| merge {SparkR} | R Documentation | 
Merges two data frames
merge(x, y, ...)
## S4 method for signature 'SparkDataFrame,SparkDataFrame'
merge(
  x,
  y,
  by = intersect(names(x), names(y)),
  by.x = by,
  by.y = by,
  all = FALSE,
  all.x = all,
  all.y = all,
  sort = TRUE,
  suffixes = c("_x", "_y"),
  ...
)
| x | the first data frame to be joined. | 
| y | the second data frame to be joined. | 
| ... | additional argument(s) passed to the method. | 
| by | a character vector specifying the join columns. If by is not
specified, the common column names in  | 
| by.x | a character vector specifying the joining columns for x. | 
| by.y | a character vector specifying the joining columns for y. | 
| all | a boolean value setting  | 
| all.x | a boolean value indicating whether all the rows in x should be including in the join. | 
| all.y | a boolean value indicating whether all the rows in y should be including in the join. | 
| sort | a logical argument indicating whether the resulting columns should be sorted. | 
| suffixes | a string vector of length 2 used to make colnames of
 | 
If all.x and all.y are set to FALSE, a natural join will be returned. If all.x is set to TRUE and all.y is set to FALSE, a left outer join will be returned. If all.x is set to FALSE and all.y is set to TRUE, a right outer join will be returned. If all.x and all.y are set to TRUE, a full outer join will be returned.
merge since 1.5.0
Other SparkDataFrame functions: 
SparkDataFrame-class,
agg(),
alias(),
arrange(),
as.data.frame(),
attach,SparkDataFrame-method,
broadcast(),
cache(),
checkpoint(),
coalesce(),
collect(),
colnames(),
coltypes(),
createOrReplaceTempView(),
crossJoin(),
cube(),
dapplyCollect(),
dapply(),
describe(),
dim(),
distinct(),
dropDuplicates(),
dropna(),
drop(),
dtypes(),
exceptAll(),
except(),
explain(),
filter(),
first(),
gapplyCollect(),
gapply(),
getNumPartitions(),
group_by(),
head(),
hint(),
histogram(),
insertInto(),
intersectAll(),
intersect(),
isLocal(),
isStreaming(),
join(),
limit(),
localCheckpoint(),
mutate(),
ncol(),
nrow(),
persist(),
printSchema(),
randomSplit(),
rbind(),
rename(),
repartitionByRange(),
repartition(),
rollup(),
sample(),
saveAsTable(),
schema(),
selectExpr(),
select(),
showDF(),
show(),
storageLevel(),
str(),
subset(),
summary(),
take(),
toJSON(),
unionAll(),
unionByName(),
union(),
unpersist(),
withColumn(),
withWatermark(),
with(),
write.df(),
write.jdbc(),
write.json(),
write.orc(),
write.parquet(),
write.stream(),
write.text()
## Not run: 
##D sparkR.session()
##D df1 <- read.json(path)
##D df2 <- read.json(path2)
##D merge(df1, df2) # Performs an inner join by common columns
##D merge(df1, df2, by = "col1") # Performs an inner join based on expression
##D merge(df1, df2, by.x = "col1", by.y = "col2", all.y = TRUE)
##D merge(df1, df2, by.x = "col1", by.y = "col2", all.x = TRUE)
##D merge(df1, df2, by.x = "col1", by.y = "col2", all.x = TRUE, all.y = TRUE)
##D merge(df1, df2, by.x = "col1", by.y = "col2", all = TRUE, sort = FALSE)
##D merge(df1, df2, by = "col1", all = TRUE, suffixes = c("-X", "-Y"))
##D merge(df1, df2, by = NULL) # Performs a Cartesian join
## End(Not run)