEX document is called myDoc . t ex, then you'll have two
extra files called myDoc .glo and myDoc . ist). If you look at your document
at this point, you won'’t see the glossary as it hasn’t been created yet.

4. Runmakeglossaries with the base name of your document (without the t ex
extension). If you have access to a terminal or a command prompt then you need to
run the command:

makeglossaries myDoc \

(Replace myDoc with the base name of your If[EX document file without the exten-
sion.) If you don’t have Perl installed use makeglossaries—11ite instead:

makeglossaries—-lite myDoc \

24

[i
=
Some beginners get confused by makeglossaries the application (run

as a system command) and \makeglossaries the IS[gX command
which should be typed in the document preamble. These are two different
concepts that happen to have similar looking names.

If you don’t know how to use the command prompt, then you can probably con-
figure your text editor to add makeglossaries (or makeglossaries
—1lite) as a build tool, but each editor has a different method of doing this, so
I can’t give a general description. However, there are some guidelines in Incorpo-
rating makeglossaries or makeglossaries-lite or bib2gls into the document build.> If
you still have problems, try adding the aut omake package option:

[\usepackage [automake] {glossaries}

The default sort is word order (“sea lion” comes before “seal”). If you want letter
ordering you need to add the order=1etter package option

[\usepackage [order=letter] {glossaries}

5. Once you have successfully completed the previous step, you can now run I£EX on
your document again.

Here’s a complete document (myDoc . tex):

,

\documentclass{article}

\usepackage{glossaries}

o

\makeglossaries % create makeindex files

\newglossaryentry{sample}{name={sample},
description={an example}}

\begin{document}
A \gls{sample}.

% input files created by makeindex:
\printglossaries
\end{document}

\

dickimaw-books.com/latex/buildglossaries/

25

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

Document build:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

or

pdflatex myDoc
makeglossaries—-lite myDoc
pdflatex myDoc

Option 3 (xindy)

This option uses an application called xindy to sort the entries. This application is more
flexible than makeindex and is able to sort extended Latin or non-Latin alphabets. It
comes with both TgX Live and MiKTgX. Since xindy is a Perl script, you will also
need to ensure that Perl is installed. In a similar way to Option 2, this option involves
making ISTEX write the glossary information to a temporary file which xindy reads.
Then xindy writes a new file containing the code to typeset the glossary. IAEX then
reads this file on the next run. The xindy application is automatically invoked by the
helper makeglossaries script, which works out all the appropriate settings from the
aux file. See http://www.xindy.org/ for further information about xindy
and links to its mailing list and issue tracker.

1. Add the xindy option to the glossaries package option list:

[\usepackage[xindy] {glossaries}

If you aren’t using a Latin script, you may need to suppress the default number group:

\usepackage [xindy={glsnumbers=false}]
{glossaries}

2. Add \makeglossaries to your preamble (before you start defining your en-
tries).

3. Put

\printglossary [{options)]

26

http://www.xindy.org/

where you want your list of entries (glossary) to appear. (The sort key isn’t avail-
able in (options).) Alternatively, use

[\printglossaries

[i
L=
All glossaries are sorted using the same method which may be identified with

one of the package options: sort=standard (default), sort=use or
sort=def.

4. Run ETEX on your document. This creates files with the extensions g1 o and xdy
(for example, if your ISTEX document is called myDoc . tex, then you'll have two
extra files called myDoc .glo and myDoc . xdy). If you look at your document
at this point, you won’t see the glossary as it hasn’t been created yet.

5. Runmakeglossaries with the base name of the document (omitting the t e x
extension). If you have access to a terminal or a command prompt then you need to
run the command:

makeglossaries myDoc \

(Replace myDoc with the base name of your IS|EX document file without the t ex
extension.) If you don’t know how to use the command prompt, then as mentioned
above, you may be able to configure your text editor to add makeglossaries
as a build tool. Note that the aut omake option won’t work in TgX’s restricted
mode, as xindy isn’t on the list of trusted applications.

The default sort is word order (“sea lion” comes before “seal”). If you want letter
ordering you need to add the order=1etter package option:

[\usepackage [xindy, order=letter] {glossaries}

6. Once you have successfully completed the previous step, you can now run I£TEX on
your document again.

Here’s a complete document (myDoc . tex):

\documentclass{article}

\usepackage [xindy] {glossaries}

27

[e)

\makeglossaries % create xindy files

\newglossaryentry{sample}{name={sample},
description={an example}}

\begin{document }

A \gls{sample}.

\printglossaries % input files created by xindy
\end{document}

Document build:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

If you use xindy and the name only contains a command or commands (such as \ P
or \ensuremath{\pi})youmustadd the sort key. This is also advisable for the
other options (except Option 4, which, in general, shouldn’t have the sort field set®), but
is essential for Option 3. For example:

=

\newglossaryentry{P}{name={\P}, sort={P},
description={paragraph symbol}}

Option 4 (b1b2gls)

This requires the extension package glossaries—extra and an application called bib2gls.
This application is able to sort extended Latin or non-Latin alphabets. It comes with both
TgX Live and MiKTgX but requires Java. This method works differently to Options 2
and 3. Instead of creating a file containing the code to typeset the glossary it creates a
glstex file containing the entry definitions obtained from data that was fetched from
the bib file (or files), but only those entries that are required in the document are defined
and they are defined in the order obtained from the chosen sort method. This means that
you can just use \printunsrtglossary to display each glossary (or \print-
unsrtglossaries to display them all)

1. Add the record option to the glossaries—extra package option list:

®dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

28

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

\usepackage [record] {glossaries—-extra}

2. Add one or more

\GlsXtrLoadResources [src={(biblist)}, (options)]

to your preamble where (bib list) is the list of bib files containing the entries. You

may use different sort methods for each resource set. For example:

\usepackage [record, $ using bib2gls

symbols, % create symbols list
numbers$% create numbers list
]{glossaries—extra}

\GlsXtrLoadResources [
src={terms}, % entries in terms.bib

% put these entries in the 'main' list:
type=main,

% sort according to this locale:
sort=de-CH-1996

]

\GlsXtrLoadResources [

src={abbrvs},$%$ entries in abbrvs.bib

put these entries in the 'abbreviations'

type={abbreviations},

case—-sensitive letter (non-locale) sort:

sort=letter-case

o\

o\°

]
\GlsXtrLoadResources |

src={syms}, % entries 1in syms.bilb
put these entries in the 'symbols' list:
type=symbols,

o\°

sort=use

]
\GlsXtrLoadResources |

(e}

% put these entries in the 'numbers' list:
type=numbers,

29

abbreviations, % create abbreviations list

% sort according to first use in the document:

src={constants}, % entries in constants.bib

list

o)

% sort according to the userl field:
sort—-field=userl,
sort=double% double-precision numeric sort

The last resource set assumes that the entries defined in the file constants.bib
have a number stored in the user1 field. For example:

@number{pi,
name={\ensuremath{\pi}},
description={pi},
userl={3.141592654}

}

. Put

\printunsrtglossary [type=(type), (options)]

where you want your list of entries (glossary) to appear. (The sort key isn’t
available in (options). The sort setting needs to be used in \GlsXtrLoad-
Resources instead.) Alternatively, use

\printunsrtglossaries

which will display all glossaries (if you have more than one).

. Run ETEX on your document. The record option adds information to the aux
file that provides bib2gls with all required details for each resource set. For
example, if the file is called myDoc . tex:

pdflatex myDoc \

. Runbib2gls

bib2gls myDoc \

or (if you need letter groups)

bib2gls —-—-group myDoc \

30

6. Run I5IEX again.

Here’s a complete document (myDoc . £ ex) with only one resource set for brevity:

\documentclass{article}

\usepackage[record] {glossaries—extra}
% input the glstex file created by bib2gls:
\GlsXtrLoadResources
[$ instructions to bib2gls:
src={entries}, % data in entries.bib
sort=en-GB% sort according to this locale

]

\begin{document}

A \gls{sample}.

% l1terate over all defined entries:
\printunsrtglossaries
\end{document}

\

The accompanying entries.bib file:

@entry{sample,
name={sample},
description={an example}

}

Document build:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

If you are having difficulty integrating makeglossaries (or makeglossaries
—lite) or bib2gls into your document build process, you may want to consider using
arara, which is a Java application that searches the document for special comment lines that
tell arara which applications to run. For example, the file myDoc . £ ex might start with:

31

o\

arara: pdflatex
arara: makeglossaries
% arara: pdflatex
\documentclass{article}
\usepackage{glossaries}
\makeglossaries

o\°

then to build the document you just need the single system call:

arara myDoc

Alternatively, if you want to use makeglossaries—11ite, change the second line to:

[e)

% arara: makeglossarieslite

There’s also a rule for bib2gls. For example, the following indicates that letter groups are
required:

,

arara: pdflatex

arara: bib2gls: { group: on }

% arara: pdflatex
\documentclass{article}
\usepackage [record] {glossaries—extra}
\GlsXtrLoadResources

o\

o\°

5 Customising the Glossary

The default glossary style uses the description environment to display the entry list. Each entry
name is set in the optional argument of \ it em which means that it will typically be displayed
in bold. You can switch to medium weight by redefining \gl snamefont:

=

\renewcommand*{\glsnamefont} [1]{\textmd{#1}}

Some classes and packages redefine the description environment in such as way that’s incompati-
ble with the glossaries package. In which case you’ll need to select a different glossary style (see
below).

By default, a full stop is appended to the description (unless you use glossaries—extra). To
prevent this from happening use the nopostdot package option:

32

[\usepackage [nopostdot] {glossaries}

or to add it with glossaries—extra:

=

\usepackage [postdot]{glossaries—-extra}

By default, a location list is displayed for each entry (except when \printunsrtglos-
sary is used without bib2gls). This refers to the document locations (for example, the
page number) where the entry has been referenced. If you use Options 2 or 3 described in §4 or
Option 4 (with b1b2gls and glossaries—extra) then location ranges will be compressed. For
example, if an entry was used on pages 1, 2 and 3, then with Options 2, 3 or 4 the location list
will appear as 1-3, but with Option 1 it will appear as 1, 2, 3. If you don’t want the locations
displayed you can hide them using the nonumber1ist package option:

=

[\usepackage [nonumberlist]{glossaries}

orwithbib2glsuse save—locations=false inthe optional argument of the appro-
priate \G1lsXtrLoadResources (it’s possible to have some resource sets with locations
and some without).

Entries are grouped according to the first letter of each entry’s sort value. By default a ver-
tical gap is placed between letter groups for most of the predefined styles. You can suppress this

with the nogroupskip package option:

[\usepackage [nogroupskip] {glossaries}

If the default style doesn’t suit your document, you can change the style using:

\setglossarystyle{ (style name)}

There are a number of predefined styles.” Glossaries can vary from a list of symbols with a terse
description to a list of words or phrases with descriptions that span multiple paragraphs, so there’s
no “one style fits all” solution. You need to choose a style that suits your document. For example:

=

\setglossarystyle{index}

You can also use the st v 1e package option for the preloaded styles. For example:

’dickimaw-books.com/gallery/glossaries—styles/

33

https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-styles/

\usepackage[style=index] {glossaries}

B

Examples:

1. You have entries where the name is a symbol and the description is a brief phrase or
short sentence. Try one of the “mcol” styles defined in the glossary—mcols package. For
example:

\usepackage [nopostdot] {glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcolindex}

__ B

or

\usepackage[stylemods=mcols, style=mcolindex]
{glossaries—-extra}

_ B

2. You have entries where the name is a word or phrase and the description spans multiple
paragraphs. Try one of the “altlist” styles. For example:

\usepackage [nopostdot] {glossaries}
\setglossarystyle{altlist}

_B

or

\usepackage[stylemods, style=altlist]{glossaries—
extra}

_B

3. You have entries where the name is a single word, the description is brief, and an associated
symbol has been set. Use one of the styles that display the symbol (not all of them do).
For example, one of the tabular styles:

\usepackage [nopostdot, nonumberlist,
style=long4col] {glossaries}

_ B

34

or one of the “tree” styles:

{glossaries}

\usepackage [nopostdot, nonumberlist, style=tree]

_B

If your glossary consists of a list of abbreviations and you also want to specify a description as
well as the long form, then you need to use an abbreviation style that will suit the glossary style.

For example, use the long—short—desc acronym style:

\setacronymstyle{long-short-desc}

Define the acronyms with a description:

\newacronym
[description={statistical pattern
recognition technique}]
{svm}{SVM} {support vector machine}

Alternatively with glossaries—extra:

)

\setabbreviationstyle{long-short-desc}

\newabbreviation
[description={statistical pattern
recognition technique}]
{svm} {SVM} {support vector machine}

Choose a glossary style that suits wide entry names. For example:

\setglossarystyle{altlist}

6 Multiple Glossaries

The glossaries package predefines a default ma in glossary. When you define an entry (using one
of the commands described in §2), that entry is automatically assigned to the default glossary,
unless you indicate otherwise using the £ ype key. However you first need to make sure the

desired glossary has been defined. This is done using:

35

\newglossary [(log-ext)] { (glossary-label) } { (out-ext) } { (in-ext) } { (title) }

The (glossary-label) is a label that uniquely identifies this new glossary. As with other types
of identifying labels, be careful not to use active characters in (label). The final argument (z-
fle) is the section or chapter title used by \printglossary, \printnoidxglos-
saryor \printunsrtglossary. The other arguments indicate the file extensions used
by makeindex or xindy (described in §4). If you're not using either makeindex or
xindy, then the (log-ext), (in-ext) and (out-ext) arguments aren’t relevant, in which case you
may prefer to use the starred version where those arguments are omitted:

X

\newglossary*{(glossary-label) } { (title) }

In the case of Options 2 or 3, all new glossaries must be defined before \makeglos-
saries. (Entry definitions should come after \makeglossaries.) Inthe case of Option4,
all new glossaries must be defined before any \GlsXtrLoadResources that requires
them.

Since it’s quite common for documents to have both a list of terms and a list of abbrevia-
tions, the glossaries package provides the package option acronyms (or acronym), which
is a convenient shortcut for

\newglossary[alg] {acronym}{acr}{acn}{\acronymname }

The option also changes the behaviour of \newacronym so that acronyms are automati-
cally put in the list of acronyms instead of the main glossary. The glossaries—extra package
also supports the acronyms option for abbreviations defined using \newacronym but
additionally has the package option abbreviations to create a list of abbreviations for
\newabbreviation.

There are some other package options for creating commonly used lists: symbol s (lists of
symbols), numbe rs (lists of numbers), i ndex (an index). Since indexes don’t typically have
descriptions, the 1ndex option also defines:

X

\newterm [(key=value list)] { (entry-label) }
requires 1 ndex package option

This is just a shortcut that uses \newglossaryentry with the name set to (entry-label)
and the description is suppressed.

For example, suppose you want a main glossary for terms, a list of acronyms and a list of
notation:

36

\usepackage [acronyms] {glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

After \makeglossaries (or \makenoidxglossaries) you can define the entries

in the preamble. For example:

\newglossaryentry{gls:set}

{% This entry goes in the "main' glossary
name={set},
description={A collection of distinct objects}

}

% This entry goes in the "acronym' glossary:
\newacronym{svm}{svm}{support vector machine}

\newglossaryentry{not:set}

{% This entry goes in the "notation' glossary:
type={notation},
name={\ensuremath{\mathcal{S}}},
description={A set},
sort={S}}

or if you don’t like using \ensuremath:

\newglossaryentry{not:set}
{%$ This entry goes in the " notation' glossary:
type={notation},
name={\mathcal{S}},
text={\mathcal{S}},
description={A set},
sort={S}
}

Each glossary is displayed using:

\printnoidxglossary [type=(type)]

(Option 1) or

37

\printglossary [type=(type)]

(Options 2 and 3). Where (fype) is the glossary label. If the type is omitted the default main
glossary is assumed.
If you're using bib2gls then each glossary is displayed using:

\printunsrtglossary [type=(type)]

With this method you don’t use \makeglossaries or \makenoidxglossaries.
Instead you can assign the entry type with the resource command. For example:

\usepackage [record, abbreviations, symbols]
{glossaries—-extra}

\GlsXtrLoadResources [

src={terms}, % entries defined in terms.bib
type=main% put in main glossary

]

\GlsXtrLoadResources [

src={abbrvs}, % entries defined in abbrvs.bib
type=abbreviations% put in abbreviations glossary
]

\GlsXtrLoadResources [

src={syms}, % entries defined in syms.bib
type=symbols% put in symbols glossary

]

Later in the document:

\printunsrtglossary % main
\printunsrtglossary[type=abbreviations]
\printunsrtglossary[type=symbols]

There’s a convenient shortcut that will display all the defined glossaries depending on the in-
dexing method:

X

\printnoidxglossaries

(Option 1) or

38

\printglossaries

(Options 2 and 3) or (glossaries—extra only)

\printunsrtglossaries

If you use Options 1 or 4, you don’t need to do anything different for a document with multiple
glossaries. If you use Options 2 or 3 with the makeglossaries Perl script or the make-
glossaries—1lite Lua script, you similarly don’t need to do anything different to the
document build (compared to building a document with only one glossary).

If you use Options 2 or 3 without the helper makeglossaries Perl script or make-
glossaries—11ite Luascriptthen youneed to make sure yourunmakeindex/xindy
for each defined glossary. The (gls) and (glo) arguments of \newglossary specify the file
extensions to use instead of gls and glo. The optional argument (glg) is the file extension
for the transcript file. This should be different for each glossary in case you need to check for
makeindex/xindy errors or warnings if things go wrong.

For example, suppose you have three glossaries in your document (main, acronym and
notation), specified using:

Ej

\usepackage [acronyms] {glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

Then (assuming your KTEX document is in a file called myDoc . tex):

Option 2: Either use one makeglossaries ormakeglossaries—1lite call:

makeglossaries myDoc \
makeglossaries—-lite myDoc \

Or you need to run makeindex three times:

or

39

makeindex -t myDoc.glg —-s myDoc.ist —-o myDoc.gls
myDoc.glo
makeindex -t myDoc.alg -s myDoc.ist —-o myDoc.acr
myDoc.acn
makeindex -t myDoc.nlg -s myDoc.ist —-o myDoc.not
myDoc.ntn

Option 3: Either use one makeglossaries call:

makeglossaries myDoc \

Or you need to run xindy three times (be careful not to insert line breaks where the

line has wrapped.)

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.glg —-o myDoc.gls myDoc.glo
xindy -L english -C utf8 -I xindy —-M myDoc -t
myDoc.alg —o myDoc.acr myDoc.acn
xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.nlg —o myDoc.not myDoc.ntn

Option 4: With bib2gls only one call is required:

pdflatex myDoc
bib2gls —-—-group myDoc
pdflatex myDoc

(Omit ——group if you don’t need letter groups.)

7 Hyperlinks (glossaries and hyperref)

Take care if you use the glossaries package with hyperref. Contrary to the usual advice that
hyperref should be loaded last, glossaries (and glossaries—extra) must be loaded after hyperref:

=

\usepackage[colorlinks] {hyperref}
\usepackage{glossaries}

40

By default, if the hyperref package has been loaded, commands like \ g1 s will form a hyper-
link to the relevant entry in the glossary. If you want to disable this for all your glossaries, then
use:

X

\glsdisablehyper

If you want hyperlinks suppressed for entries in specific glossaries, then use the nohyper-
t ypes package option. For example, if you don’t want hyperlinks for entries in the acronym
and notat ion glossaries but you do want them for entries in the ma in glossary, then do:

=

\usepackage[colorlinks] {hyperref}

\usepackage [acronym, nohypertypes={acronym, notation}]
{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

If you want the hyperlinks suppressed the first time an entry is used, but you want hyperlinks
for subsequence references then use the hyperfirst=false package option:

Ei

\usepackage[colorlinks] {hyperref}
\usepackage [hyperfirst=false] {glossaries}

The glossaries—extra extension package provides another method using category attributes. See
the glossaries—extra user manual for further details.

Take care not to use non-expandable commands in PDF bookmarks. This isn’t specific to the
glossaries package but is a limitation of PDF bookmarks. Non-expandable commands include
commands like \gls, \glspl, \G1ls and \G1lspl. The hyperref package provides a way
of specifying alternative text for the PDF bookmarks via \t exorpdf st ring. Forexample:

Ei

\section{The \texorpdfstring{\gls{fishage}}
{Fish Age}}

However, it’s not a good idea to use commands like \ g1 s in a section heading as you’ll end up
with the table of contents page in your location list and it will unset the first use flag too soon.
Instead you can use

X

\glsentrytext {(entry-label) }

This is expandable provided that the text key doesn’t contain non-expandable code. For ex-
ample, the following works:

41

\section{The \glsentrytext{fishage}}

and it doesn’t put the table of contents in the location list.
If you use glossaries—extra then use the commands that are provided specifically for use in
section headers. For example:

=

\section{The \glsfmttext{fishage}}

8 Cross-References

You can add a reference to another entry in a location list using the see={ (label-list) } key
when you define an entry. The referenced entry (or entries) must also be defined.
For example:

\longnewglossaryentry{devonian}{name={Devonian}}%
{%
The geologic period spanning from the end of the
Silurian Period to the beginning of the
Carboniferous Period.

This age was known for its remarkable variety of
fish species.

}

\newglossaryentry{fishage}

{
name={Fish Age},
description={Common name for the Devonian period},
see={devonian}

}

The cross-reference will appear as “see Devonian”. You can change the “see” tag for an individual
entry using the format see={ [(tag)] (label-list) } . For example:

=

\newglossaryentry{latinalph}

{
name={Latin alphabet},

42

description={alphabet consisting of the letters
a, \ldots, =z, A, \ldots, Z},
see=[see also]{exlatinalph}

}

\newglossaryentry{exlatinalph}

{
name={extended Latin alphabet},
description={The Latin alphabet
extended to include other letters such as
ligatures or diacritics.}

}

In the above, I haven’t enclosed the entire value of the see key in braces. If you use the see
key in an optional argument, such as the optional argument of \newacronym, make sure you
enclose the value (including the optional tag) in braces. For example:

\newacronym{ksvm}{ksvm}
{kernel support vector machine}
\newacronym
[see={[see also]{ksvm}}]
{svm}{svm} {support vector machine}

The glossaries—extra package provides a seea 1 so key. This doesn’t allow a tag but behaves
much like see={ [\seealsoname] { (label-list) } }. For example:

\newabbreviation{ksvm}{ksvm}
{kernel support vector machine}
\newabbreviation
[seealso={ksvm}]
{svm}{svm} {support vector machine}

Additionally, the glossaries—extra package provides an a 1 ias key where the value must be
just a single label. See glossaries-extra gallery: aliases® for an example.

Since the cross-reference appears in the location list, if you suppress the location list using
the nonumberlist package option, then the cross-reference will also be suppressed. With
bib2gls,don’tuse the nonumberli st package option in this case, but instead use save
—locations=false in the resource options. For example:

8dickimaw-books.com/gallery/index.php?label=aliases

43

https://www.dickimaw-books.com/gallery/index.php?label=aliases
https://www.dickimaw-books.com/gallery/index.php?label=aliases

\usepackage [record, abbreviations, symbols]
{glossaries—extra}

\GlsXtrLoadResources [

src={terms}, % entries defined in terms.bib
type=main% put in main glossary

]
\GlsXtrLoadResources [

src={abbrvs}, % entries defined in abbrvs.bib
type=abbreviations, % put in abbreviations glossary
% no number list for these entries:
save—locations=false

]

\GlsXtrLoadResources |

src={syms}, % entries defined in syms.bib
type=symbols% put in symbols glossary

]

9 Further Information

* glossaries-extra and bib2gls: an introductory guide.

* The main glossaries user manual (glossaries—user.pdf).

* The glossaries FAQ.

* Incorporating makeglossaries or makeglossaries-lite or bib2gls into the document build.

* The glossaries-extra package.

The bib2gls application.

The Dickimaw Books Gallery® provides additional example documents.

Symbols

Symbol Description

X The syntax and usage of a command, environment or option etc.

dickimaw-books.com/gallery

44

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faqs/glossariesfaq.html
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls
https://www.dickimaw-books.com/gallery
https://www.dickimaw-books.com/gallery

Description

72

]
2
Z
S
—

An important message.

Prominent information.

IZTEX code to insert into your document.

Problematic code which should be avoided.

How the example code should appear in the PDF.

A command-line application invocation that needs to be entered into a terminal or
command prompt.

0 e) @ ™°

v
|

Glossary

First use

The first time an entry is used by a command that unsets the first use flag (or the first time since
the flag was reset).

First use flag

A conditional that keeps track of whether or not an entry has been referenced by any of the
\ g1 s-like commands (which can adjust their behaviour according to whether or not this flag is
true). The conditional is true if the entry hasn’t been used by one of these commands (or if the
flag has been reset) and false if it has been used (or if the flag has been unset).

Glossary

Technically a glossary is an alphabetical list of words relating to a particular topic. For the
purposes of describing the glossaries and glossaries—extra packages, a glossary is either the list
produced by commands like \printglossaryor \printunsrtglossary (which
may or may not be ordered alphabetically) or a glossary is a set of entry labels where the set is
identified by the glossary label or type.

\gls-like

Commands like \ g1 s that change the first use flag. These commands index the entry (if index-
ing is enabled), create a hyperlink to the entry’s glossary listing (if enabled) and unset the first
use flag.

Indexing (or recording)

The process of saving the location (for example, the page number) and any associated information
that is required in the glossary. The data may be sorted and collated by an indexing application
as part of the document build.

Link text
The text produced by commands like \ g1 s that have the potential to be a hyperlink.

45

https://www.dickimaw-books.com/latex/novices/html/terminal.html
https://www.dickimaw-books.com/latex/novices/html/terminal.html

Semantic command

Essentially, a semantic command is one that’s associated with a particular document element,
idea or topic that hides the font and other stylistic formatting inside its definition. For exam-
ple, Latin taxonomy is usually displayed in italic. Explicitly using font commands, for example
\textit{Clostridium}, is syntactic markup. Whereas defining a command called,
say, \bacteria that displays its argument in italics is a semantic command. The actual
styling is hidden and the command relates specifically to a particular concept.

Syntactic: \textit{Clostridium}

\newrobustcmd*{\bacteria} [1]{\emph{#1}}%
Semantic: \bacteria{Clostridium}

The end result is the same:

Syntactic: Clostridium
Semantic: Clostridium

The advantage with semantic commands is that it’s much easier to change the style, simply by
adjusting the command definition. Note that I've used \newrobustcmd to make the se-
mantic command robust as the style commands can cause a problem if they expand too soon.
Alternatively, use \NewDocument Command.

Subsequent use
Using an entry that unsets the first use flag when it has already been unset.

Command Summary

A

\acronymname initial: Acronyms glossaries
(language-sensitive)

Expands to the title of the acronym glossary.

G

46

\G1s [(options)] { (label) } [(insert)] modifiers: * + glossaries

As \ g1ls but converts the first character of the link text to uppercase (for the start of a sentence)
using \makefirstuc.

\gls [(options)] { (label) } [(insert)] modifiers: * + glossaries

References the entry identified by (label). The text produced may vary depending on whether or
not this is the first use.

\glsabbrvonlyfont { (text)} glossaries—extra v1.17+

Short form font used by the “only” abbreviation styles.

\glsabbrvscfont { (fext) } glossaries—extra v1.17+

Short form font used by the small-caps “sc” abbreviation styles.

\glsdefaulttype inifial: main glossaries

Expands to the label of the default glossary.

\glsdisablehyper glossaries

Suppresses all glossary related hyperlinks.

\glsentrylong{ (entry-label) } glossaries

Simply expands to the value of the 1 ong field. Does nothing if the entry hasn’t been defined.
May be used in expandable contexts provided that the 1 ong field doesn’t contain any fragile
commands.

\glsentryshort { (entry-label) } glossaries

Simply expands to the value of the shoxrt field. Does nothing if the entry hasn’t been defined.

47

§3;20

§3; 19

§7; 41

May be used in expandable contexts provided that the short field doesn’t contain any fragile
commands.

\glsentrytext { (entry-label) } glossaries

Simply expands to the value of the text field. Does nothing if the entry hasn’t been defined.
May be used in expandable contexts provided that the t ext field doesn’t contain any fragile
commands.

\glsfmtshort { (entry-label) }

For use within captions or section titles to display the formatted short form.

\glsfmttext { (entry-label) }

For use within captions or section titles to display the formatted text.

\glslongonlyfont { (rext) } glossaries—extra v1.17+

Long form font used by the “only” abbreviation styles.

\glslowercase/{ (text) } glossaries v4.50+

Converts (text) to lowercase using the modern IATjEX3 case-changing command, which is expand-
able.

\glsnamefont { (rexr) } glossaries

Used within the predefined glossary styles to apply a font change to the name.

\glsnoexpandfields glossaries

Don’t expand field values when defining entries, except for those that explicitly have expansion
enabled.

48

§7;41

\G1spl [(options)] { (label) } [(insert)] modifiers: * + glossaries

As \G1s but uses the plural form.

\glspl [(options)] { (label) } [(insert)] modifiers: * + glossaries

As \gls but uses the plural form.

\GlsSetQuote/{ (character)} glossaries v4.24+

Set makeindex’s quote character to (character).

\glssymbol [(options)] { (label) } [(insert)] modifiers: * +

References the entry identified by (label). The text produced is obtained from the symbol
value. The (insert) argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag.

\GlsXtrLoadResources [(opfions)] glossaries—extra vi.11+

For use with bib2gls, this both sets up the resource options (which bib2gls can detect
from the aux file) and inputs the gl stex file created by b1b2gls.

\glsxtrnewsymbol [(key=value list)] { (label) } { (sym) } glossaries—extra
(requires \usepackage [symbols] {glossaries—-extra})

Defines a new glossary entry with the given label, t ype set to symbols, the category
setto symbol, the name set to (sym) and the sort set to (label). The optional argument is
a comma-separated list of glossary entry keys, which can be used to override the defaults.

L

\loadglsentries [(type)] { (filename) } glossaries

Locally assigns \glsdefaulttype to (type) and inputs (filename). If the optional ar-
gument is omitted, the default glossary is assumed. Note that if any entries within (filename)

49

§3;20

§3; 20

§3; 20

§2; 18

have the t ype key set (including implicitly in commands like \newacronym), then this will
override the type given in the optional argument.

\longnewglossaryentry/{ (label) } { (key=value list) } { (description) }
glossaries

Defines a new glossary entry with the given label. The second argument is a comma-separated
list of glossary entry keys. The third argument is the description, which may include paragraph
breaks.

\makefirstuc{ (rext)} mfirstuc

Robust command that converts the first character of (fext) to uppercase (sentence case). See the
mfirstuc documentation for further details, either:

texdoc mfirstuc \

orvisit ctan.org/pkg/mfirstuc.

\makeglossaries glossaries

Opens the associated glossary files that need to be processed by makeindex or x1ndy.

\makenoidxglossaries glossaries v4.04+

Sets up all glossaries so that they can be displayed with \printnoidxglossary.

N

\newabbreviation [(options)] { (label) } { (short) } { (long) } glossaries—extra

Defines a new entry that represents an abbreviation. This internally uses \newglossary-
ent ry and any provided (options) (glossary entry keys) will be appended. The category is
set to abbreviation by default, but may be overridden in (options). The appropriate style
should be set before the abbreviation is defined with \ setabbreviationstyle.

50

§2; 11

§2; 16

https://www.tug.org/texdoc/
https://ctan.org/pkg/mfirstuc

\newacronym [(options)] { (label) } { (short) } { (long) } glossaries

This command is provided by the base glossaries package but is redefined by glossaries—extra to
use \newabbreviation withthe category key setto acronym. With just the base
glossaries package, use \setacronymstyle to set the style. With glossaries—extra, use
\setabbreviationstyle[acronym] {(style)} to set the style that governs \new-
acronym.

\newglossary [(log-ext)] { (glossary-label) } { (out-ext) } { (in-ext) } { (title) }
glossaries

Defines a glossary identified by (glossary-label) (which can be referenced by the t ype key when
defining an entry).

\newglossary* { (glossary-label) } { (ritle) } glossaries v4.08+

A shortcut that supplies file extensions based on the glossary label:

\newglossary [(glossary-label)—g1qg] { (glossary-label) } { (glossary-label)—
gls}{(glossary-label)—glo} { (title) }

\newglossaryentry/{ (label) } { (key=value list) } glossaries

Defines a new glossary entry with the given label. The second argument is a comma-separated
list of glossary entry keys.

\newterm [(key=value list)] { (entry-label) } (requires i ndex package option)

Defines a new glossary entry with the given label, £ ype setto index, the name set to (entry-
label) and the description setto \nopostdesc. The optional argument is a comma-
separated list of glossary entry keys, which can be used to override the defaults.

\nopostdesc glossaries v1.17+

When placed at the end of the descript ion, this switches off the post-description punctu-
ation (if it has been enabled). Does nothing outside of the glossary.

51

§2; 15

§6; 36

§6; 36

§2: 11

§6; 36

\printglossaries glossaries

Iterates over all glossaries and does \printglossary [type=(type)] for each glossary.

\printglossary [(opfions)] glossaries

Displays the glossary by inputting a file created by makeindex or xindy. Must be used
with \makeglossaries and either makeindex or xindy.

\printnoidxglossaries glossaries v4.04+

Iterates over all glossaries and does \printnoidxglossary [type=(type)] for each
glossary.

\printnoidxglossary [(opfions)] glossaries v4.04+

Displays the glossary by obtaining the indexing information from the aux file and using TgX to
sort and collate. Must be used with \makenoidxglossaries. This method can be very
slow and has limitations.

\printunsrtglossaries glossaries—extra v1.08+

Iterates over all glossaries and does \printunsrtglossary [type=(type)] for each
glossary.

\printunsrtglossary | (opfions)] glossaries—extra v1.08+

Displays the glossary by iterating over all entries associated with the given glossary (in the order
in which they were added to the glossary). The location lists and group headers will only be
present if the associated fields have been set (typically by bib2gls).

S

52

§6; 39

§6; 38

§6; 39

\seealsoname inifial: see also glossaries—extra
(language-sensitive)

Used as a cross-reference tag.

\setabbreviationstyle [{(category)] { (style-name) } glossaries—extra

Sets the current abbreviation style to (style-name) for the category identified by (category).

the optional argument is omitted, abbreviation is assumed.

If

\setacronymstyle [(glossary-type)] { (style-name) } glossaries

Sets the acronym style. Don’t use with glossaries—extra.

\setglossarystyle{ (style name)} glossaries

Set the current glossary style to (style name).

53

§2; 16

§2;16

§5; 33

Index

Symbols
: (colon) 6,7
?? (unknown entry marker) 20
A
abbreviation styles 53, see

\setabbreviationstyle

long—short—sc 5
long—short 4,5
short—nolong 5
abbreviations 29, 36, 38
acronym 36
acronym styles see \setacronymstyle
long—sc—short 5
long—short—desc 16, 35
long—short 3,4, 16,20
short—long—desc 16
short—long 16
\acronymname 36, 46
acronyms 36
arara 31
automake 25,27
B

babel package 2,6,7
bib2gls 5, 8,10, 13, 15-17, 19-21,
28-33, 38, 40, 43, 49, 52

e see ——group
—-—group 30, 40
C
category
abbreviation 16, 50, 53
acronym 4,16, 51
D
datatool—base package 9,21
datatool—english 21,22

datatool package Table 1; 9, 21, 22

description environment 32
F
file formats
acn 36
acr 36
alg 36
aux 24, 26, 30, 52
bib 5,13, 14,28
glo 24,27, 39
gls 39
glstex 28
ist 24
log 4
tex 5
xdy 27
first use 45
first use flag 45
fontenc package 2
G
glossaries—extra package 4,28
glossaries—-french 2
glossaries—german 2
glossaries—(language) 2
glossaries package 2
glossary—mcols package 34
glossary 45
glossary entry keys
alias 43
category 49-51
description 2,3, 11, 16, 35, 36, 51
long 17,47
longplural 17
name 2,3,11, 14, 16-19, 28, 36, 48,
49, 51
plural 10, 15
see 42,43
seealso 43
short 17,47, 48

54

shortplural 17
sort 12, 18, 19, 28, 33, 49
symbol 17, 20, 49
text 14, 15,41, 48
type 35, 49-51
userl 30
glossary styles 53
altlist 34, 35
index 33
indexgroup 10
long4col 34
mcolindex 34
\Gls §3; 13, 20,41, 47,49
\gls §3;2-9, 14, 19, 20, 41, 45, 47, 49
\gls-like 10, 45
\glsabbrvonlyfont 47
\glsabbrvscfont 47
\glsdefaulttype 47,49
\glsdisablehyper §7,41,47
\glsentrylong 7,47
\glsentryshort 7,47
\glsentrytext §7;7,41,48
\glsfmtshort 7,48
\glsfmttext 7,42,48
\glslongonlyfont 48
\glslowercase 48
\glsnamefont 32,48
\glsnoexpandfields 4,48
\Glspl §3; 20, 41, 49
\glspl §3; 10, 20, 41, 49
\GlsSetQuote 49
\glssymbol §3; 20, 49
\GlsXtrLoadResources . §, 29, 30,
33, 36, 38, 49
save—locations 33,43
sort—-field 30
sort 29, 30
src 29, 38
type 29, 38
\glsxtrnewsymbol §2: 18, 49
H
hyperfirst 41

hyperref package 2,7,20, 40, 41
I
index 36, 51
indexing (or recording) 8, 45,52
inputenc package 2,12
\item 32
L
link text 4,45, 47, 49
\loadglsentries 5,49
\longnewglossaryentry §2;11, 50
lowercase 48
M
\makefirstuc 47, 50
\makeglossaries . 19,24-26, 36-38,
50, 52
makeglossaries—-lite = 24,25, 31,
32,39

makeglossaries 24-27, 31, 39, 40
makeindex . 8,10, 18, 21, 23, 24, 26, 36,

39, 49, 50, 52
\makenoidxglossaries 9,19,22,
37, 38, 50, 52
mfirstuc package 12, 13,50
N
\newabbreviation . §2;4-6, 16, 20,
35, 36, 50, 51
\newacronym §2:3-6, 15, 16, 20, 35,
36, 43, 50, 51
\newglossary §6; 36, 39, 51
\newglossary* §6; 36,51

\newglossaryentry . §2;2-4,6,11,
15, 16, 18, 36, 50, 51

\newterm §6; 36, 51
nogroupskip 9,33
nohypertypes 41
nonumberlist 10, 33,43
\nopostdesc 51
nopostdot 10, 32
numbers 29, 36

55

0]

Option 1 (“noidx”) . Table 1; 8, 21, 33, 37, 38

Option 2 (makeindex) Table 1; 8, 10, 18,
23, 26, 39

Option 3 (xindy) Table 1; 8, 10, 26, 28, 40

Option 4 (bib2gls) Table 1; 8, 10, 28, 33,

36, 40
order 25,27
P

polyglossia package 2
postdot 10
print [unsrtinoidx] glossary options

sort 22,24,27, 30

type 30, 37, 38, 52

\printglossaries §6;24,27,39,52
\printglossary 24,26, 36, 38, 45, 52

\printnoidxglossaries §6;9,23,
38, 52
\printnoidxglossary .. 22,36, 37,
50, 52
\printunsrtglossaries §6;8, 28,
30, 39, 52
\printunsrtglossary . 28,30, 33,
36, 38, 45, 52
R
record 8, 14, 28-30, 38

S
\seealsoname 43,53
semantic command 4,46
sentence case 20, 47, 50
\setabbreviationstyle = §2;4,5,
16, 35, 50, 51, 53
\setacronymstyle = §2;3,5, 16,35,
51, 53
\setglossarystyle . §5;33,35,53
sort 8, 24,27
style 10, 33, 34
stylemods 34
subsequent use 46
symbols 18, 19, 29, 36, 38, 49
T
\texorpdfstring 41
\textsc 5,16
U
uppercase . . 20, 47, 50, see also sentence case
X
xindy 8,10, 18, 21, 26-28, 36, 39, 40,
50, 52
xindy 26

56

	Getting Started
	Defining Terms
	\newglossaryentry
	\longnewglossaryentry
	\newacronym
	\setacronymstyle
	\newabbreviation
	\setabbreviationstyle
	\glsxtrnewsymbol

	Using Entries
	\gls
	\glspl
	\Gls
	\Glspl
	\glssymbol

	Displaying a List of Entries
	Customising the Glossary
	\setglossarystyle

	Multiple Glossaries
	\newglossary
	\newglossary*
	\newterm
	\printnoidxglossaries
	\printglossaries
	\printunsrtglossaries

	Hyperlinks (glossaries and hyperref)
	\glsdisablehyper
	\glsentrytext

	Cross-References
	Further Information
	Symbols
	Glossary
	Command Summary
	A
	G
	L
	M
	N
	P
	S

	Index
	Symbols
	A
	B
	C
	D
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	X

