
Oxygen XML WebHelp Responsive plugin 24.1
User Guide

Contents

Chapter 1. Getting Started.. 5

Installing..5

Activating.. 6

Upgrading..7

Generating Output.. 7

Running WebHelp Responsive from Oxygen XML Editor/Author... 8

Running WebHelp Responsive from Command Line...8

Running WebHelp Responsive from an Integration Server... 10

Running WebHelp Responsive from a Docker image..13

Increasing Memory Allocation for Java...14

Chapter 2. Layout and Features.. 16

Layout of the Responsive Page Types...16

Search Engine...27

Context-Sensitive Help System...29

Accessibility..32

Writing Guidelines for Accessible Documentation.. 33

WebHelp Responsive VPAT Accessibility Conformance Report...38

Chapter 3. Deploying an Oxygen Feedback Comments Component...59

Chapter 4. Developer Reference..61

Processing Stages... 61

Publishing Templates.. 63

Publishing Templates Gallery..65

Publishing Template Package Contents.. 66

Transformation Parameters.. 99

XSLT-Import and XSLT-Parameter Extension Points..112

Chapter 5. Customization How to Guide... 116

Working with Publishing Templates...116

How to Create a Publishing Template..116

How to Edit a Packed Publishing Template...118

How to Add a Publishing Template to the Publishing Templates Gallery..118

How to Use a Publishing Template from a Command Line... 119

Contents | iii

How to Share a Publishing Template...120

Troubleshooting: Errors Encountered when Loading Templates..121

Converting Old Templates to Newer Versions...121

Changing the Layout and Styles...126

How to Use CSS Styling to Customize the Output.. 126

How to Insert Custom HTML Content... 128

How to Insert JavaScript AMD Modules..133

How to Change Numbering Styles for Ordered Lists.. 136

Adding Syntax Highlights for Codeblocks in the Output...137

How to Show or Hide Navigation Links in Topic Pages... 139

How to Change the Main Page Layout.. 139

Adding Graphics and Media Resources...145

How to Add a Logo Image in the Title Area.. 145

How to Add a Favicon... 146

How to Add Video and Audio Objects..147

How to Add MathML Equations in WebHelp Output...149

Searching the Output...149

How to Change Element Scoring in Search Results... 149

How to Exclude Certain DITA Topics from Search Results.. 150

How to Optimize Search Results.. 151

How to Index Japanese Content.. 153

Localization.. 154

How to Localize the Interface...154

How to Activate Support for Right-to-Left (RTL) Languages..157

Social Media and Google Tools... 157

How to Add a Facebook Like Button... 157

How to Add a Tweet Button..159

How to Integrate Google Analytics...161

How to Integrate Google Search.. 163

Ant Extensions for WebHelp Responsive.. 166

XSLT Extensions for WebHelp Responsive..168

How to Use XSLT Extension Points from a Publishing Template...169

How to Use XSLT Extension Points from a DITA-OT Plugin... 173

Contents | iv

Miscellaneous Customization Topics.. 177

How to Copy Additional Resources to Output Directory...177

How to Add an Edit Link to Launch Oxygen XML Web Author...178

How to Flag DITA Content.. 180

How to View MathML Equations in HTML Output.. 182

How to Disable Caching in WebHelp Responsive Output...182

How to Configure a Custom Search Engine.. 183

How to Add a Link to PDF Documentation..185

How to Add a Custom Component for WebHelp Output..186

How to Group Related Links by Type...190

Chapter 6. Glossary.. 191

Anchor...191

Block Element.. 191

Bookmap...191

DITA Map..191

DITA Open Toolkit..191

DITA-OT-DIR.. 192

Framework..192

Inline Element...192

Key Space...192

Root Map.. 192

WebHelp Output Directory.. 193

Index..a

Copyright.. d

1.
Getting Started
WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages

include platform independence, the ability to update content continuously, it can be viewed using a regular

web browser, and a comments component can be embedded in the output to provide an efficient way to

interact with users.

The WebHelp Responsive variant features a very flexible layout and is designed to adapt to any device

and screen size to provide an optimal viewing and interaction experience. It is based upon the Bootstrap

responsive front-end framework and is available for DITA document types.

Oxygen XML WebHelp Responsive plugin is a standalone product that requires its own license key. It provides

support for transforming DITA resources into WebHelp output by running a transformation script outside of

Oxygen XML Editor/Author. This is especially useful if you want to automate the output process.

Browser Compatibility

This output format is compatible with the most recent versions of the following common browsers:

• Edge

• Chrome

• Firefox

• Safari

• Opera

Installing WebHelp Responsive
The requirements of the Oxygen XML WebHelp Responsive plugin for the DITA Open Toolkit are as follows:

• Java Virtual Machine 1.8 or newer required by DITA-OT 3.7.0.

• DITA-OT 3.7.0 (includes Saxon 10.x libraries).

Note:

The Oxygen XML WebHelp Responsive plugin has only been tested with this specific version:

(DITA-OT 3.7.0. It is possible for the plugin to work with other versions, but only this version is

fully supported.

To install and integrate the Oxygen XML WebHelp Responsive plugin with the DITA-OT, follow these steps:

1. Download and install a Java Virtual Machine version compatible with the DITA-OT version.

2. Download and unpack the DITA Open Toolkit version 3.7.0.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.dita-ot.org/download

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 6

3. Go to Oxygen XML WebHelp website, download the latest DITA-OT version of the Oxygen XML

WebHelp Responsive plugin installation kit, and unzip it.

4. Copy all plugin directories from the unpacked archive to the plugins directory of the

DITA-OT distribution. This is necessary to enable certain functionality. For example, the

com.oxygenxml.highlight directory adds syntax highlight capabilities to your WebHelp output for

<codeblock> elements that contain source code snippets (XML, Java, JavaScript).

5. Register your license key (on page 6).

6. In the DITA-OT-DIR/bin directory of the DITA-OT, run one of the following scripts, depending on your

operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DITA-OT-DIR/bin/dita --install

7. To test the installation, initiate a publishing process by using one of the options found here: Generating

WebHelp Responsive Output (on page 7).

Related Information:

Activating WebHelp Responsive License (on page 6)

Upgrading WebHelp Responsive (on page 7)

DITA-OT Installing Plug-ins

Generating WebHelp Responsive Output (on page 7)

Activating WebHelp Responsive License
To register the license for the Oxygen XML WebHelp Responsive plugin for the DITA Open Toolkit, follow these

steps:

1. Obtain a valid license for the Oxygen XML WebHelp Plugin at https://www.oxygenxml.com/

buy_webhelp.html.

2. Create a file called licensekey.txt, copy your license key that you purchased for your Oxygen XML

WebHelp Responsive plugin, and place this file in the DITA-OT-DIR/ directory.

When you execute a WebHelp Responsive transformation (on page 7), the process reads the

Oxygen XML WebHelp Responsive plugin license key from this file. If the file does not exist, or it

contains an invalid license, an error message will be displayed.

Related Information:

Installing WebHelp Responsive (on page 5)

Upgrading WebHelp Responsive (on page 7)

https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html
http://www.dita-ot.org/dev/topics/plugins-installing.html
https://www.oxygenxml.com/buy_webhelp.html
https://www.oxygenxml.com/buy_webhelp.html

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 7

Upgrading WebHelp Responsive

Important:

The first step of the procedure below instructs you to delete old directories/files before proceeding

with the upgrade. It is recommended that you make a backup of these directories/files before deleting

them. Make sure you make a backup of the licensekey.txt file since you will need the information

contained in this file later in the upgrading procedure.

To upgrade your version of the Oxygen XML WebHelp Responsive plugin for the DITA-OT, follow these steps:

1. Navigate to the plugins directory of your DITA-OT distribution and delete the following

old Oxygen XML WebHelp Responsive plugin directories (com.oxygenxml.highlight,

com.oxygenxml.html.custom, com.oxygenxml.media, com.oxygenxml.webhelp.classic,

com.oxygenxml.webhelp.common, com.oxygenxml.webhelp.responsive).

2. Go to Oxygen XML WebHelp website, download the latest DITA-OT version of the Oxygen XML

WebHelp Responsive plugin installation kit, and unzip it.

3. Copy all plugin directories from the unpacked archive to the plugins directory of the

DITA-OT distribution. This is necessary to enable certain functionality. For example, the

com.oxygenxml.highlight directory adds syntax highlight capabilities to your WebHelp output for

<codeblock> elements that contain source code snippets (XML, Java, JavaScript).

4. Open the DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive directory, create a file

called licensekey.txt, and copy your license key that you purchased for your Oxygen XML WebHelp

Responsive plugin.

When you execute a WebHelp Responsive transformation (on page 7), the process reads the

Oxygen XML WebHelp Responsive plugin license key from this file. If the file does not exist, or it

contains an invalid license, an error message will be displayed.

5. In the DITA-OT-DIR/bin directory of the DITA-OT, run one of the following scripts, depending on your

operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DITA-OT-DIR/bin/dita --install

Related Information:

Installing WebHelp Responsive (on page 5)

Activating WebHelp Responsive License (on page 6)

Generating WebHelp Responsive Output
The publishing process can be initiated from a transformation scenario within Oxygen XML Editor/Author,

from a command line outside Oxygen XML Editor/Author, or from an integration server.

https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 8

Running WebHelp Responsive from Oxygen XML Editor/Author

To publish a DITA map (on page 191) as WebHelp Responsive output, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.

2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.

3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various

options in the following tabs:

◦ Templates Tab - This tab contains a set of built-in skins that you can use for the layout of your

WebHelp system output.

◦ Parameters Tab - This tab includes numerous transformation parameters (on page 99) that

can be set to customize your WebHelp system output.

◦ Feedback Tab - This tab is for those who want to add the Oxygen Feedback comments

component at the bottom of each WebHelp page so that you can interact with your readers.

◦ Filters Tab - This tab allows you to filter certain content elements from the generated output.

◦ Advanced Tab - This tab allows you to specify some advanced options for the transformation

scenario.

◦ Output Tab - This tab allows you to configure options that are related to the location where the

output is generated.

4. Click Apply associated to process the transformation.

Result: When the DITA Map WebHelp Responsive transformation is complete, the output is automatically

opened in your default browser.

Running WebHelp Responsive from Command Line

To publish to the WebHelp Responsive output from a command line outside of Oxygen XML Editor/Author,

you can use the dita startup script that comes bundled with DITA-OT distribution.

dita Command Format

DITA-OT dita command has the following format:

DITA-OT-DIR/bin/dita --format=webhelp-responsive --input=input-file options

where the arguments are as follows:

dita

Windows - The dita.bat script located in: DITA-OT-DIR (on page 192)\bin\.

Linux/macOS - The dita script file located in: DITA-OT-DIR (on page 192)/bin/.

--format=webhelp-responsive

Specifies the output format (transformation type) for WebHelp Responsive transformation.

https://www.oxygenxml.com/oxygen_feedback.html
https://www.oxygenxml.com/oxygen_feedback.html
https://www.oxygenxml.com/oxygen_feedback.html

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 9

--input=input-file

The input-file represents the path to the DITA map that you want to process.

options

options include the following optional build parameters:

--output=dir

-o dir

Specifies the path of the output directory; the path can be absolute or relative to

the current directory. By default, the output is written to the out subdirectory of the

current directory.

--filter=file

Specifies filter file(s) used to include, exclude, or flag content.

Relative paths are resolved against the current directory and internally converted to

absolute paths.

--temp=dir

-t dir

Specifies the location of the temporary directory.

--verbose

-v

Verbose logging.

--debug

-d

Debug logging.

--logfile=file

-l file

Write logging messages to a file.

--parameter=value

-Dparameter=value

Specify a value for a DITA-OT or Ant build parameter.

--propertyfile=file

Use build parameters defined in the referenced .properties file.

Build parameters specified on the command line override those set in the

.properties file.

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 10

WebHelp and DITA-OT parameters

In addition to the transformation parameters that are specific to WebHelp Responsive (on page 99), you

can use the common DITA-OT transformation parameters and the HTML-based Output Parameters.

Command-Line Example

• Windows:

 dita.bat

 --format=webhelp-responsive

 --input=c:\path\to\mySample.ditamap

 --output=c:\path\to\output

 -Dwebhelp.logo.image=myLogo.jpg

• Linux/macOS:

 dita

 --format=webhelp-responsive

 --input=/path/to/mySample.ditamap

 --output=/path/to/output

 -Dwebhelp.logo.image=myLogo.jpg

Tip:

You can also start the dita process by passing it a DITA OT Project File. Inside the project file you

can specify as parameters for the webhelp-responsive transformation type the WebHelp-related

parameters.

Related Information:

DITA-OT Documentation: Building Output Using the dita Command

DITA-OT Documentation: Publishing DITA Content

DITA-OT Documentation: HTML-based output parameters

WebHelp Responsive Transformation Parameters (on page 99)

Running WebHelp Responsive from an Integration Server

WebHelp output can be processed from an automatic publishing system, such as Jenkins or Travis.

Automating DITA to WebHelp Responsive Output with Jenkins

This procedure assumes that you have already integrated, configured, and registered the Oxygen XML

WebHelp Responsive plugin with the DITA Open Toolkit (on page 5).

To integrate WebHelp output with the Jenkins continuous integration tool, follow these steps:

http://www.dita-ot.org/dev/parameters/parameters-base.html
http://www.dita-ot.org/dev/parameters/parameters-base-html.html
https://www.dita-ot.org/dev/topics/using-project-files.html
http://www.dita-ot.org/dev/topics/build-using-dita-command.html
http://www.dita-ot.org/dev/topics/building-output.html
http://www.dita-ot.org/dev/parameters/parameters-base-html.html

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 11

1. Create a Maven project to incorporate the DITA-OT that already integrates Oxygen XML WebHelp

Responsive plugin.

2. Go to the root of your Maven project and edit the pom.xml file to include the following fragment:

<properties>

 <dita-ot-dir>${basedir}/tools/dita-ot</dita-ot-dir>

 <!--

 The path to the DITA map that you want to process.

 -->

 <input-file>path/to/input_file</input-file>

 <!--

 Specifies the path of the output directory.

 -->

 <output-dir>path/to/output_dir</output-dir>

 <!--

 The path to the WebHelp publishing template.

 -->

 <publishing-template>path/to/publishing_template</publishing-template>

 <!--

 DITA-OT optional build parameters.

 -->

 <options>-Dwebhelp.publishing.template=${publishing-template} -v</options>

</properties>

<plugin>

 <artifactId>exec-maven-plugin</artifactId>

 <groupId>org.codehaus.mojo</groupId>

 <executions>

 <execution>

 <!-- Run WebHelp Responsive transformation -->

 <id>run-webhelp-responsive</id>

 <phase>generate-sources</phase>

 <goals>

 <goal>exec</goal>

 </goals>

 <configuration>

 <executable>${dita-ot-dir}/bin/dita.bat --format=webhelp-responsive

 --input=${input-file} --output=${output-dir} ${options}</executable>

 </configuration>

 </execution>

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 12

 </executions>

</plugin>

3. Go to the Jenkins top page and create a new Jenkins job. Configure this job to suit your particular

requirements, such as the build frequency and location of the Maven project.

Automating DITA to WebHelp Responsive Output with Travis CI

This topic assumes you have a DITA project hosted on a GitHub public or private repository.

The goal of this tutorial is to help you set up a Travis continuous integration job that automatically publishes

your DITA project to GitHub pages after every commit. The published website will contain a feedback link on

each page that would allow a contributor to easily suggest changes to the documentation by creating a pull

request on GitHub with just a few clicks.

Enable the Travis CI Build

1. Sign in to Travis CI with your GitHub account, accepting the GitHub access permissions confirmation.

2. Once you are signed in, and you have synchronized your GitHub repositories, go to your profile page and

enable Travis CI for the repository you want to build.

Configure the Travis CI Build in your GitHub Project

1. Checkout your GitHub project locally.

2. Copy the .travis folder from here to the root directory of your project.

3. In the root of your GitHub project, add a file called .travis.yml with the following content:

language: dita

install:

 - echo "Installed"

script:

 - sh .travis/publish.sh

after_success:

 - sh .travis/deploy.sh

env:

 global:

 - DITAMAP=/path/to/your/ditamap/file

 - DITAVAL=/path/to/your/ditaval/file

 - ANT_OPTS=-Xmx1024M

Note:

Replace /path/to/your/ditamap/file and /path/to/your/ditaval/file with the appropriate

paths to your DITA map and ditaval files.

https://pages.github.com/
https://travis-ci.org
https://docs.travis-ci.com/user/github-oauth-scopes
https://travis-ci.org/profile
https://github.com/oxygenxml/oxygen-feedback-integration/tree/master/.travis

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 13

4. Create a GitHub personal access token by following this procedure.

5. Define an environment variable in the repository settings that has the name GH_TOKEN and the value

equal with the GitHub personal access token created earlier.

Register Your License Key

1. Edit your .gitignore file (or create it if it does not already exist) and add the following line:

licenseKey.txt

2. Copy your WebHelp license to the root of your GitHub project in a file called licenseKey.txt.

Important:

The licenseKey.txt file should not be committed to GitHub as it contains a license key that

is issued only to you.

3. Encrypt the license key file and add it to the .travis.yml configuration file. This way only the Travis

CI server will be able to decrypt it during the build process.

Commit to GitHub

1. Commit the following files and folders and push the commit to GitHub:

git add .gitignore licenseKey.txt.enc .travis.yml .travis/

git commit -m "Set up the Travis CI publishing system"

git push

2. Create a gh-pages branch in your GitHub project where the WebHelp Responsive output will be

published. You can follow the procedure here.

Running WebHelp Responsive from a Docker image
This topic explains how to install the WebHelp Responsive plugin in a Docker image.

To install the Oxygen XML WebHelp Responsive plugin in a Docker image, follow these steps:

1. Download and install Docker.

2. Create a folder (for example, webhelp-docker).

3. Move the licensekey.txt file for the WebHelp Responsive plugin to the newly created folder.

4. Create a new file named Dockerfile with the following content and store it in the newly created

folder:

Use the latest DITA-OT image as parent

FROM ghcr.io/dita-ot/dita-ot:3.6.1

Build argument form the WebHelp download link

ARG WEBHELP_DOWNLOAD_LINK

https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line
https://docs.travis-ci.com/user/environment-variables/#Defining-Variables-in-Repository-Settings
https://docs.travis-ci.com/user/encrypting-files/#Automated-Encryption
https://help.github.com/en/github/working-with-github-pages/creating-a-github-pages-site

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 14

Download the WebHelp zip kit.

RUN curl -o /tmp/oxygen-webhelp.zip ${WEBHELP_DOWNLOAD_LINK}

Unzip the WebHelp kit to the plugins directory of the DITA-OT distribution.

RUN unzip /tmp/oxygen-webhelp.zip -d /opt/app/plugins

Remove the WebHelp zip.

RUN rm /tmp/oxygen-webhelp.zip

Copy the license key.

COPY licensekey.txt /opt/app/

Install the WebHelp plugins.

RUN dita --install

5. Build an image from the Dockerfile by running the following command:

docker image build --build-arg

 WEBHELP_DOWNLOAD_LINK=https://www.oxygenxml.com/InstData/WebHelp/oxygen-webhelp-dot-3.x.zip

 -t webhelp-docker:23.1 ${PATH_TO_DOCKERFILE}

6. Run a WebHelp Responsive transformation from docker:

docker run -it \

-v ${PATH_TO_DITAMAP}:/src webhelp-docker:23.1 \

-i /src/map.ditamap \

-o /src/out \

-f webhelp-responsive -v

Attention:

Make sure that you do not violate the license model. More information can be found in the

Oxygen XML WebHelp Responsive plugin End-User License Agreement.

Increasing Memory Allocation for Java
If you are working with a large project with extensive metadata or key references, you may need to increase

the amount of memory that is allocated to the Java process that performs the publishing.

When the Transformation is Started from Oxygen

To alter the memory allocation setting from the transformation scenario, follow these steps:

1. Open the Configure Transformation Scenario(s) dialog box.

2. Select your transformation scenario, then click Edit.

3. Go to the Advanced tab.

https://www.oxygenxml.com/eula_webhelp.html

Oxygen XML WebHelp Responsive plugin 24.1 | 1 - Getting Started | 15

4. Locate the JVM Arguments and increase the default value. For instance, to set 2 gigabytes as the

maximum amount of memory, you can use: -Xmx2g. If you do not specify the -Xmx value in this field,

by default, the application will use a maximum of 512 megabytes when used with a 32-bit Java Virtual

Machine and one gigabyte with a 64-bit Java Virtual Machine.

Note:

This memory setting is used by both the DITA-OT process and the Chemistry CSS processor.

When the Transformation is Started from the Command Line

There can be two situations where an out of memory error can be triggered:

• From the DITA-OT basic processing (the preparation of the merged XML document).

• From the Chemistry PDF CSS processor (the transformation of the merged XML document to PDF).

To solve both of them, you can change the value of the ANT_OPTS environment variable from a command line

for a specific session.

Example: To increase the JVM memory allocation to 1024 MB for a specific session, issue the following

command from a command prompt (depending on your operating system):

• Windows

set ANT_OPTS=%ANT_OPTS% -Xmx1024M

• Linux/macOS

export ANT_OPTS="$ANT_OPTS -Xmx1024M"

Tip:

To persistently change the memory allocation, change the value allocated to the ANT_OPTS

environment variable on your system.

If the Chemistry PDF CSS processor fails with an Out Of Memory Error, try adding the baseJVMArgLine

parameter to the DITA-OT command line. For example:

-DbaseJVMArgLine=-Xmx984m

2.
Layout and Features
The WebHelp Responsive features a very flexible layout and is designed to adapt to any screen size to provide

an optimal viewing and interaction experience. It is based upon the Bootstrap responsive front-end framework

and is available for DITA document types.

Layout of the Responsive Page Types
You can select from several different styles of layouts (for example, by default, you can select either a tiles or

tree style of layout). Furthermore, each layout includes a collection of skins that you can choose from, or you

can customize your own.

Figure 1. WebHelp Responsive Output on a Normal Screen

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 17

Figure 2. WebHelp Responsive Output on a Narrow Screen

Main Page

The Main Page is the home page generated in the WebHelp Responsive output. The main function of the

home page is to display top-level information and provide links that help you easily navigate to any of the top-

level topics of the publication. These links can be rendered in either a Tiles or Tree style of layout. The main

page also consists of various other components, such as a logo, title, menu, search field, or index link.

Main Page - Tiles Layout

In the tiles presentation mode, a tile component is created for each chapter (first-level topic) in the publication.

The tile presents a link to the topic and its short description.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 18

Figure 3. Main Page - Tiles Layout

1. Logo Component (on page 19)

2. Title Component (on page 19)

3. Search Input Component (on page 20)

4. Menu Component (on page 20)

5. Index Terms Link Component (on page 20)

6. Topic Tiles Component (on page 20)

7. Footer Component (on page 20)

Main Page - Tree Layout

In the tree presentation mode, links to the first and second level topics in the publication are displayed using a

tree-like component.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 19

Figure 4. Main Page - Tree Layout

1. Logo Component (on page 19)

2. Title Component (on page 19)

3. Search Input Component (on page 20)

4. Menu Component (on page 20)

5. Index Terms Link Component (on page 20)

6. Table of Contents Component (on page 20)

7. Footer Component (on page 20)

Main Page Components

The layout components displayed in the main page are:

Publication Title

The title of the publication. It is usually taken from the DITA map title.

Logo

Displays a logo associated with the publication. Additionally, you can set a target URL that will be

opened when you click on the logo image.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 20

The logo image can be specified using the webhelp.logo.image transformation parameter (on

page 100). For the target URL, use the webhelp.logo.image.target.url parameter (on page

100).

Menu

Helps you to navigate to your documentation. This component presents a set of links to

all topics from your publication. For information about customizing the menu, see How to

Customize the Menu (on page 139) topic.

Index Terms Link

Presents a link to the index terms page. You can control if this component is displayed by using

the webhelp.show.indexterms.link parameter (on page 109).

Search Input

An input text field where you can enter search queries.

Topic Tiles

A tile associated with a main topic. Each topic tile has three sections that correspond to the

topic title, short description, and image.

Topic Tile Title

Presents the navigation title of the associated topic.

Topic Tile Short Description

Presents the short description of the topic. It may be collected either from the topic

or from the DITA map topic meta.

Topic Tile Image

Presents an image associated with the topic. The image association (on page

139) is done in the DITA map.

Tree Table of Contents

An area that contains first and second-level topic titles from your publication.

Page Footer

WebHelp Responsive output footer.

Topic Page

The Topic Page is the page generated for each DITA topic in the WebHelp Responsive output. The HTML

pages produced for each topic consist of the topic content along with various other additional components,

such as a title, menu, navigation breadcrumb, print icon, or side table of contents.

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/shortdesc.html

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 21

Figure 5. Topic Page

1. Logo Component (on page 22)

2. Title Component (on page 21)

3. Search Input Component (on page 22)

4. Menu Component (on page 22)

5. Index Terms Link Component (on page 22)

6. Expand/Collapse All Sections Component (on page 22)

7. Navigation Links Component (on page 22)

8. Print Link Component (on page 22)

9. Breadcrumb Component (on page 22)

10. Publication Table of Contents Component (on page 23)

11. Topic Content Component (on page 22)

12. Topic Table of Contents Component (on page 23)

Topic Page Components

The layout components displayed in this page are:

Publication Title

The title of the publication. It is usually taken from the DITA map title.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 22

Logo

Displays a logo associated with the publication. Additionally, you can set a target URL that will be

opened when you click on the logo image.

The logo image can be specified using the webhelp.logo.image transformation parameter (on

page 100). For the target URL, use the webhelp.logo.image.target.url parameter (on page

100).

Menu

Helps you to navigate to your documentation. This component presents a set of links to

all topics from your publication. For information about customizing the menu, see How to

Customize the Menu (on page 139) topic.

Index Terms Link

Presents a link to the index terms page. You can control if this component is displayed by using

the webhelp.show.indexterms.link parameter (on page 109).

Search Input

An input text field where you can enter search queries.

Navigation Links

The navigation links (Previous / Next arrows) can be used to navigate to the previous

or next topic. These navigation links are controlled by the collection-type attribute. For

example, if you set collection-type="sequence" on a parent topic reference, navigation links

will be generated in the output for that topic and all of its child topics. You can also use the

webhelp.default.collection.type.sequence parameter and set its value to yes to generate

navigation links for all topics, regardless of whether or not the collection-type attribute is

present.

Tip:

To hide the navigation links, you can edit the transformation scenario and set the value

of the webhelp.show.navigation.links parameter to no.

Expand/Collapse Sections Button

Icon that expands or collapses sections listed in the side table of contents within a topic.

Print Link

A print icon that opens the print dialog box for your particular browser.

Breadcrumb

Presents the path of the current displayed DITA topic.

Topic Content

Presents the content of the associated DITA topic.

https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html#Artefact/Maps/c_Collection_Types.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html#Artefact/Maps/c_Collection_Types.html

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 23

Publication Table of Contents

A Table of Content for the publication displayed in the left side of the screen. You can use the

button to collapse the table of contents (or the button to expand it).

Topic Table of Contents (On this page links)

A table of contents for the topic displayed on the right side with a heading named On this page

and it contains links to each section within the current topic and the section corresponding to

the current scroll position is highlighted. This component is generated for any topic that contains

at least two <section> elements and each <section> must have an @id attribute. You can use the

 button to collapse the table of contents (or the button to expand it).

Page Footer

WebHelp Responsive output footer.

Search Page

The Search Page presents search results in the WebHelp Responsive output. The HTML page consists of a

search results component along with various other additional components, such as a title, menu, or index link.

When you enter search terms in the Search field, the results are displayed in a results page. When you click

on a result, the topic is opened in the main pane and the search results are highlighted. If you want to remove

the colored highlights, click the Toggle Highlights button at the top-right side of the page. The Search field

also includes an autocomplete feature.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 24

Figure 6. Search Results Page

1. Logo Component (on page 24)

2. Title Component (on page 24)

3. Search Input Component (on page 25)

4. Menu Component (on page 25)

5. Index Terms Link Component (on page 25)

6. Search Results Component (on page 25)

7. Footer Component (on page 25)

Search Page Components

The layout components displayed in the search page are:

Publication Title

The title of the publication. It is usually taken from the DITA map title.

Logo

Displays a logo associated with the publication. Additionally, you can set a target URL that will be

opened when you click on the logo image.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 25

The logo image can be specified using the webhelp.logo.image transformation parameter (on

page 100). For the target URL, use the webhelp.logo.image.target.url parameter (on page

100).

Menu

Helps you to navigate to your documentation. This component presents a set of links to

all topics from your publication. For information about customizing the menu, see How to

Customize the Menu (on page 139) topic.

Index Terms Link

Presents a link to the index terms page. You can control if this component is displayed by using

the webhelp.show.indexterms.link parameter (on page 109).

Search Input

An input text field where you can enter search queries.

Search Results

Each result includes the topic title that can be clicked to open that page. Under the title, a

breadcrumb is displayed that shows the path of the topic and you can click any of the topics in

the breadcrumb to open that particular page.

Page Footer

WebHelp Responsive output footer.

Auto-complete Suggestions in the Search Text Field

When you are typing in the search text field, proposals are presented to help you to compute the search query.

The information proposed when you are typing is collected from:

• The search queries from the history of the previous searches.

• The titles collected from your documentation.

• Documentation index terms and keywords. For example, in a DITA topic, the keywords and index terms

are specified in the topic prolog section like this:

<prolog>

 <metadata>

 <keywords><indexterm>databases</indexterm></keywords>

 <keyword>installing</keyword>

 <keyword>uninstalling</keyword>

 <keyword>prerequisites</keyword>

 </metadata>

</prolog>

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 26

Missing Terms

If you enter multiple search terms (other than stop words), for any result that the search engine found at least

one term but not one or more of the other terms, the Missing terms will be listed below each result.

Related information

WebHelp Responsive Search Engine (on page 27)

Index Terms Page

The Index Terms Page page consists of an index terms section along with various other additional

components, such as a title, menu, or search field.

An alphabet that contains the first letter of the documentation index terms is generated at the top of the index

page. Each letter represents a link to a specific indices section. The indexes are presented in multiple columns

to make it easier to read this page.

Figure 7. Index Terms Page

1. Logo Component (on page 27)

2. Title Component (on page 27)

3. Menu Component (on page 27)

4. Index Terms Link Component (on page 27)

5. Index Terms Component (on page 27)

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 27

6. Alphabet Links Component (on page 27)

7. Footer Component (on page 27)

Index Terms Page Components

The layout components displayed in this page are:

Publication Title

The title of the publication. It is usually taken from the DITA map title.

Logo

Displays a logo associated with the publication. Additionally, you can set a target URL that will be

opened when you click on the logo image.

The logo image can be specified using the webhelp.logo.image transformation parameter (on

page 100). For the target URL, use the webhelp.logo.image.target.url parameter (on page

100).

Menu

Helps you to navigate to your documentation. This component presents a set of links to

all topics from your publication. For information about customizing the menu, see How to

Customize the Menu (on page 139) topic.

Index Terms Link

Presents a link to the index terms page. You can control if this component is displayed by using

the webhelp.show.indexterms.link parameter (on page 109).

Index Terms Alphabet

An alphabet that contains the first letter of index terms. Each letter represents a link to a specific

indices section.

Index Terms

The first letter of the index along with the list of index terms.

Page Footer

WebHelp Responsive output footer.

Search Engine
Search engine has two main components:

Search indexer

It is also known as a spider. This component is active when you publish your documentation to

WebHelp and it is responsible for creating the search index. This component traverses all HTML

pages (for DITA topics) to gather information.

Search interface

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 28

This component is an interface between the user and the search index. It helps the user to

search through the search index and displays results in the search page.

Search Field and Results Page

When you enter search terms in the Search field, the results are displayed in a results page. When you click

on a result, the topic is opened in the main pane and the search results are highlighted. If you want to remove

the colored highlights, click the Toggle Highlights button at the top-right side of the page. The Search field

also includes an autocomplete feature.

Each result includes the topic title that can be clicked to open that page. Under the title, a breadcrumb is

displayed that shows the path of the topic and you can click any of the topics in the breadcrumb to open that

particular page.

If you enter multiple search terms (other than stop words), for any result that the search engine found at least

one term but not one or more of the other terms, the Missing terms will be listed below each result.

5-Star Rating Mechanism and Sorting

The Search feature is also enhanced with a rating mechanism that computes scores for every result that

matches the search criteria. These scores are then translated into a 5-star rating scheme and the stars are

displayed to the right of each result. The search results are sorted depending on the following:

• Search entries that satisfy the phrase search criterion are presented first.

• The number of keywords found in a single page (the higher the number, the better).

• The context (for example, a word found in a title, scores better than a word found in unformatted text).

The search ranking order, sorted by relevance is as follows:

◦ The search term is included in a meta keyword.

◦ The search term is in the title of the page.

◦ The search term is in bold text in a paragraph.

◦ The search term is in normal text in a paragraph.

Tag Element Scoring Values

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results.

For information about editing these values, see How to Change Element Scoring in Search Results (on page

149).

Search Rules

Rules that are applied during a search include:

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 29

• You can use quotes to perform an exact search for multiple word phrases (for example, "grow flowers"

will only return results if both words are found consecutively and exactly as they are typed in the search

field). This type of search is known as a phrase search.

• Boolean Search is supported using the following operators: and, or, not. When there are two adjacent

search terms without an operator, or is used as the default search operator (for example, grow flowers

is the same as grow or flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate

keywords.

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".")

characters count as a single word.

• Your search terms should contain two or more characters (note that stop words will be ignored). This

rule does not apply to CJK (Chinese, Japanese, Korean) languages.

• When searching for multi-word phrases in CJK (Chinese, Japanese, Korean) languages that often have

multiple words appear in strings without a space separator, you need to add a space to separate the

words. Otherwise, WebHelp will not find results. For example, Chinese uses a specialized character for

space separators, but the current WebHelp implementation cannot detect such specialized characters,

so to search for 开始之前 (it translates as "before you begin" or "before start"), you have to enter 开始 之

前 (notice the space between the second and third symbols) in the search field.

Tip:

The <indexterm> and <keywords> DITA elements are an effective way to increase the ranking of a page

(for example, content inside a keywords element weighs more than an H1 HTML element).

Excluded Terms

To improve performance, the Search feature excludes certain stop words. For example, the English version of

the stop words includes: a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that,

the, their, then, there, these, they, this, to, was, will, with.

Related Information:

WebHelp Responsive HTML5 Pages: Search Page (on page 23)

Context-Sensitive Help System
Context-sensitive help systems assist users by providing specific informational topics for certain components

of a user interface, such as a button or window. This mechanism works based on mappings between a unique

ID defined in the topic and a corresponding HTML page.

Generating Context-Sensitive Help

When WebHelp Responsive output is generated, the transformation process produces an XML mapping file

called context-help-map.xml and copies it in the output folder of the transformation. This XML file maps

an ID to a corresponding HTML page through an <appContext> element, as in the following example:

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 30

<map productID="oxy-webhelp" productVersion="1.1">

 <appContext helpID="myapp-functionid1" path="tasks/app-help1.html"/>

 <appContext helpID="myapp-functionid2" path="tasks/app-help1.html"/>

 . . .

</map>

The possible attributes are as follows:

helpID

A Unique ID provided by a topic from two possible sources (<resourceid> element or @id

attribute):

resourceid

The <resourceid> element is mapped into the <appContext> element and can be

specified in either the <topicref> within a DITA map or in a <prolog> within a DITA

topic. The <resourceid> element accepts the following attributes:

• appname - A name for the external application that references the topic. If

this attribute is not specified, its value is considered to be empty ("").

• appid - An ID used by an application to identify the topic.

• id - Specifies a value that is used by a specific application to identify the

topic, but this attribute is ignored if an @appid attribute is used.

Note:

Multiple @appid values can be associated with a single appname value (and

multiple @appname values can be associated with a single @appid value), but

the values for both attributes work in combination to specify a specific ID

for a specific application, and therefore each combination of values for

the @appid and @appname attributes should be unique within the context of a

single root map (on page 192). For example, suppose that you need two

different functions of an application to both open the same WebHelp page.

Example: The <resourceid> Element Specified in a DITA Map

The <resourceid> element can be specified in a <topicmeta> element within a

<topicref>.

<map title="App Help">

 <topicref href="app-help1.dita" type="task">

 <topicmeta>

 <resourceid appname="myapp" appid="functionid1"/>

 <resourceid appname="myapp" appid="functionid2"/>

 </topicmeta>

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 31

 </topicref>

</map>

Example: The <resourceid> Element Specified in a DITA Topic

The <resourceid> element can be specified in a <prolog> element within a DITA topic.

<task id="app-help1">

 <title>My App Help</title>

 <prolog>

 <resourceid appname="myapp" appid="functionid1"/>

 <resourceid appname="myapp" appid="functionid2"/>

 </prolog>

...

</task>

For more information about the <resourceid> element, see DITA Specifications:

<resourceid>.

id

If a <resourceid> element is not declared in the DITA map or DITA topic (as

described above), the @id attribute that is set on the topic root element is mapped

into the <appContext> element.

Important:

You should ensure that these defined IDs are unique in the context of the

entire DITA project. If the IDs are not unique, the transformation scenario

will display warning messages in the transformation console output and

the help system will not work properly.

path

The path to a corresponding WebHelp page. This path is relative to the location of the context-

help-map.xml mapping file.

There are two ways of implementing context-sensitive help in your system:

• The XML mapping file can be loaded by a PHP script on the server side. The script receives the

contextId value and will look it up in the XML file.

• Invoke the cshelp.html WebHelp system file and pass the contextId parameter with a specific value.

The WebHelp system will automatically open the help page associated with the value of the contextId

parameter.

cshelp.html?contextId=myDITATopic

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/resourceid.html#resourceid__attributes
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/resourceid.html#resourceid__attributes

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 32

Note:

The contextId parameter is not case-sensitive.

Attention:

Prior to version 24.1, the method was to invoke the index.html file. The system still works

using this method but it has been deprecated and its functionality will be removed in a future

version.

Context-Sensitive Queries

You can use the URL field in your browser to search for topics in a context-sensitive WebHelp system with the

assistance of the following parameters:

contextId

The WebHelp JavaScript engine will look for this value in the context-help-map.xml

mapping file and load the corresponding help page.

Note:

You can use an anchor (on page 191) in the contextId parameter to jump to a specific

section in a document. For example, contextId=topicID#anchor.

appname

You can use this parameter in conjunction with contextId to search for this value in the

corresponding appname attribute value in the mapping file.

http://localhost/webhelp/cshelp.html?contextId=topicID&appname=myApplication

Another parameter indicates the search query:

searchQuery

You can use this parameter to perform a search operation when WebHelp is loaded. For

example, if you want to open WebHelp showing all search results for growing flowers, the URL

should look like this: http://localhost/webhelp/index.html?searchQuery=growing

%20flowers.

Accessibility
Oxygen XML WebHelp Responsive output is compliant with the Section 508 accessibility standard, making

the output accessible for people with visual impairment and other disabilities. Documentation and interface

components are considered accessible when they have support in place that allows those with disabilities to

use assistive technologies to understand the content.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 33

Generally speaking, the WebHelp Responsive output has two major parts: topic content and WebHelp

Responsive-related components (publication TOC, breadcrumb, menu). While the WebHelp Responsive

components are designed to comply with the accessibility rules, it is important to adhere to some rules when

you write DITA topics so that the content is also accessible.

Related Information:

DITA-OT Day 2017 Presentation: Accessibility in DITA-OT

Writing Guidelines for Accessible Documentation

To create accessible content, good authoring practices involve following guidelines, such as marking table

headers, using semantic elements where available, and using alternative text for images.

Accessible Images

Images must have text alternatives that describe the information or function represented by them.

Short Text Equivalents for Images

When using the 

Long Descriptions of Images

For complex images, when a short text equivalent does not suffice to adequately convey the function or role of

an image, provide additional information in a file designated by the <longdescref> element.

<image href="puffin.jpg">

 <alt>Puffin figure</alt>

 <longdescref href="http://www.example.org/birds/puffin.html"

 scope="external"

 format="html"/>

</image>

Related Information:

Darwin Information Typing Architecture (DITA) Specification 

 <area>

 <shape>circle</shape>

 <coords>172, 265, 14</coords>

 <xref href="parts/bushings.dita#bushings_topic/bushings"

 format="dita">Bushings</xref>

 </area>

 <area>

 <shape>circle</shape>

 <coords>324, 210, 14</coords>

 <xref href="parts/ports.dita#ports_topic/sucction_port" format="dita"

 >Suction Port</xref>

 </area>

</imagemap>

Related Information:

Darwin Information Typing Architecture (DITA) Specification <imagemap> element

Accessible Tables

Accessible HTML tables need markup that indicates header cells and data cells and defines their relationship.

Header cells must be marked with <th>, and data cells with <td>, to make tables accessible. For more complex

tables, explicit associations may be needed using @scope, @id, and @headers attributes.

When you implement the table, it is best to use the <table> element (CALS table or OASIS Table Exchange

Model). The <table> element includes all that you need to make a fully accessible table.

Related Information:

Darwin Information Typing Architecture (DITA) Specification <table> element

Table with Header Cells in the Top Row Only

For this type of table, you have to embed the table rows in the <thead> element.

Table 1. Example: Oxygen Events

Event Date Location

Evolution of TC 2018 May 31 - June 1, 2018 Sofia, Bulgaria

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/imagemap.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/table.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/table.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/base/table.html

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 35

Table 1. Example: Oxygen Events (continued)

Event Date Location

Markup UK June 9 - 10, 2018 London, United Kingdom

Balisage 2018 - The Markup Con

ference

July 31 - August 3, 2018 Rockville, Maryland, USA

<table colsep="1" rowsep="1" frame="all">

 <title>

 Oxygen Events

 </title>

 <tgroup cols="3">

 <colspec colname="COLSPEC0" colwidth="1*"/>

 <colspec colname="COLSPEC1" colwidth="1.1*"/>

 <colspec colname="newCol3" colwidth="1*"/>

 <thead>

 <row>

 <entry colname="COLSPEC0" valign="top">Event</entry>

 <entry colname="COLSPEC1" valign="top">Date</entry>

 <entry>Location</entry>

 </row>

 </thead>

 <tbody>

 <row>

 <entry>Evolution of TC 2018</entry>

 <entry>May 31 - June 1, 2018</entry>

 <entry>Sofia, Bulgaria</entry>

 </row>

 <row>

 <entry>Markup UK</entry>

 <entry>June 9 - 10, 2018</entry>

 <entry>London, United Kingdom</entry>

 </row>

 <row>

 <entry>Balisage 2018 - The Markup Conference</entry>

 <entry>July 31 - August 3, 2018</entry>

 <entry>Rockville, Maryland, USA</entry>

 </row>

 </tbody>

 </tgroup>

</table>

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 36

Table with Header Cells in the First Column Only

For this type of table, you have to set the rowheader="firstcol" attribute on the <table> element to identify the

header column.

Table 2. Example: Oxygen Events

Event
Evolution of TC 2018 Markup UK Balisage 2018 - The

Markup Conference

Date May 31 - June 1, 2018 June 9 - 10, 2018 July 31 - August 3, 2018

Location Sofia, Bulgaria London, United Kingdom Rockville, Maryland, USA

<table rowheader="firstcol" colsep="1" rowsep="1" frame="all">

 <title>

 Oxygen Events

 </title>

 <tgroup cols="4">

 <colspec colname="COLSPEC0" colwidth="1*"/>

 <colspec colname="COLSPEC1" colwidth="1.1*"/>

 <colspec colname="newCol3" colwidth="1*"/>

 <colspec colname="newCol4" colwidth="1*"/>

 <tbody>

 <row>

 <entry>Event</entry>

 <entry>Evolution of TC 2018</entry>

 <entry>Markup UK</entry>

 <entry>Balisage 2018 - The Markup Conference</entry>

 </row>

 <row>

 <entry>Date</entry>

 <entry>May 31 - June 1, 2018</entry>

 <entry>June 9 - 10, 2018</entry>

 <entry>July 31 - August 3, 2018</entry>

 </row>

 <row>

 <entry>Location</entry>

 <entry>Sofia, Bulgaria</entry>

 <entry>London, United Kingdom</entry>

 <entry>Rockville, Maryland, USA</entry>

 </row>

 </tbody>

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 37

 </tgroup>

</table>

Table with Header Cells in the Top Row and First Column

For this type of table, you can use <thead> to identify header rows and @rowheader to identify a header column.

Table 3. Example: Bus Timetable

Mon

day

Tues

day

Wednes

day

Thurs

day
Friday

09:00 - 11:00 Closed Open Open Closed Closed

11:00 - 13:00 Open Open Closed Closed Closed

13:00 - 15:00 Open Open Open Closed Closed

15:00 - 17:00 Closed Closed Closed Open Open

<table id="table_dqk_n24_vdb" rowheader="firstcol" colsep="1" rowsep="1" frame="all">

 <title>Example: Bus Timetable</title>

 <tgroup cols="6">

 <colspec colnum="1" colname="col1"/>

 <colspec colnum="2" colname="col2"/>

 <colspec colnum="3" colname="col3"/>

 <colspec colnum="4" colname="col4"/>

 <colspec colnum="5" colname="col5"/>

 <colspec colnum="6" colname="col6"/>

 <thead>

 <row>

 <entry/>

 <entry>Monday</entry>

 <entry>Tuesday</entry>

 <entry>Wednesday</entry>

 <entry>Thursday</entry>

 <entry>Friday</entry>

 </row>

 </thead>

 <tbody>

 <row>

 <entry>09:00 - 11:00</entry>

 <entry>Closed</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Closed</entry>

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 38

 <entry>Closed</entry>

 </row>

 <row>

 <entry>11:00 - 13:00</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 </row>

 <row>

 <entry>13:00 - 15:00</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 </row>

 <row>

 <entry>15:00 - 17:00</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 <entry>Closed</entry>

 <entry>Open</entry>

 <entry>Open</entry>

 </row>

 </tbody>

 </tgroup>

</table>

WebHelp Responsive VPAT Accessibility Conformance Report

International Edition

VPAT® Version 2.3 – April 2019

Product Name/Version

Oxygen XML WebHelp Responsive

Product Description

Oxygen XML WebHelp Responsive enables you to publish DITA content on the web and present

it in a user-friendly interface that is easy to navigate. You can design your WebHelp Responsive

output to be available on desktop systems or various mobile devices. With Oxygen XML

WebHelp Responsive, your published content is accessible, interactive, and convenient.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 39

Date

May 2019

Contact Information

support@oxygenxml.com

Notes

Oxygen XML WebHelp Responsive has been designed and enhanced to adhere to the U.S.

Government Section 508 accessibility standards and the Web Content Accessibility Guidelines

(WCAG). For details, see WebHelp Responsive Accessibility (on page 32).

Evaluation Methods Used:

The following applications were used for testing Oxygen XML WebHelp Responsive:

• Desktop browsers: Chrome, Firefox, Safari, Edge.

• Assistive technologies: NVDA, VoiceOver, JAWS, Microsoft Narrator.

Applicable Standards/Guidelines

This report covers the degree of conformance for the following accessibility standards/guidelines:

Standard/Guideline Included In Report

Web Content Accessibility Guidelines 2.0 Level A - Yes

Level AA - Yes

Level AAA - No

Web Content Accessibility Guidelines 2.1 Level A - Yes

Level AA - Yes

Level AAA - No

Revised Section 508 standards published January 18, 2017 and corrected January

22, 2018

Yes

EN 301 549 Accessibility requirements suitable for public procurement of ICT prod

ucts and services in Europe - V2.1.2 (2018-08)

No

Terms

The terms used in the Conformance Level information are defined as follows:

• Supports: The functionality of the product has at least one method that meets the criterion without

known defects or meets with equivalent facilitation.

• Partially Supports: Some functionality of the product does not meet the criterion.

• Does Not Support: The majority of product functionality does not meet the criterion.

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
http://www.w3.org/TR/2008/REC-WCAG20-20081211
https://www.w3.org/TR/WCAG21
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/02.01.02_60/en_301549v020102p.pdf
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/02.01.02_60/en_301549v020102p.pdf

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 40

• Not Applicable: The criterion is not relevant to the product.

• Not Evaluated: The product has not been evaluated against the criterion. This can be used only in

WCAG 2.0 Level AAA.

WCAG 2.x Report

Tables 1 and 2 also document conformance with:

Revised Section 508: Chapter 5 – 501.1 Scope, 504.2 Content Creation or Editing, and Chapter 6 – 602.3

Electronic Support Documentation.

Note:

When reporting on conformance with the WCAG 2.x Success Criteria, they are scoped for full pages,

complete processes, and accessibility-supported ways of using technology as documented in

theWCAG 2.0 Conformance Requirements.

Table 1: Success Criteria, Level A

Criteria Conformance Level Remarks and Explanations

1.1.1 Non-text Content (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Text alternatives are provided for

many instances of non-text content,

with exceptions that include perma

links for subtopics and sections.

1.2.1 Audio-only and Video-only (Prere

corded) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The authors of the input DITA docu

ment are responsible for providing a

transcript of the media content in the

document.

1.2.2 Captions (Prerecorded) (Level A)

Also applies to:

Revised Section 508

Supports The product does not provide prere

corded media that requires captions.

https://www.w3.org/TR/WCAG20/#conformance-reqs
http://www.w3.org/TR/WCAG20/#text-equiv-all
http://www.w3.org/TR/WCAG20/#media-equiv-av-only-alt
http://www.w3.org/TR/WCAG20/#media-equiv-av-only-alt
http://www.w3.org/TR/WCAG20/#media-equiv-captions

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 41

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

1.2.3 Audio Description or Media Alterna

tive (Prerecorded) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The authors of the input DITA docu

ment are responsible for providing an

alternative for time-based media or

audio description of the prerecorded

video content in the document.

See: G58: Placing a link to the alterna

tive for time-based media immediately

next to the non-text content

1.3.1 Info and Relationships (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Information, structure, and relation

ships conveyed through presentation

can be programmatically determined

or are available in text, with excep

tions that include:

• Some landmarks are not

marked with the corresponding

role or do not have an associat

ed label.

• Some link groups are not struc

tured using lists or are not

marked as navigation regions.

The authors of the input DITA docu

ment are responsible for:

• Using semantic elements to

mark up structure.

• Using semantic markup to

mark emphasized or special

text.

• Using caption elements to as

sociate data table captions

with data tables.

1.3.2 Meaningful Sequence (Level A)

Also applies to:

Supports The product presents content in a

meaningful sequence.

http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc
http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc
https://www.w3.org/TR/WCAG20-TECHS/G58.html
https://www.w3.org/TR/WCAG20-TECHS/G58.html
https://www.w3.org/TR/WCAG20-TECHS/G58.html
http://www.w3.org/TR/WCAG20/#content-structure-separation-programmatic
http://www.w3.org/TR/WCAG20/#content-structure-separation-sequence

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 42

Criteria Conformance Level Remarks and Explanations

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Authors should use Unicode right-to-

left mark (RLM) or left-to-right mark

(LRM) to mix text direction inline.

1.3.3 Sensory Characteristics (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Authors should ensure that items are

referenced in the content in ways that

do not depend on sensory perception.

1.4.1 Use of Color (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports (Cobalt template) Color is not used

as the only visual means of convey

ing information, indicating an action,

prompting a response, or distinguish

ing a visual element.

1.4.2 Audio Control (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports There is no sound that plays automat

ically.

2.1.1 Keyboard (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Most of the content is operable

through a keyboard interface, with ex

ceptions that include:

• The submenus (the user can

not tab to the submenus).

• The top-level links in the main

page accordion cannot be ac

cessed.

http://www.w3.org/TR/WCAG20/#content-structure-separation-understanding
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-without-color
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-dis-audio
http://www.w3.org/TR/WCAG20/#keyboard-operation-keyboard-operable

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 43

Criteria Conformance Level Remarks and Explanations

2.1.2 No Keyboard Trap (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not contain content

that traps the keyboard focus.

2.1.4 Character Key Shortcuts (Level A

2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The product does not include charac

ter key shortcuts.

2.2.1 Timing Adjustable (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not include time lim

its.

2.2.2 Pause, Stop, Hide (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not include ele

ments that move, blink, scroll, or au

to-update.

2.3.1 Three Flashes or Below Threshold

(Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The product does not contain flashing

content.

http://www.w3.org/TR/WCAG20/#keyboard-operation-trapping
https://www.w3.org/TR/WCAG21/#character-key-shortcuts
http://www.w3.org/TR/WCAG20/#time-limits-required-behaviors
http://www.w3.org/TR/WCAG20/#time-limits-pause
http://www.w3.org/TR/WCAG20/#seizure-does-not-violate

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 44

Criteria Conformance Level Remarks and Explanations

2.4.1 Bypass Blocks (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Supports Each page contains a link at the top

that goes directly to the main content

area. Each page contains ARIA land

marks that identify the available re

gions.

2.4.2 Page Titled (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Each page contains a non-empty <ti

tle> element in the <head> section.

2.4.3 Focus Order (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Focusable components receive focus

in an order that preserves meaning

and operability.

2.4.4 Link Purpose (In Context) (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The purpose of each link can be deter

mined from the link text alone or from

the link text together with its program

matically-determined link context.

The authors can create hypertext links

using text that describes the purpose

of the hypertext.

There is no control that allows the

user to choose between short or long

link text (G189 / SCR30).

2.5.1 Pointer Gestures (Level A 2.1 only) Supports The WebHelp Responsive output does

not rely on path-based or multipoint

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-skip
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-title
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-focus-order
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-refs
https://www.w3.org/TR/WCAG21/#pointer-gestures

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 45

Criteria Conformance Level Remarks and Explanations

Also applies to:

Revised Section 508 – Does not apply

gestures and does not provide con

trols that require complex gestures.

2.5.2 Pointer Cancellation (Level A 2.1

only)

Also applies to:

Revised Section 508 – Does not apply

Supports The product has operations that are

activated on the pointer up event.

2.5.3 Label in Name (Level A 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The names of the user interface com

ponents contain the text that is pre

sented visually.

2.5.4 Motion Actuation (Level A 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The product does not contain func

tionality that can be operated by de

vice or user motion.

3.1.1 Language of Page (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The web pages indicate the language

of the content when the content lan

guage has been specified by authors.

3.2.1 On Focus (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports No changes of context occur when

any component receives focus.

3.2.2 On Input (Level A)

Also applies to:

Revised Section 508

Supports Changing the setting of any user inter

face component does not automati

cally cause a change of context.

https://www.w3.org/TR/WCAG21/#pointer-cancellation
https://www.w3.org/TR/WCAG21/#label-in-name
https://www.w3.org/TR/WCAG21/#motion-actuation
http://www.w3.org/TR/WCAG20/#meaning-doc-lang-id
http://www.w3.org/TR/WCAG20/#consistent-behavior-receive-focus
http://www.w3.org/TR/WCAG20/#consistent-behavior-unpredictable-change

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 46

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

3.3.1 Error Identification (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports If a search operation is performed

leaving the search input empty, an

error message is automatically dis

played to the user, but no aria-invalid

information is provided.

3.3.2 Labels or Instructions (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports The search input does not have a vis

ible label specified using a label ele

ment.

4.1.1 Parsing (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Several HTML validation errors are re

ported by the W3C validator.

4.1.2 Name, Role, Value (Level A)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports The Home link from the breadcrumb

does not have an associated aria-la

bel.

http://www.w3.org/TR/WCAG20/#minimize-error-identified
http://www.w3.org/TR/WCAG20/#minimize-error-cues
http://www.w3.org/TR/WCAG20/#ensure-compat-parses
http://www.w3.org/TR/WCAG20/#ensure-compat-rsv

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 47

Table 2: Success Criteria, Level AA

Criteria Conformance Level Remarks and Explanations

1.2.4 Captions (Live) (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports No live audio content is used.

1.2.5 Audio Description (Prerecorded)

(Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The authors of the input DITA docu

ment can ensure that the output docu

ment meets this criterion.

1.3.4 Orientation (Level AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports Content does not restrict its view and

operation to a single display orienta

tion.

1.3.5 Identify Input Purpose (Level AA

2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports The content does not contain input

fields that collect information about

the user.

1.4.3 Contrast (Minimum) (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports The missing words element from the

search results page does not have the

contrast ratio 4.5:1.

1.4.4 Resize text (Level AA)

Also applies to:

Partially Supports Text can be resized up to 200 percent

without loss of content or functionali

http://www.w3.org/TR/WCAG20/#media-equiv-real-time-captions
http://www.w3.org/TR/WCAG20/#media-equiv-audio-desc-only
https://www.w3.org/TR/WCAG21/#orientation
https://www.w3.org/TR/WCAG21/#identify-input-purpose
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-contrast
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-scale

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 48

Criteria Conformance Level Remarks and Explanations

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

ty and without using assistive technol

ogy.

Some text content has dimensions

specified in pixels rather that em

units.

1.4.5 Images of Text (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The output does not contain images

of text. The authors of the input DITA

content can ensure that this criterion

is met.

1.4.10 Reflow (Level AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Partially Supports The majority of the content can be

presented without loss of information

or functionality, and without requiring

scrolling in two dimensions.

Long URLs determine the page to dis

play the horizontal scroll bar.

1.4.11 Non-text Contrast (Level AA 2.1

only)

Also applies to:

Revised Section 508 – Does not apply

Supports (Cobalt template) There is no contrast

issue regarding user interface compo

nents or graphical objects.

1.4.12 Text Spacing (Level AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Supports There is no loss of content or func

tionality that occurs by setting line

height (line spacing), spacing follow

ing paragraphs, letter spacing, and

word spacing.

1.4.13 Content on Hover or Focus (Level

AA 2.1 only)

Also applies to:

Revised Section 508 – Does not apply

Partially Supports Tooltips and submenus are not dis

missible.

Also, the tooltips are not hoverable.

2.4.5 Multiple Ways (Level AA)

Also applies to:

Supports There is a search form provided that

will go to a page that contains the

search term and links to the corre

http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-presentation
https://www.w3.org/TR/WCAG21/#reflow
https://www.w3.org/TR/WCAG21/#non-text-contrast
https://www.w3.org/TR/WCAG21/#non-text-contrast
https://www.w3.org/TR/WCAG21/#text-spacing
https://www.w3.org/TR/WCAG21/#content-on-hover-or-focus
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-mult-loc

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 49

Criteria Conformance Level Remarks and Explanations

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

sponding page. Also, a table of con

tents is provided.

The authors of the input DITA docu

ment are responsible for providing

links to all pages from the home page

or providing links to navigate to relat

ed pages from the current page.

2.4.6 Headings and Labels (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports Headings and labels describe the top

ic or purpose.

DITA authors can ensure that this cri

terion is met.

2.4.7 Focus Visible (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Partially Supports Placing focus on a focusable element

using the mouse doesn't render a vis

ible focus indicator. Also, the search

button does not have a visible focus

indicator.

3.1.2 Language of Parts (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports DITA authors can ensure that this cri

terion is met.

3.2.3 Consistent Navigation (Level AA)

Also applies to:

Revised Section 508

Supports Repeated components appear in the

same relative in each page.

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-descriptive
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-focus-visible
http://www.w3.org/TR/WCAG20/#meaning-other-lang-id
http://www.w3.org/TR/WCAG20/#consistent-behavior-consistent-locations

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 50

Criteria Conformance Level Remarks and Explanations

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

3.2.4 Consistent Identification (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software) – Does not

apply to non-web software

• 504.2 (Authoring Tool)

• 602.3 (Support Docs) – Does not

apply to non-web docs

Partially Supports The output uses labels, names, and

text alternatives consistently for items

that have the same functionality.

Text alternatives are provided for

many instances of non-text content,

with exceptions that include:

• Permalinks for subtopics and

sections.

• Enlarge images action.

The Home link from the breadcrumb

does not have an associated aria-la

bel.

3.3.3 Error Suggestion (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Does Not Support The Search input does not have the

aria-required information set and does

not contain a text description specify

ing that it is a required field.

3.3.4 Error Prevention (Legal, Financial,

Data) (Level AA)

Also applies to:

Revised Section 508

• 501 (Web)(Software)

• 504.2 (Authoring Tool)

• 602.3 (Support Docs)

Supports The Web pages do not cause legal

commitments or financial transac

tions for the user to occur, that modify

or delete user-controllable data in data

storage systems, or that submit user

test responses.

4.1.3 Status Messages(Level AA 2.1 only)

Also applies to:

Supports The pages do not contain status mes

sages as defined by this criterion.

http://www.w3.org/TR/WCAG20/#consistent-behavior-consistent-functionality
http://www.w3.org/TR/WCAG20/#minimize-error-suggestions
http://www.w3.org/TR/WCAG20/#minimize-error-reversible
http://www.w3.org/TR/WCAG20/#minimize-error-reversible
https://www.w3.org/TR/WCAG21/#status-messages

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 51

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

Table 3: Success Criteria, Level AAA

Criteria Conformance Level Remarks and Explanations

1.2.6 Sign Language (Prerecorded) (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.7 Extended Audio Description (Prere

corded) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.8 Media Alternative (Prerecorded)

(Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.2.9 Audio-only (Live) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.3.6 Identify Purpose (Level AAA 2.1 on

ly)

Revised Section 508 – Does not apply

Not Evaluated

1.4.6 Contrast Enhanced (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.4.7 Low or No Background Audio (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.4.8 Visual Presentation (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

1.4.9 Images of Text (No Exception) Con

trol (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.1.3 Keyboard (No Exception) (Level

AAA)

Not Evaluated

http://www.w3.org/TR/WCAG20/#media-equiv-sign
http://www.w3.org/TR/WCAG20/#media-equiv-extended-ad
http://www.w3.org/TR/WCAG20/#media-equiv-extended-ad
http://www.w3.org/TR/WCAG20/#media-equiv-text-doc
http://www.w3.org/TR/WCAG20/#media-equiv-live-audio-only
https://www.w3.org/TR/WCAG21/#identify-purpose
https://www.w3.org/TR/WCAG21/#identify-purpose
http://www.w3.org/TR/WCAG20/#visual-audio-contrast7
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-noaudio
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-visual-presentation
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-images
http://www.w3.org/TR/WCAG20/#visual-audio-contrast-text-images
http://www.w3.org/TR/WCAG20/#keyboard-operation-all-funcs

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 52

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

2.2.3 No Timing (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.4 Interruptions (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.5 Re-authenticating (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.2.6 Timeouts (Level AAA 2.1 only)

Revised Section 508 – Does not apply

Not Evaluated

2.3.2 Three Flashes (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.3.3 Animation from Interactions (Level

AAA 2.1 only)

Revised Section 508 – Does not apply

Not Evaluated

2.4.8 Location (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.4.9 Link Purpose (Link Only) (Level

AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.4.10 Section Headings (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

2.5.5 Target Size (Level AAA 2.1 only)

Revised Section 508 – Does not apply

Not Evaluated

2.5.6 Concurrent Input Mechanisms (Lev

el AAA 2.1 only)

Revised Section 508 – Does not apply

Not Evaluated

3.1.3 Unusual Words (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.4 Abbreviations (Level AAA) Not Evaluated

http://www.w3.org/TR/WCAG20/#time-limits-no-exceptions
http://www.w3.org/TR/WCAG20/#time-limits-postponed
http://www.w3.org/TR/WCAG20/#time-limits-server-timeout
https://www.w3.org/TR/WCAG21/#timeouts
http://www.w3.org/TR/WCAG20/#seizure-three-times
https://www.w3.org/TR/WCAG21/#animation-from-interactions
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-location
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-link
http://www.w3.org/TR/WCAG20/#navigation-mechanisms-headings
https://www.w3.org/TR/WCAG21/#target-size
https://www.w3.org/TR/WCAG21/#concurrent-input-mechanisms
http://www.w3.org/TR/WCAG20/#meaning-idioms
http://www.w3.org/TR/WCAG20/#meaning-located

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 53

Criteria Conformance Level Remarks and Explanations

Revised Section 508 – Does not apply

3.1.5 Reading Level (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.1.6 Pronunciation (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.2.5 Change on Request (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.3.5 Help (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

3.3.6 Error Prevention (All) (Level AAA)

Revised Section 508 – Does not apply

Not Evaluated

Revised Section 508 Report

N/A

Chapter 3: Functional Performance Criteria (FPC)

Criteria Conformance Level Remarks and Explanations

302.1 Without Vision Partially Supports Most of the content is accessible with

out vision with exceptions that in

clude:

• Some components do not have

text alternatives or labels.

• Some landmarks are not

marked with the corresponding

role or do not have an associat

ed label.

• Some link groups are not struc

tured using lists or are not

marked as navigation regions.

302.2 With Limited Vision Partially Supports Most of the content is accessible with

limited vision with exceptions that in

clude:

http://www.w3.org/TR/WCAG20/#meaning-supplements
http://www.w3.org/TR/WCAG20/#meaning-pronunciation
http://www.w3.org/TR/WCAG20/#consistent-behavior-no-extreme-changes-context
http://www.w3.org/TR/WCAG20/#minimize-error-context-help
http://www.w3.org/TR/WCAG20/#minimize-error-reversible-all

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 54

Criteria Conformance Level Remarks and Explanations

• Some components do not have

text alternatives or labels.

• Some landmarks are not

marked with the corresponding

role or do not have an associat

ed label.

• Some link groups are not struc

tured using lists or are not

marked as navigation regions.

302.3 Without Perception of Color Supports (Cobalt template) Color is not used

as the only visual means of convey

ing information, indicating an action,

prompting a response, or distinguish

ing a visual element.

302.4 Without Hearing Supports The authors can create content that

does not require hearing abilities for

use.

302.5 With Limited Hearing Supports The authors can create content that

does not require hearing abilities for

use.

302.6 Without Speech Supports The output does not require speech

for use.

302.7 With Limited Manipulation Supports The WebHelp Responsive output does

not rely on path-based or multipoint

gestures and does not provide con

trols that require complex gestures.

302.8 With Limited Reach and Strength Supports The WebHelp Responsive output does

not rely on path-based or multipoint

gestures and does not provide con

trols that require complex gestures.

302.9 With Limited Language, Cognitive,

and Learning Abilities

Supports The authors can create content that

can be used by users with limited lan

guage, cognitive, and learning abilities.

Chapter 4: Hardware

Notes: Not Applicable - Oxygen XML WebHelp Responsive is not a hardware product.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 55

Chapter 5: Software

Notes: Oxygen XML WebHelp Responsive is a web application, not a software product. However, the web

application includes authoring functionality, hence Chapter 5: Software 504 Authoring Tools applies to this

product.

501 General

Criteria Conformance Level Remarks and Explanations

501.1 Scope – Incorporation of WCAG 2.0

AA

See WCAG 2.x section

(on page 40)

See information in WCAG section

502 Interoperability with Assistive Technology

Criteria Conformance Level Remarks and Explanations

502.2.1 User Control of Accessibility Fea

tures

Not Applicable The product is not platform software.

502.2.2 No Disruption of Accessibility Fea

tures

Supports The product does not disrupt platform

features that are defined in the plat

form documentation as accessibility

features.

502.3 Accessibility Services

Criteria Conformance Level Remarks and Explanations

502.3.1 Object Information Partially Supports The majority of object roles, state(s),

properties, boundary, name, and de

scription are programmatically deter

minable.

The Home link from the breadcrumb

does not have an associated aria-la

bel.

502.3.2 Modification of Object Information Supports States and properties that can be set

by the user can be set programmati

cally.

502.3.3 Row, Column, and Headers Supports The headers associated with the rows

or columns of a table can be program

matically determined.

502.3.4 Values Supports The current values of an object can be

programmatically determined.

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 56

Criteria Conformance Level Remarks and Explanations

502.3.5 Modification of Values Supports Values that can be set by the user are

capable of being set programmatical

ly.

502.3.6 Label Relationships Partially Supports Information, structure, and relation

ships conveyed through presentation

can be programmatically determined

or are available in text.

See WCAG 1.3.1 (on page 41).

502.3.7 Hierarchical Relationships Supports The content is hierarchically struc

tured using language-specific ele

ments and their relationships can be

programmatically determined.

502.3.8 Text Supports The content of text objects, text at

tributes, and the boundary of text ren

dered to the screen shall be program

matically determinable.

502.3.9 Modification of Text Supports The editable text (search input) can be

set programmatically.

502.3.10 List of Actions Not Applicable There are no custom actions available

that can be executed on the content.

502.3.11 Actions on Objects Not Applicable There are no custom actions available

that can be executed on the content.

502.3.12 Focus Cursor Not Applicable The product is a web application and

is isolated from the underlying plat

form software (web browser).

502.3.13 Modification of Focus Cursor Not Applicable The product is a web application and

is isolated from the underlying plat

form software (web browser).

502.3.14 Event Notification Not Applicable There are no automatic focus

changes, caret movement, selection

changes, or added components in the

content.

502.4 Platform Accessibility Features Not Applicable This product is not platform software.

503 Applications

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 57

Criteria Conformance Level Remarks and Explanations

503.2 User Preferences Not Applicable This section does not apply to web ap

plications.

503.3 Alternative User Interfaces Not Applicable The application does not provide an

alternative user interface that func

tions as assistive technology.

503.4 User Controls for Captions and Audio Description

Criteria Conformance Level Remarks and Explanations

503.4.1 Caption Controls Not Applicable The product does not provide con

trols for volume adjustment.

503.4.2 Audio Description Controls Not Applicable The product does not provide con

trols for program selection.

504 Authoring Tools

Criteria Conformance Level Remarks and Explanations

504.2 Content Creation or Editing (if not

authoring tool, enter “not applicable”)

Not Applicable

See the WCAG 2.x sec

tion (on page 40)

The product is not an authoring tool.

See information in WCAG section

504.2.1 Preservation of Information Pro

vided for Accessibility in Format Conver

sion

Not Applicable The product is not an authoring tool.

504.2.2 PDF Export Not Applicable The product is not an authoring tool.

504.3 Prompts Not Applicable The product is not an authoring tool.

504.4 Templates Not Applicable The product is not an authoring tool.

Chapter 6: Support Documentation and Services

601.1 Scope

602 Support Documentation

Criteria Conformance Level Remarks and Explanations

602.2 Accessibility and Compatibility Fea

tures

Partially Supports The product documentation is dis

tributed in the WebHelp Responsive

format. See the Chapter 3 (on page

Oxygen XML WebHelp Responsive plugin 24.1 | 2 - Layout and Features | 58

Criteria Conformance Level Remarks and Explanations

53) and Chapter 5 (on page 55)

sections.

602.3 Electronic Support Documentation See the WCAG 2.x sec

tion (on page 40)

See information in the WCAG section.

602.4 Alternate Formats for Non-Electron

ic Support Documentation

Not Applicable Documentation is not provided in non-

electronic formats.

603 Support Services

Criteria Conformance Level Remarks and Explanations

603.2 Information on Accessibility and

Compatibility Features

Supports The support services cover the acces

sibility features.

603.3 Accommodation of Communication

Needs

Supports Support services are available by

phone or e-mail.

Legal Disclaimer

This report describes Oxygen XML WebHelp's ability to support the stated VPAT Standards/Guidelines,

subject to Syncro Soft's interpretation of the same. This accessibility report is provided for informational

purposes only, and the contents hereof are subject to change without notice. SYNCRO SOFT MAKES NO

WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. For more information regarding the accessibility

status, please contact us at sales@oxygenxml.com.

© 2019 Syncro Soft SRL. All rights reserved.

3.
Deploying an Oxygen Feedback Comments
Component
You can add a comments component in your WebHelp Responsive output to provide a simple and efficient

way for your community to interact and offer feedback. The comments component is contributed by Oxygen

Feedback, a modern comment management system that can be integrated with your WebHelp Responsive

output to provide a comments area at the bottom of each WebHelp page where readers can add new

comments or reply to existing ones.

Oxygen Feedback includes a modern, user-friendly administration interface where you can moderate

comments, manage users, view statistics, and configure settings. It is very easy to integrate and there are

no requirements for installing additional software. You simply need to create an Oxygen Feedback site

configuration in the administration interface, copy the HTML installation fragment that is generated at the end

of the creation process, and paste the generated fragment in the Feedback tab in the WebHelp Responsive

transformation scenario dialog box.

An add-on is also available that contributes a Feedback Comments Manager view in Oxygen XML Editor/

Author where the documentation team can see all the comments added in your WebHelp output. This means

they can react to user feedback by making corrections and updating the source content without leaving the

application.

Adding the Feedback System to WebHelp Responsive Documentation

Prerequisite

To install and manage Oxygen Feedback, you will need to obtain a license for the product. This requires

that you choose a subscription plan during the installation procedure. To see the subscription plans prior to

installing the product, go to: https://www.oxygenxml.com/oxygen_feedback/buy_feedback.html.

Installation Procedure

1. Log in to your Feedback account from the administration login page (https://feedback.oxygenxml.com/

login). You can click on Log in with Google or Log in with Facebook to create an account using your

Google or Facebook credentials, or click the Sign Up tab to create an account using your name and

email address.

2. Click the Add site button to create a site configuration. If you have not already selected a subscription

plan, you will be directed to a page where you can choose from several options.

3. In the Settings page, enter a Name and Description for the site configuration. There are some optional

settings that can be adjusted according to your needs. For more details, see the Site Settings topic.

Click Continue.

https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-administrator-guide.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-administrator-guide.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-administrator-guide.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-map-edit-feedback.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-map-edit-feedback.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-map-edit-feedback.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-feedback-comments-manager.html
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-feedback-comments-manager.html
https://www.oxygenxml.com/oxygen_feedback/buy_feedback.html
https://feedback.oxygenxml.com/login
https://feedback.oxygenxml.com/login
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-creating-site.html#ariaid-title2

Oxygen XML WebHelp Responsive plugin 24.1 | 3 - Deploying an Oxygen Feedback Comments Component | 60

4. In the Initial version page, enter the Base URL for your website (you can add additional URLs by clicking

the Add button). You can also specify an Initial version if you want it to be something other than

1.0. If you do not plan to have multiple versions, leave the version as 1.0. For more details, see the Initial

Version topic. Click Continue.

5. In the Installation page, choose a site generation option:

a. If you will generate the documentation using a transformation scenario in Oxygen XML Editor/

Author, select the Oxygen XML Editor option and continue with these steps:

i. Copy the generated HTML fragment and click Finish.

ii. In Oxygen XML Editor/Author, open the Configure Transformation Scenario(s) dialog box.

iii. Select and duplicate the DITA Map WebHelp Responsive scenario.

iv. Go to the Feedback tab.

v. Click the Edit button and paste the generated installation fragment.

b. If you will generate the documentation using a command-line script, select the Oxygen XML

WebHelp option and continue with these steps:

i. Copy the generated HTML fragment and click Finish.

ii. Create an XML file (for example, feedback-install.xml) with the generated

installation fragment.

iii. Use the webhelp.fragment.feedback parameter in your command-line script to specify the

path to the file you just created. For example:

dita.bat -Dwebhelp.fragment.feedback=c:\path\to\feedback-install.xml

6. [Optional] If you want the Oxygen Feedback comments component to fill the entire page width,

contribute a custom CSS file (use the args.css parameter to reference it) that contains the following

style rule:

div.footer {

 float: none;

}

For more details about Oxygen Feedback, how to configure settings, moderate comments, view statistics, and

much more, see the Oxygen Feedback user guide.

Also, to see a demonstration of Oxygen Feedback being integrated into WebHelp Responsive output, watch

our Webinar: DITA Publishing and Feedback with Oxygen Tools.

https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-creating-site.html#ariaid-title3
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-creating-site.html#ariaid-title3
https://www.oxygenxml.com/doc/ug-feedback/index.html
https://www.oxygenxml.com/doc/ug-feedback/index.html
https://www.oxygenxml.com/events/2021/webinar_dita_publishing_and_feedback_with_oxygen_tools.html

4.
Developer Reference
The section is designed for developers to provide advanced information about the Oxygen XML WebHelp

Responsive plugin. The information in this section will help you to extend or customize the output and provide

an overview of the plugin architecture.

The WebHelp Responsive plugin is a DITA-OT plugin that provides the ability to transform DITA

documentation to HTML format. It extends the DITA to HTML5 plugin by using its XSLT stylesheets and ANT

targets.

Related Information:

DITA to HTML5 DITA-OT plugin

Overview of WebHelp DITA-OT Processing Stages
The WebHelp Responsive plugin inherits the multi-stage processing mode from the DITA-OT (on page 191)

publishing engine. Each stage in the process examines some or all of the content. Some stages result in

temporary files that are used in later steps, while other stages result in updated copies of the DITA content.

Most of the processing takes place in a temporary working directory, and the source files themselves are

never modified.

The most important steps (Ant targets) in the WebHelp Responsive transformation process are:

whr-init

Makes a set of initializations required by the next processing steps such as: initialize the plugin

Java CLASSPATH, load the Oxygen Publishing Template, or set the default values for various

properties.

preprocess

This is a step defined in the DITA-OT processor representing a set of sub-steps that typically

runs at the beginning of every DITA-OT transformation. Each step or stage corresponds to an

Ant target in the build pipeline; the preprocess target calls the entire set of steps.

whr-detect-lang

Detects the documentation language by looking into the DITA map file. If not detected, it uses

the value of the default.language parameter.

whr-collect-indexterms

Collects the index terms from DITA topics and write them in WebHelp Output

Directory/index.xml. The index.xml file is used later by the whr-create-indexterms-

http://www.dita-ot.org/dev/topics/dita2html5.html
http://www.dita-ot.org/dev/topics/dita2html5.html
http://www.dita-ot.org/dev/reference/preprocessing.html

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 62

page step to generate the index terms HTML page (on page 96) (WebHelp Output

Directory/indexTerms.html).

whr-create-props-file

Serializes the transformation parameters in XML and JS formats so they can be used in the next

XSLT processing steps or JavaScript.

You can read the value of a WebHelp transformation parameter from your XSLT extension

stylesheets by using the getParameter(param.name) function from the http://www.oxygenxml.com/

functions namespace.

whr-toc-xml

Generates the toc.xml file in the temporary directory.

whr-nav-links

Generates the navigational links for all DITA topics such as menu, table of contents, or

breadcrumb links.

whr-context-help-map

Generates the context-help-map.xml file in the output folder. This file is used by the Context-

Sensitive WebHelp Responsive system (on page 29).

whr-sitemap

Generates the sitemap.xml file in the output folder. This file is used for Search Engine

Optimization (on page 151).

whr-copy-resources

Copies all the resources (logo, favicon, JavaScript files, CSS files, etc.) that are needed by the

WebHelp transformation to the output folder.

whr-create-topic-pages

Generates an HTML file for each DITA topic.

Implementation is done by running an XSLT transformation that processes the topic layout page

(on page 88) with DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/

templates/xsl/dita2webhelp/dita2webhelp.xsl XSLT file for all DITA topics. You can

extend this step by using the com.oxygenxml.webhelp.xsl.dita2webhelp (on page 113) extension

point.

whr-create-main-page

Generates the WebHelp main page (on page 83) (index.html) in the output folder.

Implementation is done by running an XSLT transformation that processes

the main layout page (on page 83) with the DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/templates/xsl/mainFiles/

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 63

createMainPage.xsl XSLT file. You can extend this step by using the

com.oxygenxml.webhelp.xsl.createMainPage (on page 113) extension point.

whr-create-search-page

Generates the WebHelp search results page (on page 93) (search.html) in the output folder.

Implementation is done by running an XSLT transformation that processes

the search results page (on page 93) with DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/templates/xsl/mainFiles/

createSearchPage.xsl XSLT file. You can extend this step by using the

com.oxygenxml.webhelp.xsl.createSearchPage (on page 114) extension point.

whr-create-indexterms-page

Generates the WebHelp index terms HTML page (on page 96) (indexTerms.html) in the output

folder.

Implementation is done by running an XSLT transformation that transforms the WebHelp

Output Directory/index.xml generated by the whr-collect-indexterms step with

DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates/xsl/

mainFiles/createIndextermsPage.xsl XSLT file. You can extend this step by using the

com.oxygenxml.webhelp.xsl.createIndexTermsPage (on page 114) extension point.

whr-search-index

Processes the generated HTML (for all DITA topics) to generate an index file. This index is used

to implement the WebHelp search function.

Note:

The WebHelp Responsive plugin uses the XSLT stylesheets from the DITA-OT HTML5 plugin.

Related Information:

DITA-OT Preprocessing

Publishing Templates
An Oxygen Publishing Template defines all aspects of the layout and styles for output obtained from the

following transformation scenarios:

• WebHelp Responsive

• DITA Map PDF - based on HTML5 & CSS

It is a self-contained customization package stored as a ZIP archive or folder that can easily be shared with

others. It provides the primary method for customizing the output.

Some possible customization methods include:

http://www.dita-ot.org/dev/reference/preprocessing.html

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 64

• Add additional template resources to customize the output (such as logos, Favicons, or CSS files).

• Extend the default processing by specifying one or more XSLT extension points.

• Specify one or more transformation parameters to customize the output.

• Customize various aspects of the output through simple CSS styling.

• For WebHelp Responsive output, change the layout of the main page or topic pages by customizing

which components will be displayed and where they will be positioned in the page.

The following graphics are possible sample structures for Oxygen Publishing Template packages:

Figure 8. Oxygen Publishing Template Package (WebHelp Responsive)

Figure 9. Oxygen Publishing Template Package (PDF)

For information about creating and customizing publishing templates, and how to adjust the WebHelp and

PDF output through CSS styling and other customization methods, watch our Webinar: Creating Custom

Publishing Templates for WebHelp and PDF Output. The Webinar slides and sample project are also available

from that webpage.

https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html
https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 65

Related Information:

How to Create a Publishing Template (on page 116)

How to Edit a Packed Publishing Template (on page 118)

How to Add a Publishing Template to the Publishing Templates Gallery (on page 118)

How to Share a Publishing Template (on page)

Publishing Templates Gallery

Oxygen XML WebHelp Responsive plugin comes bundled with a variety of built-in templates. You can use one

of them to publish your documentation or as a starting point for a new publishing template.

Built-in Templates

There are two categories of templates, Tiles and Tree. You can see the built-in templates in the Templates tab

when editing a WebHelp Responsive transformation scenario in Oxygen XML Editor/Author. Each one also

includes an Online preview icon in the bottom-right corner that opens a webpage in your default browser

that provides a sample of how the main page will look when that particular template is used to generate the

output.

Tiles Templates

The main page in the WebHelp output presents a tile for each main topic (chapter) of the

documentation.

Tree Templates

The main page in the WebHelp output presents a tree-like table of contents.

unique_50
unique_50
unique_50

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 66

Built-in Templates Location

All built-in templates are stored in the following directory: DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/templates.

Custom Templates

You can use a built-in template as a starting point for creating your own custom template (on page).

You can store all of your custom templates in a particular directory. Then, go to Options > Preferences > DITA

> Publishing and add your directory to the list, and all the templates stored in that directory will be displayed in

the preview pane in the transformation scenario's Template tab along with all the built-in templates.

Sharing Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder.

2. Go to Options > Preferences > DITA > Publishing and add that new folder to the list.

3. Switch the option as the bottom of that preferences page to Project Options.

4. Share your project file (.xpr).

Publishing Template Package Contents for WebHelp Responsive
Customizations

An Oxygen Publishing Template package for WebHelp output must contain a template descriptor file and at

least one CSS file, and may contain other resources (such as graphics, XHTML files, XSLT files, etc.). All the

template resources can be stored in either a ZIP archive or in a folder. It is recommended to use a ZIP archive

because it is easier to share with others.

unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 67

Template Descriptor File

Each publishing template includes a descriptor file that defines the meta-data associated with the template.

It is an XML file that defines all the resources included in a template (such as CSS files, images, JS files, and

transformation parameters).

The template descriptor file must have the .opt file extension and must be located in the template's root

folder.

A template descriptor might look like this:

<publishing-template>

 <name>Flowers</name>

 <webhelp>

 <tags>

 <tag>tree</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-tree.png"/>

 <!-- Resources (CSS, favicon, logo and others) -->

 <resources>

 <!-- Main CSS file -->

 <css file="flowers.css"/>

 <!-- Resources to copy to the output folder -->

 <fileset>

 <include name="resources/**/*"/>

 <exclude name="resources/**/.svn"/>

 <exclude name="resources/**/.git"/>

 </fileset>

 </resources>

 <parameters>

 <parameter name="webhelp.show.main.page.tiles" value="no"/>

 <parameter name="webhelp.show.main.page.toc" value="yes"/>

 <parameter name="webhelp.top.menu.depth" value="3"/>

 </parameters>

 </webhelp>

</publishing-template>

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 68

Tip:

It is recommended to edit the template descriptor in Oxygen XML Editor/Author because it provides

content completion and validation support.

Template Name and Description

Each template descriptor file requires a <name> element. This information is displayed as the name of the

template in the transformation scenario dialog box.

Optionally, you can include a <description> and it displayed when the user hovers over the template in the

transformation scenario dialog box.

<publishing-template>

 <name>Lorem Ipsum</name>

 <description>Lorem ipsum dolor sit amet, consectetur adipiscing elit</description>

 ...

Template Author

Optionally, you can include author information in the descriptor file and it displayed when the user hovers over

the template in the transformation scenario dialog box. This information might be useful if users run into an

issue or have questions about a certain template.

If you include the <author> element, a <name> is required and optionally you can include <email>, <organization>,

and <organizationUrl> information.

<publishing-template>

 ...

 <author>

 <name>John Doe</name>

 <email>jdoe@example.com</email>

 <organization>ACME</organization>

 <organizationUrl>http://www.example.com/jdoe</organizationUrl>

 </author>

 ...

Webhelp Element

The <webhelp> element contains various details that define the WebHelp Responsive output. It is a required

element if you intend on using a WebHelp Responsive transformation scenario. The elements that are allowed

in this <webhelp> section specify the template tags (on page 69), template preview image (on page 69),

resources (on page 70) (such as CSS, JS, fonts, logos), transformation parameters (on page 72), HTML

fragment extensions (on page 73) (used to add fragments to placeholders), XSLT extensions (on page

73), or HTML page layout files (on page 82).

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 69

 <webhelp>

 <tags>

 ...

 </tags>

 <preview-image file="MyPreview.png"/>

 <resources>

 ...

 </resources>

 <html-page-layouts>

 ...

 </html-page-layouts>

 <parameters>

 ...

 </parameters>

 </webhelp>

Template Tags

The <tags> section provides meta information about the template (such as layout type or color theme). Each

tag is displayed at the top of the Templates tab window in the transformation scenario dialog box and they

help the user filter and find particular templates.

<publishing-template>

 ...

 <webhelp>

 <tags>

 <tag>tree</tag>

 <tag>dark</tag>

 </tags>

Template Preview Image

The <preview-image> element is used to specify an image that will be displayed in the transformation scenario

dialog box. It provides a visual representation of the template to help the user select the right template. The

image dimensions should be 200 x 115 pixels and the supported image formats are: JPEG, PNG, or GIF.

You can also include an <online-preview-url> element to specify the URL of a published sample of

your template. This will display an Online preview icon in the bottom-right corner the image in the

transformation scenario dialog box and if the user clicks that icon, it will open the specified URL in their

default browser.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 70

<publishing-template>

 ...

 <webhelp>

 ...

 <preview-image file="ashes/ashes-tree.png"/>

 <online-preview-url>https://www.example.com/samples/tiles/ashes</online-preview-url>

Template Resources

The <resources> section of the descriptor file specifies a set of resources (CSS, JS, fonts, logos, graphics, etc.)

that are used to customize various components in the generated output. These resources will be copied to the

output folder during the transformation process. At least one CSS file must be included, while the other types

of resources are optional.

Warning:

All paths set in the @file attribute must be relative.

This section is defined using the resources element and the types of resources that can be specified include:

• CSS files - One or more CSS files that will define the styles of all generated HTML pages. They are

referenced using the <css> element.

• Favicon - You can specify the path to an image for the favicon associated with your website. It is

referenced using the <favicon> element.

• Logo - You can specify the path to a logo image that will be displayed in the left side of the output

header. It is referenced using the <logo> element. Optionally, you can also specify:

◦ <target-url> - will redirect the user to the specified URL if they click the logo in the output.

◦ <alt> - provides an alternate text for the logo image.

• JavaScript AMD module - The path to a JavaScript module that uses the AMD (Asynchronous Module

Definition) format. This module will be loaded in the output HTML pages using the RequireJS library.

It can be referenced using the <js-amd-module> element. For more information, see How to Insert

JavaScript AMD Modules (on page 133).

• Additional Resources (graphics, JS, fonts, folders) - For other resources (such as images referenced

in CSS, JavaScript, fonts, entire folders, etc.) that need to be included in the output, you need to instruct

the transformation to include them in the output folder. You can specify one or more sets of additional

resources to be copied to the output folder by using the <fileset> element and you can use one or more

<include> and <exclude> elements. This semantic is similar to the ANT FileSet.

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 <css file="css/custom_styles.css"/>

http://requirejs.org/docs/whyamd.html#amd
http://requirejs.org/docs/whyamd.html#amd
https://ant.apache.org/manual/Types/fileset.html

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 71

 <css file="css/custom_fonts.css"/>

 <favicon file="images/favicon.png"/>

 <logo

 file="images/logo.png"

 target-url="http://www.example.com"

 alt="Alternate text for the logo image"/>

 <js-amd-module file="js/template-main.js"/>

 <fileset>

 <include name="common/**/*"/>

 <include name="JS/**/*"/>

 <exclude name="**/*.svn"/>

 <exclude name="**/*.git"/>

 </fileset>

 </resources>

Note:

All relative paths specified in the descriptor file are relative to the template root folder.

The resources specified in the template descriptor are copied to the following output folder:

[WebHelp_OUTPUT_DIR]/oxygen-webhelp/template. The following graphic illustrates the mapping

between the template resources and the location where they will be copied to the output folder:

Figure 10. Template Resources Mapping

Related Information:

How to Add a Favicon in WebHelp Systems (on page 146)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 72

Transformation Parameters

You can also set one or more WebHelp transformation parameters in the descriptor file.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter

 name="webhelp.show.main.page.toc"

 value="yes"/>

 <parameter

 name="webhelp.top.menu.depth"

 value="3"/>

 <parameter

 name="webhelp.fragment.welcome"

 value="html-fragment/webhelp.fragment.welcome.html"

 type="filePath"/>

 </parameters>

 </webhelp>

The following information can be specified in the <parameter> element:

Parameter name

The name of the parameter. It may be one of the WebHelp Responsive transformation

parameters (on page 99) or a DITA-OT HTML-based output parameter.

Note:

It is not recommended to specify an input/output parameter in the descriptor file (such

as the input Map, DITAVAL file, or temporary directory).

Attention:

JVM arguments like -Xmx cannot be specified as a transformation parameter.

Parameter Value

The value of the parameter. It should be a relative path to the template root folder for file paths

parameters.

Parameter Type

The type of the parameter: string or filepath. The string value is default.

After creating a publishing template (on page) and adding it to the templates gallery (on page 118),

when you select the template in the transformation scenario dialog box in Oxygen XML Editor/Author, the

http://www.dita-ot.org/dev/parameters/parameters-base-html.html
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 73

Parameters tab will automatically be updated to include the parameters defined in the descriptor file. These

parameters are displayed in italics.

XSLT Extension Points

The publishing templates can include one or more supported XSLT extension points (on page 112). They

are helpful when you want to change the structure of the HTML pages that are primarily generated from XSLT

processing. They can be specified using the <xslt> element in the descriptor file using the following structure:

<publishing-template>

 ...

 <webhelp>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.webhelp.xsl.dita2webhelp"

 file="xsl/customDita2webhelp.xsl"/>

 <extension

 id="com.oxygenxml.webhelp.xsl.createMainPage"

 file="xsl/customMainPage.xsl"/>

 </xslt>

For a full list of the supported extension points, see: XSLT-Import and XSLT-Parameter Extension Points (on

page 112).

Note:

You can read the value of a WebHelp transformation parameter from your XSLT extension stylesheets

by using the getParameter(param.name) function from the http://www.oxygenxml.com/functions

namespace.

HTML Fragment Placeholders

The HTML pages contain component placeholders that can be used to insert custom HTML fragments either

by specifying a well-formed XHTML fragment or referencing a path to a file that contains a well-formed

XHTML fragment (for details on how the file or fragment needs to be constructed, see How to Insert Custom

HTML Content (on page 128)).

These fragments and their placeholder location are defined in the descriptor file using a <fragment> element

inside the <html-fragments> section. You can specify one or more HTML fragment extension points in the

descriptor file using the following structure:

<publishing-template>

 ...

 <webhelp>

 ...

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 74

 <html-fragments>

 <fragment

 file="html-fragments/webhelp_fragment_welcome.html"

 placeholder="webhelp.fragment.welcome"/>

 <fragment

 file="html-fragments/webhelp_fragment_footer.html"

 placeholder="webhelp.fragment.footer"/>

 </html-fragments>

Some of these placeholders are left empty in the default output configurations, but you can use them to insert

custom content.

Each placeholder has an associated parameter value in the transformation. Some of the placeholder

parameters are global and can be used in all type of pages (main page, topic page, search results page,

index terms page), while others are applicable for certain type of pages. The following diagram illustrates the

predefined placeholders that are global (can be used in any of the types of pages.

Figure 11. Global Predefined Placeholders Diagram

1. Header (on page 75)

2. After Header (on page 75)

3. Before Body (on page 75)

4. Before Logo and Title (on page 75)

5. After Logo and Title (on page 75)

6. Beforer Top Menu (on page 75)

7. After Top Menu (on page 75)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 75

8. Before Search Input (on page 75)

9. After Search Input (on page 75)

10. Before Main Content (on page 75)

11. After Main Content (on page 75)

12. Footer (on page 75)

13. After Body (on page 75)

Global Placeholder Parameters

The following placeholder parameters can be used in any of the type of pages (main page, topic page, search

results page, index terms page). The parameter values can be either a well-formed XHTML fragment or a path

to a file that contains a well-formed XHTML fragment:

• 1 = webhelp.fragment.head - Displays the specified XHTML fragment in the header section.

• 2 = webhelp.fragment.after.header - Displays the specified XHTML fragment after the header section.

• 3 = webhelp.fragment.before.body - Displays the specified XHTML fragment before the body.

• 4 = webhelp.fragment.before.logo_and_title - Displays the specified XHTML fragment before the logo

and title.

• 5 = webhelp.fragment.after.logo_and_title - Displays the specified XHTML fragment after the logo and

title.

• 6 = webhelp.fragment.before.top_menu - Displays the specified XHTML fragment before the top menu.

• 7 = webhelp.fragment.after.top_menu - Displays the specified XHTML fragment after the top menu.

• 8 = webhelp.fragment.before.search.input - Displays the specified XHTML fragment before the search

input component.

• 9 = webhelp.fragment.after.search.input - Displays the specified XHTML fragment after the search

input component.

• 10 = webhelp.fragment.before.main.content.area - Displays the specified XHTML fragment before the

main content area

• 11 = webhelp.fragment.after.main.content.area - Displays the specified XHTML fragment after the

main content area.

• 12 = webhelp.fragment.footer - Displays the specified XHTML fragment in the footer section.

• 13 = webhelp.fragment.after.body - Displays the specified XHTML fragment after the body.

Main Page Placeholder Parameters

The following placeholder parameters can be used in the main page. The parameter values can be either a

well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

• webhelp.fragment.head.main.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.main.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.main.page - Displays the specified XHTML fragment before the body.

• webhelp.fragment.before.search.input.main.page - Displays the specified XHTML fragment before the

search input component.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 76

• webhelp.fragment.after.search.input.main.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.main.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.main.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.main.page - Displays the specified XHTML fragment after the body.

• webhelp.fragment.before.toc_or_tiles - Displays the specified XHTML fragment before the main table

of contents or tiles component on the main page.

• webhelp.fragment.after.toc_or_tiles - Displays the specified XHTML fragment after the main table of

contents or tiles component on the main page.

Topic Page Placeholder Parameters

The following placeholder parameters can be used in the topic page. The parameter values can be either a

well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

• webhelp.fragment.head.topic.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.topic.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.topic.page - Displays the specified XHTML fragment before the body.

• webhelp.fragment.before.search.input.topic.page - Displays the specified XHTML fragment before the

search input component.

• webhelp.fragment.after.search.input.topic.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.topic.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.topic.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.topic.page - Displays the specified XHTML fragment after the body.

• webhelp.fragment.before.topic.toolbar - Displays the specified XHTML fragment before the toolbar

buttons above the topic content in the topic page.

• webhelp.fragment.after.topic.toolbar - Displays the specified XHTML fragment after the toolbar

buttons above the topic content in the topic page.

• webhelp.fragment.before.topic.breadcrumb - Displays the specified XHTML fragment before the

breadcrumb component in the topic page.

• webhelp.fragment.after.topic.breadcrumb - Displays the specified XHTML fragment after the

breadcrumb component in the topic page.

• webhelp.fragment.before.publication.toc - Displays the specified XHTML fragment before the

publication's table of contents component in the topic page.

• webhelp.fragment.after.publication.toc - Displays the specified XHTML fragment after the publication's

table of contents component in the topic page.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 77

• webhelp.fragment.before.topic.content - Displays the specified XHTML fragment before the topic's

main content in the topic page.

• webhelp.fragment.after.topic.content - Displays the specified XHTML fragment after the topic's main

content in the topic page.

• webhelp.fragment.before.feedback - Displays the specified XHTML fragment before the Oxygen

Feedback commenting component in the topic page.

• webhelp.fragment.after.feedback - Displays the specified XHTML fragment after the Oxygen Feedback

commenting component in the topic page.

• webhelp.fragment.before.topic.toc - Displays the specified XHTML fragment before the topic's table of

contents component in the topic page.

• webhelp.fragment.after.topic.toc - Displays the specified XHTML fragment after the topic's table of

contents component in the topic page.

Search Results Page Placeholder Parameters

The following placeholder parameters can be used in the search results page. The parameter values can be

either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

• webhelp.fragment.head.search.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.search.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.search.page - Displays the specified XHTML fragment before the body.

• webhelp.fragment.before.search.input.search.page - Displays the specified XHTML fragment before

the search input component.

• webhelp.fragment.after.search.input.search.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.search.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.search.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.search.page - Displays the specified XHTML fragment after the body.

• webhelp.google.search.script - Replaces the search input component with a Google search

component.

Index Terms Page Placeholder Parameters

The following placeholder parameters can be used in the search results page. The parameter values can be

either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment:

• webhelp.fragment.head.terms.page - Displays the specified XHTML fragment in the header section.

• webhelp.fragment.after.header.terms.page - Displays the specified XHTML fragment after the header

section.

• webhelp.fragment.before.body.terms.page - Displays the specified XHTML fragment before the body.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 78

• webhelp.fragment.before.search.input.terms.page - Displays the specified XHTML fragment before

the search input component.

• webhelp.fragment.after.search.input.terms.page - Displays the specified XHTML fragment after the

search input component.

• webhelp.fragment.before.main.content.area.terms.page - Displays the specified XHTML fragment

before the main content area

• webhelp.fragment.after.main.content.area.terms.page - Displays the specified XHTML fragment after

the main content area.

• webhelp.fragment.after.body.terms.page - Displays the specified XHTML fragment after the body.

Using String Values in Placeholder Parameter Values

If you use strings for values of HTML fragment placeholder parameter values, the string values are written to

files in the transformation's temporary directory. The values of the associated parameters reference the paths

of the temporary files. This means that the HTML fragments will have a uniform processing in the WebHelp's

XSLT Module.

Example:

Suppose the placeholder parameter has the following string value:

String value

webhelp.fragment.welcome = <p>This is an HTML paragraph.</p>

A new file that contains the parameter's value is created:

[temp-dir]/whr-html-fragments/webhelp_fragment_welcome.xml

<p>This is an HTML paragraph.</p>

The parameter's value then becomes:

Absolute file path as value

webhelp.fragment.welcome= [temp-dir]/whr-html-fragments/webhelp_fragment_welcome.xml

Related Information:

How to Insert Custom HTML Content (on page 128)

WebHelp Responsive Macros

You can use the whc:macro layout component to specify a macro value (a variable that will be expanded when

the output files are generated).

A macro has the following syntax:

${macro-name}

or

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 79

${macro-name(macro-parameter)}

A macro name can accept any alphanumeric characters, as well as the following characters: - (minus), _

(underscore), . (dot), : (colon). The value of a parameter may contain any character except the } (close curly

bracket) character.

Implementations

The following macros are supported:

i18n

For localizing a string.

${i18n(string.id)}

param

Returns the value of a transformation parameter.

${param(webhelp.show.main.page.tiles)}

env

Returns the value of an environment variable.

${env(JAVA_HOME)}

system-property

Returns the value of a system property.

${system-property(os.name)}

timestamp

Can be used to format the current date and time. Accepts a string (as a parameter) that

determines how the date and time will be formatted (format string or picture string as it is known

in the XSLT specification). The format string must comply with the rules of the XSLT format-

dateTime function specification.

${timestamp([h1]:[m01] [P] [M01]/[D01]/[Y0001])}

path

Returns the path associated with the specified path ID. The following paths IDs are supported:

• oxygen-webhelp-output-dir - The path to the output directory. The path is relative to the

current HTML file.

• oxygen-webhelp-assets-dir - The path to the oxygen-webhelp subdirectory from the

output directory. The path is relative to the current HTML file.

• oxygen-webhelp-template-dir - The path to the template directory. The path is relative to

the current HTML file.

${path(oxygen-webhelp-template-dir)}

https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 80

Note:

New paths IDs can be added by overriding the wh-macro-custom-path template from

com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl:

<!-- Extension template for expanding a custom path macro. -->

<xsl:template name="wh-macro-custom-path">

 <xsl:param name="pathId"/>

 <xsl:value-of select="$pathId"/>

</xsl:template>

map-xpath

Can be used to execute an XPath expression over the DITA map file from the temporary

directory.

Tip:

Available in all template layout HTML pages.

${map-xpath(/map/title)}

topic-xpath

Can be used to execute an XPath expression over the current topic.

Tip:

Available only in the topic HTML page template (wt_topic.html).

${topic-xpath(string-join(//shortdesc//text(), ' '))}

oxygen-webhelp-build-number

Returns the current WebHelp distribution ID (build number).

${oxygen-webhelp-build-number}

Extensibility

To add new macros, you can add an XSLT extension to overwrite the wh-macro-extension template from the

com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl file.

<!-- Extension template for expanding custom macro constructs -->

<xsl:template name="wh-macro-extension">

 <xsl:param name="name"/>

 <xsl:param name="params"/>

 <xsl:param name="contextNode"/>

 <xsl:param name="matchedString"/>

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 81

 <xsl:choose>

 <xsl:when test="$contextNode instance of attribute()">

 <xsl:value-of select="$matchedString"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:message>Cannot expand macro:

 [<xsl:value-of select="$matchedString"/>]</xsl:message>

 <xsl:copy-of select="$contextNode"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

The wh-macro-extension template has the following parameters:

• name - The name of the current macro.

• params - List of parameters of the current macro as a string sequence. The current macros parsing

mechanism only allows macros with a maximum of one parameter. Consequently, this list will contain

at most one element.

• contextNode - The current element or attribute where the macro was declared.

• matchedString - The entire value of the matched macro as specified in the HTML template page.

Combining WebHelp Responsive and PDF Customizations in a Template
Package

An Oxygen Publishing Template package can contain both a WebHelp Responsive and PDF customization

in the same template package and you can use that same template in both types of transformations. The

template descriptor file can define the customization for both types by including both a <webhelp> and <pdf>

element and some of the resources can be reused. Resources referenced in elements in the <webhelp> element

will only be used for WebHelp transformations, and resources referenced in the elements in the <pdf> element

will only be used in PDF transformations.

<publishing-template>

 <name>Flowers</name>

 <description>Flowers themed light-colored template</description>

 <webhelp>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-preview.png"/>

 <resources>

 <css file="flowers-wh.css"/>

 <css file="flowers-page-styling.css"/>

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 82

 </resources>

 <parameters>

 <parameter name="webhelp.show.main.page.tiles" value="no"/>

 <parameter name="webhelp.show.main.page.toc" value="yes"/>

 </parameters>

 </webhelp>

 <pdf>

 <tags>

 <tag>purple</tag>

 <tag>light</tag>

 </tags>

 <preview-image file="flowers-preview.png"/>

 <resources>

 <css file="flowers-pdf.css"/>

 <css file="flowers-page-styling.css"/>

 </resources>

 <parameters>

 <parameter name="show.changes.and.comments" value="yes"/>"/>

 </parameters>

 <pdf>

</publishing-template>

HTML Page Layout Files

The HTML page layout files define the default layout of the generated pages in the output for the built-in

template. There are four types of pages (main, search, topic, index) and each type of page is a simple HTML

file. Each page type has various components that appear by default and each component has a corresponding

element and when that element is included in the HTML file, the corresponding components will appear in the

output.

Warning:

It is no longer recommended for you to customize these files because if you upgrade to a newer

version of Oxygen, those files may no longer produce the desired results and if new components

have been added, you won't have access to them. Instead, use any of the other methods described in

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 66).

If you do choose to customize these HTML files, each type of page is defined inside an <html-page-layout-

files> element in the descriptor file.

<publishing-template>

 ...

 <webhelp>

 ...

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 83

 <!-- HTML page layout files -->

 <html-page-layout-files>

 <page-layout-file page="main" file="page-templates/wt_index.html"/>

 <page-layout-file page="search" file="page-templates/wt_search.html"/>

 <page-layout-file page="topic" file="page-templates/wt_topic.html"/>

 <page-layout-file page="index-terms" file="page-templates/wt_terms.html"/>

 </html-page-layout-files>

If you do use the html-page-layout-files element, you must specify all four types of pages

(main, search, topic, index). When not specified, the files from the DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates folder will be used to

define the layout of each type of page.

HTML Page Components

Each type of page contains various components that control the layout of that page. The rendering of each

component depends on the context where it is placed and its content depends on the transformed DITA map

(on page 191).

Some of the components can be used in all four types of pages, while some are only available for certain

pages. For instance, the Publication Title component can be used in all pages, but the Navigation Breadcrumb

component can only be used in the Topic Page.

To include a component in the output of a particular type of page, you have to reference a specific element

in that particular HTML file. All the elements associated with a component should belong to the http://

www.oxygenxml.com/webhelp/components namespace.

Every component can contain custom content or reference another component. To specify where the

component content will be located in the output, you can use the <whc:component_content> element as a

descendant of the component element. It can specify the location as before, after, or it can wrap the

component content. The following snippet contains an example of each:

<whc:webhelp_search_input class="navbar-form wh_main_page_search"

 role="form" >

 <div class="custom-content-before">Enter search terms here:</div>

 <div class="custom-wrapper">

 <whc:component_content/>

 </div>

 <div class="custom-content-after">Results will be displayed in a new window.</div>

</whc:webhelp_search_input>

Main Page

The Main Page is the home page generated in the WebHelp Responsive output. The name of the HTML

file that defines this page is wt_index.html and it is located in the following directory: DITA-OT-

DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 84

The main function of the home page is to display top-level information and provide links that help you easily

navigate to any of the top-level topics of the publication. These links can be rendered in either a Tiles or Tree

style of layout. The HTML page produced for the home page also consists of various other components, such

as a logo, title, menu, search field, or index link.

Figure 12. Examples of Main Page Components for a Tiles Style of Layout

1. Publication Logo (on page 85)

2. Publication Title (on page 85)

3. Search Input (on page 86)

4. Main Menu (on page 86)

5. Index Terms Link (on page 87)

6. Topic Tiles (on page 86)

7. Print Link (on page 86)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 85

Figure 13. Examples of Main Page Components for a Tree Style of Layout

1. Publication Logo (on page 85)

2. Publication Title (on page 85)

3. Search Input (on page 86)

4. Main Menu (on page 86)

5. Index Terms Link (on page 87)

6. Table of Contents (on page 87)

7. Print Link (on page 86)

The following components can be referenced in the Main Page (wt_index.html) file:

Publication Title (webhelp_publication_title)

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 86

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 139).

Main Page Topic Tiles (webhelp_tiles)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 87

This component generates the tiles section in the main page. This section will contain a tile

for each root topic of the published documentation. Each topic tile has three sections that

correspond to the topic title, short description, and image. To generate this component, the

<whc:webhelp_tiles> element must be specified in the HTML file as in the following example:

<whc:webhelp_tiles

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_tiles.

If you want to control the HTML structure that is generated for a WebHelp tile you can also

specify the template for a tile by using the <whc:webhelp_tile> component, as in the following

example:

<whc:webhelp_tile class="col-md-4">

 <!-- Place holder for tile's image -->

 <whc:webhelp_tile_image/>

 <div class="wh_tile_text">

 <!-- Place holder for tile's title -->

 <whc:webhelp_tile_title/>

 <!-- Place holder for tile's shordesc -->

 <whc:webhelp_tile_shortdesc/>

 </div>

</whc:webhelp_tile>

For information about customizing the tiles, see How to Configure the Tiles on the WebHelp

Responsive Main Page (on page 143).

Main Page Table of Contents (webhelp_main_page_toc)

This component generates a simplified Table of Contents. It is simplified because it

contains only two levels from the documentation hierarchy. To generate this component, the

<whc:webhelp_main_page_toc> element must be specified in the HTML file as in the following

example:

<whc:webhelp_main_page_toc

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_main_page_toc.

Index Terms Link (webhelp_indexterms_link)

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 88

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

Topic Page

The Topic Page is the page generated for each DITA topic in the WebHelp Responsive output. The name of

the HTML file that defines this page is wt_topic.html and it is located in the following directory: DITA-OT-

DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates.

The HTML pages produced for each topic consist of the topic content along with various other additional

components, such as a title, menu, navigation breadcrumb, print icon, or side table of contents.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 89

Figure 14. Examples of Topic Page Components

1. Publication Logo (on page 90)

2. Publication Title (on page 89)

3. Search Input (on page 90)

4. Main Menu (on page 92)

5. Index Terms Link (on page 92)

6. Expand/Collapse All Sections (on page 92)

7. Navigation Links (on page 90)

8. Print Link (on page 91)

9. Breadcrumb (on page 90)

10. Publication Table of Contents (on page 91)

11. Topic Content (on page 91)

12. Topic Table of Contents (on page 91)

The following components can be referenced in the Topic Page (wt_topic.html) file:

Publication Title (webhelp_publication_title)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 90

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Topic Breadcrumb (webhelp_breadcrumb)

This component generates a breadcrumb that displays the path of the current topic. To generate

this component, the <whc:webhelp_breadcrumb> element must be specified in the HTML file as in the

following example:

<whc:webhelp_breadcrumb

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_breadcrumb. This component will contain

a list with items that correspond to the topics in the path. The first item in the list has a link to

the main page with the home class. The last item in the list corresponds to the current topic and

has the active class set.

Navigation Links (webhelp_navigation_links)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 91

This component generates navigation links to the next and previous topics. To generate this

component, the <whc:webhelp_navigation_links> element must be specified in the HTML file as in

the following example:

<whc:webhelp_navigation_links

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_navigation_links. This component will

contain the links to the next and previous topics.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Topic Content (webhelp_topic_content)

This component generates the content of a topic and it represent the content of the HTML

files as they are produced by the DITA-OT processor. To generate this component, the

<whc:webhelp_topic_content> element must be specified in the HTML file as in the following

example:

<whc:webhelp_topic_content

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_topic_content.

Publication TOC (webhelp_publication_toc)

This component generates a mini table of contents for the current topic (on the left side). It will

contain links to the children of the current topic, its siblings, and all of its ancestors. To generate

this component, the <whc:webhelp_publication_toc> element must be specified in the HTML file as

in the following example:

<whc:webhelp_publication_toc

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_toc. This component will

contain links to the topics referenced in the DITA map. It also includes an expand/collapse

button (either to collapse or the to expand).

Topic TOC (webhelp_topic_toc)

This component generates a topic table of contents for the current topic (on the right side) with

a heading named On this page. It contains links to each section within the current topic and

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 92

the section corresponding to the current scroll position is highlighted. The topic must contain

at least two <section> elements and each <section> must have an @id attribute. To generate this

component, the <whc:webhelp_topic_toc> element must be specified in the HTML file as in the

following example:

<whc:webhelp_topic_toc

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_topic_toc. This component will contain

links to the sections within the current topic. It also includes an expand/collapse button (either

 to collapse or the to expand).

Expand/Collapse Sections (webhelp_expand_collapse_sections)

This component is used to generate an icon that expands or collapses sections

listed in the side table of contents within a topic. To generate this component, the

<whc:webhelp_expand_collapse_sections> element must be specified in the HTML file as in the

following example:

<whc:webhelp_expand_collapse_sections

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: webhelp_expand_collapse_sections.

Topic Feedback (webhelp_feedback)

This component generates a placeholder for where the comments section will be presented. To

generate this component, the <whc:webhelp_feedback> element must be specified in the HTML file

as in the following example:

<whc:webhelp_feedback

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 139).

Index Terms Link (webhelp_indexterms_link)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 93

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Child Links (webhelp_child_links)

For all topics with subtopics (child topics), this component generates a list of links to each child

topic. To generate this component, the <whc:webhelp_child_links> element must be specified in

the HTML file as in the following example:

<whc:webhelp_child_links

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Related Links (webhelp_related_links)

For all topics that contain related links, this component generates a list of related links that will

appear in the output. To generate this component, the <whc:webhelp_related_links> element must

be specified in the HTML file as in the following example:

<whc:webhelp_related_links

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

Search Results Page

The Search Results Page is the page generated that presents search results in the WebHelp Responsive

output. The name of the HTML file that defines this page is wt_search.html and it is located in the

following directory: DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-

webhelp/page-templates.

The HTML page that is produced consists of a search results component along with various other additional

components, such as a title, menu, or index link.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 94

Figure 15. Examples of Search Results Page Components

1. Publication Logo (on page 94)

2. Publication Title (on page 94)

3. Search Input (on page 95)

4. Main Menu (on page 95)

5. Index Terms Link (on page 96)

6. Search Results (on page 95)

7. Print Link (on page 95)

The following components can be referenced in the Search Results Page (wt_search.html) file:

Publication Title (webhelp_publication_title)

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 95

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Search Results (webhelp_search_results)

This component is used to generate a placeholder to signal where the search results will be

presented in the output. To generate this component, the <whc:webhelp_search_results> element

must be specified in the HTML file as in the following example:

<whc:webhelp_search_results

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_results.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 96

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 139).

Index Terms Link (webhelp_indexterms_link)

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

Index Terms Page

The Index Terms Page is the page generated that presents index terms in the WebHelp Responsive output.

The name of the HTML file that defines this page is wt_terms.html and it is located in the following

directory: DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-

templates.

The HTML page that is produced consists of an index terms section along with various other additional

components, such as a title, menu, or search field.

An alphabet that contains the first letter of the documentation index terms is generated at the top of the index

page. Each letter represents a link to a specific indices section.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 97

Figure 16. Example of Index Terms Page Components

1. Publication Logo (on page 97)

2. Publication Title (on page 97)

3. Search Input (on page 98)

4. Main Menu (on page 98)

5. Index Terms Link (webhelp_indexterms_link) (on page 98)

6. Print Link (on page 98)

The following components can be referenced in the Index Terms Page (wt_terms.html) file:

Publication Title (webhelp_publication_title)

This component generates the publication title in the output. To generate this component, the

<whc:webhelp_publication_title> element must be specified in the HTML file as in the following

example:

<whc:webhelp_publication_title

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo (webhelp_logo)

This component generates a logo image in the output. To generate this component, the

<whc:webhelp_logo> element must be specified in the HTML file as in the following example:

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 98

<whc:webhelp_logo

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image

transformation parameter (in the Parameters tab in the transformation scenario). You can set

the webhelp.logo.image.target.url parameter to generate a link to a URL when you click the

logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in the

output. To generate this component, the <whc:webhelp_search_input> element must be specified in

the HTML file as in the following example:

<whc:webhelp_search_input

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your

particular browser. To generate this component, the <whc:webhelp_print_link> element must be

specified in the HTML file as in the following example:

<whc:webhelp_print_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this

component, the <whc:webhelp_top_menu> element must be specified in the HTML file as in the

following example:

<whc:webhelp_top_menu

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the

webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation

scenario).

For information about customizing the menu, see How to Customize the Menu (on page 139).

Index Terms Link (webhelp_indexterms_link)

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 99

This component can be used to generate a link to the index terms page (indexterms.html). If the

published documentation does not contain any index terms, then the link will not be generated.

To generate this component, the <whc:webhelp_indexterms_link> element must be specified in the

HTML file as in the following example:

<whc:webhelp_indexterms_link

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This component will

contain a link to the indexterms.html page.

Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as

the CSS file). To generate this component, the <whc:webhelp_skin_resources> element must be

specified in the HTML file as in the following example:

<whc:webhelp_skin_resources/>

In the output, you will find a link to the skin resources.

WebHelp Responsive Transformation Parameters
In addition to the common DITA-OT transformation parameters and the HTML-based Output Parameters, there

are numerous other supported parameters that are specific to the WebHelp Responsive output.

Publishing Template Parameters

webhelp.publishing.template

Specifies the path to the ZIP archive (or root folder) that contains your custom WebHelp

Responsive template.

Note:

The built-in templates are stored in the DITA-OT-DIR/plugins/

com.oxygenxml.webhelp.responsive/templates folder.

Note:

Relative paths are resolved based on the current working directory.

webhelp.publishing.template.descriptor

Specifies the name of the descriptor to be loaded from the WebHelp Responsive template

package. If it is not specified, the first encountered descriptor will be automatically loaded.

Custom Resource Parameters

webhelp.custom.resources

http://www.dita-ot.org/dev/parameters/parameters-base.html
http://www.dita-ot.org/dev/parameters/parameters-base-html.html

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 100

The file path to a directory that contains resources files. All files from this directory will be copied

to the root of the WebHelp output.

webhelp.favicon

The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.logo.image.target.url

Specifies a target URL that is set on the logo image. When you click the logo image, you will be

redirected to this address.

webhelp.logo.image

Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.logo.image.alt

Specifies a value that will be set in the @alt attribute of the logo image. If the parameter is not

specified, the @alt attribute will contain the publication title. Note that this parameter makes

sense only in conjunction with the webhelp.logo.image parameter.

Oxygen Feedback Parameter

webhelp.fragment.feedback

You can integrate Oxygen Feedback with your WebHelp Responsive output to provide a

comments area at the bottom of each page where readers can offer feedback. When you create

an Oxygen Feedback site configuration, an HTML fragment is generated during the final step of

the creation process and that fragment should be set as the value for this parameter.

HTML Fragment Extension Parameters

webhelp.enable.html.fragments.cleanup

Enables or disables the automatic conversion of HTML fragments to well-formed XML. If set

to true (default), the transformation automatically converts non-well-formed HTML content to

a well-formed XML equivalent. If set to false, the transformation will fail if at least one HTML

fragment is not well-formed.

webhelp.fragment.after.body

This parameter can be used to display a given XHTML fragment after the body in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.main.page

This parameter can be used to display a given XHTML fragment after the body in the main page.

The value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.after.body.search.page

https://www.oxygenxml.com/oxygen_feedback.html
https://feedback.oxygenxml.com/
https://feedback.oxygenxml.com/

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 101

This parameter can be used to display a given XHTML fragment after the body in the search

results page. The value of the parameter can be either a well-formed XHTML fragment or a path

to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.terms.page

This parameter can be used to display a given XHTML fragment after the body in the index terms

page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file

that contains a well-formed XHTML fragment.

webhelp.fragment.after.body.topic.page

This parameter can be used to display a given XHTML fragment after the body in the topic page.

The value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.after.feedback

This parameter can be used to display a given XHTML fragment after the Oxygen Feedback

commenting component in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header

This parameter can be used to display a given XHTML fragment after the header section in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.main.page

This parameter can be used to display a given XHTML fragment after the header section in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.search.page

This parameter can be used to display a given XHTML fragment after the header section in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.terms.page

This parameter can be used to display a given XHTML fragment after the header section in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.header.topic.page

This parameter can be used to display a given XHTML fragment after the header section in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 102

This parameter can be used to display a given XHTML fragment after the logo and title in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area

This parameter can be used to display a given XHTML fragment after the main content section in

all types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area.main.page

This parameter can be used to display a given XHTML fragment after the main content section

in the main page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.content.area.topic.page

This parameter can be used to display a given XHTML fragment after the main content section

in the topic page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.page.search (deprecated)

This parameter is deprecated. Use webhelp.fragment.after.search.input.main.page instead.

webhelp.fragment.after.publication.toc

This parameter can be used to display a given XHTML fragment before the publication's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input

This parameter can be used to display a given XHTML fragment after the search field in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.main.page

This parameter can be used to display a given XHTML fragment after the search field in all the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.search.page

This parameter can be used to display a given XHTML fragment after the search field in all the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.search.input.terms.page

This parameter can be used to display a given XHTML fragment after the search field in all the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 103

webhelp.fragment.after.search.input.topic.page

This parameter can be used to display a given XHTML fragment after the search field in all the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.toc_or_tiles

This parameter can be used to display a given XHTML fragment after the table of contents or

tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment

or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.top_menu

This parameter can be used to display a given XHTML fragment after the top menu in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.breadcrumb

This parameter can be used to display a given XHTML fragment after the breadcrumb

component in the topic page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.content

This parameter can be used to display a given XHTML fragment after the topic's content in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.toc

This parameter can be used to display a given XHTML fragment after the topic's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.topic.toolbar

This parameter can be used to display a given XHTML fragment after the toolbar buttons above

the topic content in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body

This parameter can be used to display a given XHTML fragment before the page body in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.main.page

This parameter can be used to display a given XHTML fragment before the page body in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.search.page

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 104

This parameter can be used to display a given XHTML fragment before the page body in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.terms.page

This parameter can be used to display a given XHTML fragment before the page body in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body.topic.page

This parameter can be used to display a given XHTML fragment before the page body in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.feedback

This parameter can be used to display a given XHTML fragment before the Oxygen Feedback

commenting component in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title

This parameter can be used to display a given XHTML fragment before the logo and title. The

value of the parameter can be either a well-formed XHTML fragment or a path to a file that

contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area

This parameter can be used to display a given XHTML fragment before the main content section

in all types of pages. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.main.page

This parameter can be used to display a given XHTML fragment before the main content section

in the main page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.search.page

This parameter can be used to display a given XHTML fragment before the main content section

in the search results page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.terms.page

This parameter can be used to display a given XHTML fragment before the main content

section in the index terms page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.content.area.topic.page

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 105

This parameter can be used to display a given XHTML fragment before the main content section

in the topic page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search (deprecated)

This parameter is deprecated. Use webhelp.fragment.before.search.input.main.page instead.

webhelp.fragment.before.publication.toc

This parameter can be used to display a given XHTML fragment before the publication's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input

This parameter can be used to display a given XHTML fragment before the search field in all

types of pages. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.main.page

This parameter can be used to display a given XHTML fragment before the search field in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.search.page

This parameter can be used to display a given XHTML fragment before the search field in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.terms.page

This parameter can be used to display a given XHTML fragment before the search field in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.search.input.topic.page

This parameter can be used to display a given XHTML fragment before the search field in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles

This parameter can be used to display a given XHTML fragment before the table of contents or

tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment

or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.top_menu

This parameter can be used to display a given XHTML fragment before the top menu in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 106

webhelp.fragment.before.topic.breadcrumb

This parameter can be used to display a given XHTML fragment before the breadcrumb

component in the topic page. The value of the parameter can be either a well-formed XHTML

fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.content

This parameter can be used to display a given XHTML fragment before the topic's content in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.toc

This parameter can be used to display a given XHTML fragment before the topic's table of

contents component in the topic page. The value of the parameter can be either a well-formed

XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.topic.toolbar

This parameter can be used to display a given XHTML fragment before the toolbar buttons

above the topic content in the topic page. The value of the parameter can be either a well-

formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.custom.search.engine.results

This parameter can be used to replace the search results area with custom XHTML content. The

value of the parameter is the path to an XHTML file that contains your custom content.

webhelp.fragment.custom.search.engine.script

This parameter can be used to replace WebHelp's built-in search engine with your own custom

search engine. The value of the parameter is the path to an XHTML file that contains the scripts

required for your custom search engine to run.

webhelp.fragment.footer

This parameter can be used to display a given XHTML fragment as the page footer in all types of

pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

Important:

This parameter should only be used if you are using a valid, purchased license of Oxygen

XML WebHelp Responsive plugin (do not use it with a trial license).

webhelp.fragment.head

This parameter can be used to display a given XHTML fragment in the header section in all types

of pages. The value of the parameter can be either a well-formed XHTML fragment or a path to a

file that contains a well-formed XHTML fragment.

webhelp.fragment.head.main.page

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 107

This parameter can be used to display a given XHTML fragment in the header section in the

main page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.search.page

This parameter can be used to display a given XHTML fragment in the header section in the

search results page. The value of the parameter can be either a well-formed XHTML fragment or

a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.terms.page

This parameter can be used to display a given XHTML fragment in the header section in the

index terms page. The value of the parameter can be either a well-formed XHTML fragment or a

path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head.topic.page

This parameter can be used to display a given XHTML fragment in the header section in the

topic page. The value of the parameter can be either a well-formed XHTML fragment or a path to

a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome

This parameter can be used to display a given XHTML fragment as a welcome message (or

title). The value of the parameter can be either a well-formed XHTML fragment or a path to a file

that contains a well-formed XHTML fragment.

Output Component Parameters

webhelp.default.collection.type.sequence

Specifies if the sequence value will be used by default when the @collection-type attribute is

not specified. This option is helpful if you want to have Next and Previous navigational buttons

generated for all HTML pages. Allowed values are no (default) and yes.

webhelp.enable.sticky.header

Controls whether or not the header section will remain sticky in the output. Possible values are

yes (default) or no.

webhelp.enable.sticky.publication.toc

Controls whether or not the publication table of contents will remain sticky in the output.

Possible values are yes (default) or no.

webhelp.enable.sticky.topic.toc

Controls whether or not the topic table of contents will remain sticky in the output. Possible

values are yes (default) or no.

webhelp.figure.title.placement

Controls the placement of the title for figures (relative to the image). Possible values include top

(default) and bottom.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 108

webhelp.merge.nested.topics.related.links

Specifies if the related links from nested topics will be merged with the links in the parent topic.

Thus the links will be moved from the topic content to the related links component and all

of the links from the same group (for example, Related Tasks, Related References, Related

Information) are merged into a single group. The default value is yes.

webhelp.publication.toc.hide.chunked.topics

Specifies if the table of contents will contain links for chunked topics. The default value is yes.

webhelp.publication.toc.links

Specifies which links will be included in the table of contents. The possible values are:

• chapter (default) - The TOC will include links for the current topic, its children, its siblings,

and its direct ancestor (including the direct ancestor's siblings), and the parent chapter.

• topic - The TOC will only include links for the current topic and its direct children.

• all - The TOC will include all links.

webhelp.publication.toc.tooltip.position

By default, if a topic contains a <shortdesc> element, its content is displayed in a tooltip when

the user hovers over its link in the table of contents. This parameter controls whether or not this

tooltip is displayed and its position relative to the link. The possible values are:

• left (default)

• right

• top

• bottom

• hidden - The tooltip will not be displayed.

webhelp.rellinks.group.mode

Specifies the related links grouping mode. All links can be grouped into a single "Related

Information" heading or links can be grouped by their target type (topic, task, or concept).

Allowed values: single-group (default) or group-by-type.

webhelp.show.breadcrumb

Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.changes.and.comments

When set to yes, user comments, replies to comments, and tracked changes are published in the

WebHelp output. The default value is no.

webhelp.show.child.links

Specifies if child links will be generated in the output for all topics that have subtopics. The

default value is no.

webhelp.show.full.size.image

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 109

Specifies if responsive images that are displayed with a smaller dimension than their original

size can be clicked to see an enlarged version of the image. The default value is yes.

webhelp.show.indexterms.link

Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles

Specifies if the tiles component will be presented in the main page of the output. For a tree style

layout, this parameter should be set to no.

webhelp.show.main.page.toc

Specifies if the table of contents will be presented in the main page of the output. The default

value is yes.

webhelp.show.navigation.links

Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link

Specifies if a print link or icon will be presented within each topic in the output. The default value

is yes.

webhelp.show.publication.toc

Specifies if a table of contents will be presented on the left side of each topic in the output. The

default value is yes.

webhelp.show.topic.toc

Specifies if a topic table of contents will be presented on the right side of each topic in the

output. This table of contents contains links to each <section> within the current topic that

contains an @id attribute and the section corresponding to the current scroll position is

highlighted. The default value is yes.

webhelp.show.top.menu

Specifies if a menu will be presented at the topic of the main page in the output. The default

value is yes.

webhelp.table.title.placement

Controls the placement of the title for tables. Possible values include top (default) and bottom.

webhelp.top.menu.activated.on.click

When this parameter is activated (set to yes), clicking an item in the top menu will expand the

submenu (if available). You can then click on a submenu item to open the item (topic). You can

click outside the menu or press ESC to hide the menu. When set to no (default), hovering over a

menu item displays the menu content.

webhelp.top.menu.depth

Specifies the maximum depth level of the topics that will be included in the top menu. The

default value is 3. A value of 0 means that the menu has unlimited depth.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 110

webhelp.topic.collapsible.elements.initial.state

Specifies the initial state of collapsible elements (tables with titles, nested topics with titles,

sections with titles, index term groups). The possible values are collapsed or expanded (default

value).

Search-Related Parameters

webhelp.enable.search.autocomplete

Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default

value is yes.

webhelp.google.search.results

A file path that specifies the location of a well-formed XHTML file containing the Google Custom

Search Engine element gcse:searchresults-only. You can use all supported attributes for this

element. It is recommended to set the @linkTarget attribute to frm for frameless (iframe) version

of WebHelp or to contentWin for the frameset version of WebHelp. The default value for this

attribute is _blank and the search results will be loaded in a new window. If this parameter is

not specified, the following code will be used <gcse:searchresults-only linkTarget="frm"></

gcse:searchresults-only>.

webhelp.google.search.script

A file path that specifies the location of a well-formed XHTML file containing the Custom Search

Engine script from Google.

webhelp.search.enable.pagination

Specifies whether or not search results will be displayed on multiple pages. Allowed values are

yes or no.

webhelp.search.index.elements.to.exclude

Specifies a list of HTML elements that will not be indexed by the search engine. The value of the

@class attribute can be used to exclude specific HTML elements from indexing. For example, the

div.not-indexed value will not index all <div> elements that have a @class attribute with the value

of not-indexed. Use a comma separator to specify more than one element.

webhelp.search.japanese.dictionary

The file path of the dictionary that will be used by the Kuromoji morphological engine for

indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be

UTF8.

webhelp.search.page.numberOfItems

Specifies the number of search results items displayed on each page. This parameter is only

used when the webhelp.search.enable.pagination parameter is enabled.

webhelp.search.ranking

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 111

If this parameter is set to false then the 5-star rating mechanism is no longer included in the

search results that are displayed on the Search tab (default setting is true).

webhelp.search.stop.words.exclude

Specifies a list of words that will be excluded from the default list of stop words that are filtered

out before the search processing. Use comma separators to specify more than one word (for

example: if,for,is).

webhelp.search.stop.words.include

Specifies a list of words that will be ignored by the search engine. Use a comma separator to

specify more than one word.

webhelp.sitemap.base.url

Base URL for all the <loc> elements in the generated sitemap.xml file. If this parameter is

specified, the loc element will contain the value of this parameter plus the relative path to the

page. If this parameter is not specified, the loc element will only contain the relative path of the

page (the relative file path from the @href attribute of a <topicref> element from the DITA map,

appended to this base URL value).

webhelp.sitemap.change.frequency

The value of the <changefreq> element in the generated sitemap.xml file. The <changefreq>

element is optional in sitemap.xml. If you leave this parameter set to its default empty value,

then the <changefreq> element is not added in sitemap.xml. Allowed values: <empty string>

(default), always, hourly, daily, weekly, monthly, yearly, never.

webhelp.sitemap.priority

The value of the <priority> element in the generated sitemap.xml file. It can be set to any

fractional number between 0.0 (least important priority) and 1.0 (most important priority).

For example, 0.3, 0.5, or 0.8. The <priority> element is optional in sitemap.xml. If you leave

this parameter set to its default empty value, then the <priority> element is not added in

sitemap.xml.

Publishing Speedup Parameters

parallel

A common parameter with other transformation types. When set to true (default value is false),

the publishing pre-processing stages are run in parallel slightly improving the publishing time.

store-type

A common parameter with other transformation types. When set to memory, the processing

stages use internal memory to store temporarily processed documents, thus decreasing the

publishing time but slightly increasing the amount of internal memory used for the process.

When publishing on Windows, setting this parameter can decrease the publishing times by about

one-third.

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 112

Note:

The fix.external.refs.com.oxygenxml parameter is not supported when running the transformation

from a command line. This parameter is normally used to specify whether or not the application tries

to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed

references.

Parameters for Adding a Link to PDF Documentation in WebHelp Responsive Output

The following transformation parameters can be used to generate a PDF link component in the WebHelp

Responsive output (for example, it could link to the PDF equivalent of the documentation):

webhelp.pdf.link.url

Specifies the target URL for the PDF link component.

webhelp.pdf.link.text

Specifies the text for the PDF link component.

webhelp.pdf.link.icon.path

Specifies the path or URL of the image icon to be used for the PDF link component. If not

specified, a default icon is used.

webhelp.pdf.link.anchor.enabled

Specifies whether or not the current topic ID should be appended as the name destination at the

end of the PDF link. Allowed values are: yes (default) and no.

webhelp.show.pdf.link

Specifies whether or not the PDF link component is shown in the WebHelp Responsive output.

Allowed values are: yes (default) and no.

Related information

Generating WebHelp Responsive Output (on page 7)

Setting DITA-OT Parameters

WebHelp Responsive XSLT-Import and XSLT-Parameter
Extension Points
XSLT extension points can be used from either from an Oxygen Publishing Template or from a DITA-OT

extension plug-in.

Extension Points from an Oxygen Publishing Template

The publishing template allows you to specify an XSLT extension point. The extension point will only affect the

transformations that use the particular template.

http://www.dita-ot.org/dev/parameters/index.html

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 113

Important:

While the publishing templates only support referencing one extension point at a time, you can use

xslt:include or xslt:import to aggregate multiple modules.

For a specific example of how to use an extension in a publishing template, see: How to Use an XSLT

Extension Point from a Publishing Template (on page 169) topic.

Example:

<publishing-template>

 ...

 <webhelp>

 ...

 <xslt>

 <extension

 id="com.oxygenxml.webhelp.xsl.createMainPage"

 file="xsl/customMainPage.xsl"/>

 </xslt>

Extension Points from a DITA-OT Extension Plug-in

The DITA-OT plug-in installer adds an XSLT import statement in the default WebHelp XSLT so that the XSLT

stylesheet referenced by the extension point becomes part of the normal build. You can use these extension

points to override XSLT processing steps.

Example:

<plugin id="com.oxygenxml.webhelp.responsive.extension">

 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp"

 file="xsl/fixup.xsl"/>

</plugin>

XSLT-Import Extension Points

The following extension points are supported:

com.oxygenxml.webhelp.xsl.dita2webhelp

Extension point to override the XSLT stylesheet (dita2webhelp.xsl) that produces

an HTML file for each DITA topic. The location of this file is DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\xsl\dita2webhelp\dita2webhelp.xsl

com.oxygenxml.webhelp.xsl.createMainPage

Extension point to override the XSLT stylesheet (createMainPage.xsl) that produces

the WebHelp Responsive main HTML page (index.html). The location of this file is

DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles

\createMainPage.xsl

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 114

com.oxygenxml.webhelp.xsl.createNavLinks

Extension point to override the XSLT stylesheets that are used to generate navigation links in the

WebHelp Responsive pages. These stylesheets can be found in the navLinks folder: DITA-OT-

DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\navLinks\

com.oxygenxml.webhelp.xsl.createSearchPage

Extension point to override the XSLT stylesheet (createSearchPage.xsl) that produces

the WebHelp Responsive search HTML page (search.html). The location of this file is

DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles

\createSearchPage.xsl

com.oxygenxml.webhelp.xsl.createIndexTermsPage

Extension point to override the XSLT stylesheet (createIndextermsPage.xsl) that produces

the WebHelp Responsive index terms HTML page (indexterms.html). The location of this

file is DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles

\createIndextermsPage.xsl

com.oxygenxml.webhelp.xsl.createTocXML

Extension point to override the XSLT stylesheet (tocDita.xsl) that produces the toc.xml

file. This file contains information extracted from the DITA map (on page 191) and it is

mainly used to construct the WebHelp Table of Contents and navigational links. The path to

this stylesheet is: DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl

\navLinks\tocDita.xsl.

XSLT-Parameter Extension Points

If your customization stylesheet declares one or more XSLT parameters and you want to control their values

from the transformation scenario, you can use one of the following XSLT parameter extension points:

com.oxygenxml.webhelp.xsl.dita2webhelp.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.dita2webhelp extension point (on page 113).

com.oxygenxml.webhelp.xsl.createMainPage.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createMainPage extension point (on page 113).

com.oxygenxml.webhelp.xsl.createNavLinks.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createNavLinks extension point (on page 114).

com.oxygenxml.webhelp.xsl.createSearchPage.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createSearchPage extension point (on page 114).

com.oxygenxml.webhelp.xsl.createIndexTermsPage.param

Oxygen XML WebHelp Responsive plugin 24.1 | 4 - Developer Reference | 115

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createIndexTermsPage extension point (on page 114).

com.oxygenxml.webhelp.xsl.createTocXML.param

Use this extension point to pass parameters to the stylesheet specified using the

com.oxygenxml.webhelp.xsl.createTocXML extension point (on page 114).

Related Information:

[DITA-OT] XSLT-Import Extension Points

[DITA-OT] XSLT-Parameter Extension Points

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html

5.
Customizing WebHelp Responsive Output
Oxygen XML WebHelp Responsive plugin provides support for customizing the WebHelp Responsive output

to suit your specific needs. The WebHelp Responsive output is based upon the Bootstrap responsive front-end

framework and is available for DITA document types.

To change the overall appearance of your WebHelp Responsive output, you can use several different

customization methods or a combination of methods. If you are familiar with CSS and coding, you can style

your WebHelp output through your own custom stylesheets. You can also customize your output by modifying

existing templates, create your own layout pages, or by configuring certain options and parameters in the

transformation scenario.

This section includes topics that explain various ways to customize your WebHelp Responsive system output,

such as how to configure the tiles on the main page, add logos in the title area, integrate with social media,

localizing the interface, and much more.

For an in-depth look at WebHelp Responsive features and some customization tips, watch our Webinar: DITA

Publishing and Feedback with Oxygen Tools.

Working with Publishing Templates
An Oxygen Publishing Template (on page 192) defines all aspects of the layout and styles of the WebHelp

Responsive output. It is a self-contained customization package stored as a ZIP archive or folder that can

easily be shared with others. It provides the primary method for customizing the output. The recommended

method for customizing the WebHelp Responsive output is to use a custom publishing template.

This section contains topics about how to create, edit, publish, and share publishing templates.

Related Information:

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 66)

How to Create a Publishing Template

To create a customization, you can start from scratch or from an existing template, and then adapt it

according to your needs.

Creating a Publishing Template Starting from Scratch

To create a new Oxygen Publishing Template, follow these steps:

https://www.oxygenxml.com/events/2021/webinar_dita_publishing_and_feedback_with_oxygen_tools.html
https://www.oxygenxml.com/events/2021/webinar_dita_publishing_and_feedback_with_oxygen_tools.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 117

1. Create a folder that will contain all the template files.

2. In Oxygen XML Editor/Author, open the new document wizard (use File > New or the New toolbar

button), then choose the Publishing Template Descriptor template.

Figure 17. Choosing the Publishing Template Descriptor Document Template

3. Save the .opt file into your customization directory.

4. Open the .opt file in the editor and customize it to suit your needs. See: Publishing Template Package

Contents for WebHelp Responsive Customizations (on page 66).

Creating a Publishing Template Starting from an Existing Template

If you are using a WebHelp Responsive or DITA Map PDF - based on HTML5 & CSS transformation, the

easiest way to create a new Oxygen Publishing Template (on page 192) is to select an existing template in

the transformation scenario dialog box and use the Save template as button to save that template into a new

template package that can be used as a starting point.

To create a new Oxygen Publishing Template, follow these steps:

1. Open the transformation scenario dialog box and select the publishing template you want to export and

use as a starting point.

2. Optional: You can set one or more transformation parameters from the Parameters tab and the edited

parameters will be exported along with the selected template. You will see which parameters will be

exported in the dialog box that is displayed after the next step.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 118

3. Click the Save template as button.

Step Result: This opens a template package configuration dialog box that contains some options and

displays the parameters that will be exported to your template package.

4. Specify a name for the new template.

5. Optional: Specify a template description.

6. Optional: The same publishing template package can contain both a WebHelp Responsive and

PDF customization and you can use the same template in both types of transformations (DITA

Map WebHelp Responsive or DITA Map to PDF - based on HTML5 & CSS). You can use the Include

WebHelp customization and Include PDF customization options to specify whether your custom

template will include both types of customizations.

7. Optional: For WebHelp Responsive customizations, you can select the Include HTML Page Layout

Files option if you want to copy the default HTML Page Layout Files (on page 82) in your template

package. They are helpful if you want to change the structure of the generated HTML pages.

8. In the Save as field, specify the name and path of the ZIP file where the template will be saved.

Step Result: A new ZIP archive will be created on disk in the specified location with the specified name.

9. Open the .opt file in the editor and customize it to suit your needs. See: Publishing Template Package

Contents for WebHelp Responsive Customizations (on page 66).

For more information about creating and customizing publishing templates, watch our video demonstration:

https://www.youtube.com/embed/zNmXfKWXwO8

Related Information:

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 66)

How to Edit a Packed Publishing Template

To edit an existing Oxygen Publishing Template (on page 192) package, follow these steps:

1. Unzip the ZIP archive associated with the Oxygen Publishing Template in a separate folder.

2. Link the folder associated with the template in the Project view.

3. Using the Project view, you can modify the resources (CSS, JS, fonts) within the Oxygen Publishing

Template folder to fit your needs.

4. Open the publishing template descriptor file (.opt extension) in the editor and modify it to suit your

needs.

5. Optional: Once you finish your customization, you can archive the folder as a ZIP file.

How to Add a Publishing Template to the Publishing Templates Gallery
To add the publishing template to your templates gallery, follow these steps:

https://www.youtube.com/embed/zNmXfKWXwO8

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 119

1. Open the transformation scenario dialog box by editing a WebHelp Responsive transformation.

2. In the Templates tab, click the Configure Publishing Templates Gallery link to.

This will open the preferences page.

3. Click the Add button and specify the location of your template directory.

Your template directory is now added to the Additional Publishing Templates Galleries list.

4. Click OK to return to the transformation scenario dialog box.

All the templates contained in your template directory will be displayed in the preview pane along with

all the built-in templates.

How to Use a Publishing Template from a Command Line

Before you run the transformation, you need to know if the publishing template has a single template

descriptor file or multiple descriptor files (on page 67). If you don't know, open the ZIP archive or folder and

check for files with the .opt extension.

Using a Publishing Template with a Single Descriptor

A template with a single descriptor is used for a single customization.

To run from a command line, you need to use the webhelp.publishing.template parameter (on page 99).

This parameter specifies the path to the ZIP archive (or root folder) that contains your custom WebHelp

Responsive template.

Command-Line Example:

• Windows:

 dita.bat

 --format=webhelp-responsive

 --input=c:\path\to\mySample.ditamap

 --output=c:\path\to\output

 -Dwebhelp.publishing.template=custom-template

• Linux/macOS:

 dita

 --format=webhelp-responsive

 --input=/path/to/mySample.ditamap

 --output=/path/to/output

 -Dwebhelp.publishing.template=custom-template

Tip:

You can also start the dita process by passing it a DITA OT Project File. Inside the project file you

can specify as parameters for the webhelp-responsive transformation type the WebHelp-related

parameters.

https://www.dita-ot.org/dev/topics/using-project-files.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 120

Using a Publishing Template with Multiple Descriptors

A template with multiple descriptors contains multiple customizations.

Because the publishing template is self-contained, it is used to reuse resources that are common to multiple

publications.

To run from a command line, you need to use the webhelp.publishing.template (on page 99) and

webhelp.publishing.template.descriptor (on page 99) parameters.

The webhelp.publishing.template (on page 99) parameter specifies the path to the ZIP archive (or root folder)

while the webhelp.publishing.template.descriptor (on page 99) parameter specifies the name of the descriptor

you want to use.

Command-Line Example:

• Windows:

 dita.bat

 --format=webhelp-responsive

 --input=c:\path\to\mySample.ditamap

 --output=c:\path\to\output

 -Dwebhelp.publishing.template=custom-template

 -Dwebhelp.publishing.template.descriptor=flowers.opt

• Linux/macOS:

 dita

 --format=webhelp-responsive

 --input=/path/to/mySample.ditamap

 --output=/path/to/output

 -Dwebhelp.publishing.template=custom-template

 -Dwebhelp.publishing.template.descriptor=flowers.opt

Tip:

You can also start the dita process by passing it a DITA OT Project File. Inside the project file you

can specify as parameters for the webhelp-responsive transformation type the WebHelp-related

parameters.

How to Share a Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder in your project.

2. Go to Options > Preferences > DITA > Publishing and add that new folder to the list.

3. Switch the option as the bottom of that preferences page to Project Options.

4. Share your project file (.xpr).

https://www.dita-ot.org/dev/topics/using-project-files.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 121

Troubleshooting: Errors Encountered when Loading Templates

When the Templates tab of a WebHelp Responsive transformation scenario dialog box is opened, all

templates (built-in and custom) are loaded and validated. Specifically, certain elements in the template

descriptor file (on page 67) are checked for validity. If errors are encountered that prevents the template from

loading, the following message will be displayed toward the bottom of the dialog box:

If you click the More details link, a window will open with more information about the encountered error. For

example, it might offer a hint that the element is missing from the expected descriptor file structure (on page

67).

Also, if a template could be loaded, but certain elements could not be found in the descriptor file (on page

67), a warning icon () will be displayed on the template's image (in the Templates tab of the transformation

dialog box). For example, this happens if a valid preview-image element (on page 69) cannot be found.

Converting Old Templates to Newer Versions

WebHelp templates that were created in older versions of Oxygen XML WebHelp Responsive plugin can be

converted to the Publishing Template format that was introduced in Oxygen XML WebHelp Responsive plugin

version 20.0. This section contains several procedures for converting old templates depending on the version

they were created in.

Convert Version 24.0 Publishing Templates to Version 24.1

If you have a custom Publishing Template that was created in Oxygen XML WebHelp Responsive plugin

version 24.0, the following conversion procedure is required for the template to be compatible with Oxygen

XML WebHelp Responsive plugin version 24.1:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v24.1, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 122

Result: The converted Publishing Template can now be used in version 24.1.

Related information

Convert Version 23 Publishing Templates to Version 24 (on page 122)

Convert Version 22 Publishing Templates to Version 23 (on page 123)

Convert Version 21 Publishing Templates to Version 22 (on page 123)

Convert Version 20 Publishing Templates to Version 21 (on page 124)

Convert Version 19 (and Older) Publishing Templates to Version 20 (on page 124)

Convert Version 23 Publishing Templates to Version 24

If you have a custom Publishing Template that was created in Oxygen XML WebHelp Responsive plugin

version 23.0 or 23.1, the following conversion procedure is required for the template to be compatible with

Oxygen XML WebHelp Responsive plugin version 24:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v24, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 24.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 121)

Convert Version 22 Publishing Templates to Version 23 (on page 123)

Convert Version 21 Publishing Templates to Version 22 (on page 123)

Convert Version 20 Publishing Templates to Version 21 (on page 124)

Convert Version 19 (and Older) Publishing Templates to Version 20 (on page 124)

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 123

Convert Version 22 Publishing Templates to Version 23

If you have a custom Publishing Template that was created in Oxygen XML WebHelp Responsive plugin

version 22.0 or 22.1, it is not necessary to convert it to version 23 because there were no structural changes

made for the HTML layout files (on page 82) between the two versions.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 121)

Convert Version 23 Publishing Templates to Version 24 (on page 122)

Convert Version 21 Publishing Templates to Version 22 (on page 123)

Convert Version 20 Publishing Templates to Version 21 (on page 124)

Convert Version 19 (and Older) Publishing Templates to Version 20 (on page 124)

Convert Version 21 Publishing Templates to Version 22

If you have a custom Publishing Template that was created in Oxygen XML WebHelp Responsive plugin

version 21.0 or 21.1, the following conversion procedure is required for the template to be compatible with

Oxygen XML WebHelp Responsive plugin version 22:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v22, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 22.

Related Information:

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 121)

Convert Version 23 Publishing Templates to Version 24 (on page 122)

Convert Version 22 Publishing Templates to Version 23 (on page 123)

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 124

Convert Version 20 Publishing Templates to Version 21 (on page 124)

Convert Version 19 (and Older) Publishing Templates to Version 20 (on page 124)

Convert Version 20 Publishing Templates to Version 21

If you have a custom Publishing Template that was created in Oxygen XML WebHelp Responsive plugin

version 20.0 or 20.1, the following conversion procedure is required for the template to be compatible with

Oxygen XML WebHelp Responsive plugin version 21.0 or 21.1:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked

folder and the easiest way to do this is to drag and drop the folder).

Note:

If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring >

XML Refactoring.

3. Convert Version 20 Publishing Templates to Version 21 (on page 124)

4. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML

Page Layout Files to v21, then click Next.

5. The Scope should be left as Selected project resources.

6. You can use the Preview button to open a comparison panel where you can review all the changes that

will be made by the refactoring operation before applying the changes.

7. Click Finish to perform the conversion.

Result: The converted Publishing Template can now be used in version 21.0 or 21.1.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 121)

Convert Version 23 Publishing Templates to Version 24 (on page 122)

Convert Version 22 Publishing Templates to Version 23 (on page 123)

Convert Version 21 Publishing Templates to Version 22 (on page 123)

Convert Version 19 (and Older) Publishing Templates to Version 20 (on page 124)

Convert Version 19 (and Older) Publishing Templates to Version 20

With the introduction of the Publishing Template concept in Oxygen XML WebHelp Responsive plugin version

20.0, the old WebHelp output template formats (version 19.1 and older) are no longer supported. However,

they can be easily converted to the new format (version 20.0 or 20.1) by following this procedure:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 125

1. Set Oxygen XML WebHelp Responsive plugin to point to the DITA-OT distribution that contains your old

template:

a. Go to Options > Preferences > DITA.

b. Select Custom in the DITA Open Toolkit section and specify the DITA-OT directory that contains

your old template.

2. Edit a WebHelp Responsive transformation scenario.

3. Select your old custom template in the Templates tab.

4. Click on the Save Template as button, complete the required fields, and save the template.

5. Reset the option set in step 1 to its previous value.

6. Edit the WebHelp Responsive transformation scenario again.

7. This time, use the Choose custom template button to select your converted template.

8. Save the scenario and use it to generate the WebHelp Responsive output.

Result: The converted template is now in a Publishing Template format for version 20.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 121)

Convert Version 23 Publishing Templates to Version 24 (on page 122)

Convert Version 22 Publishing Templates to Version 23 (on page 123)

Convert Version 21 Publishing Templates to Version 22 (on page 123)

Convert Version 20 Publishing Templates to Version 21 (on page 124)

Convert Version 19 (and Older) Publishing Templates to Version 21

If you have a custom template that was created in Oxygen XML WebHelp Responsive plugin version 19.1 or

older and you want to convert it to be compatible with Oxygen XML WebHelp Responsive plugin version 21.0

or 21.1, you need to apply two conversion procedures:

1. Convert the old template to a version 20 Publishing Template by using this procedure: Convert Version

19 (and Older) Publishing Templates to Version 20 (on page 124).

2. Convert that version 20 Publishing Template to version 21 by using this procedure: Convert Version 20

Publishing Templates to Version 21 (on page 124).

Result: The converted Publishing Template can now be used in version 21.0 or 21.1.

Related information

Convert Version 24.0 Publishing Templates to Version 24.1 (on page 121)

Convert Version 23 Publishing Templates to Version 24 (on page 122)

Convert Version 22 Publishing Templates to Version 23 (on page 123)

Convert Version 21 Publishing Templates to Version 22 (on page 123)

Convert Version 20 Publishing Templates to Version 21 (on page 124)

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 126

Changing the Layout and Styles
This section contains topics that explain how to customize the output using CSS, inserting HTML fragments,

changing the layout of the main page, and more.

How to Use CSS Styling to Customize the Output

The most common way to customize WebHelp Responsive output is to use custom CSS styling. This method

can be used to make small, simple styling changes or more advanced, precise changes. To implement

the styling in your WebHelp output, you simply need to create the custom CSS file and reference it in your

transformation scenario (using an Oxygen Publishing Template (on page 192) or a transformation

parameter). This custom file will be the final CSS to be applied so its content will override the styles in the

other pre-existing CSS files.

Using CSS Inspector to Identify Content for Custom CSS File

You can use your browser's CSS inspector to identify the pertinent code in the current CSS files and you can

even make changes directly in the CSS inspector to test the results so that you know exactly what content to

use in your custom CSS file.

In most popular browsers (such as Chrome, Firefox, and Edge), you can access the CSS inspector by using

F12 or by selecting Inspect Element (or simply Inspect) from the contextual menu.

Tip:

When using Safari on macOS, you must first enable the Develop menu by going to the Advanced

settings and selecting Show Develop menu in menu bar. Then you can select Show Web Inspector

from the Develop menu or click Command + Option + I.

Create the Custom CSS

As a practical example, the following procedure would change the background color of the footer bar in the

WebHelp output:

1. Use the browser's CSS inspector to identify the current CSS code that styles the footer bar. In this

particular case, the pertinent code that would be identified is:

.wh_footer {

 font-size: 15px;

 line-height: 1.7em;

 background-color: #000;

}

2. If you want to test the color you want to apply as the background of this particular element, use the

browser's CSS inspector to change the value of the background-color attribute. After you find a suitable

color, copy that new code.

3. Create a custom CSS file and paste or enter the copied code. For example:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 127

.wh_footer {

 background-color: #255890;

}

4. Save the custom CSS file at a location of your convenience.

5. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 127) or the args.css parameter (on page 127).

Referencing the CSS Using a Publishing Template

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Using the Project view, copy your custom CSS in a folder inside the publishing template root folder (for

example, in the custom_footer_template/resources folder).

3. Open the template descriptor file (on page 67) associated with your publishing template and add your

custom CSS in the resources section.

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 ...

 <css file="resources/MyCustom.css"/>

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

Referencing the CSS Using the args.css Parameter

1. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

2. Set the args.css parameter to the path of your custom CSS file.

3. Set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when

the transformation scenario is processed.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 128

How to Insert Custom HTML Content

You can add custom HTML content in the WebHelp Responsive output by inserting it in a well-formed XML

file (or specifying it in a well-formed XHTML fragment) that will be referenced in the transformation (either

from an Oxygen Publishing Template (on page 192) or using one of the HTML fragment placeholder

parameters (on page 100)). This content may include references to additional JavaScript, CSS, and other

types of resources, or such resources can be inserted inline within the HTML content that is inserted in the

XML file.

The XML File

There are several things to consider regarding this XML file:

• Well-Formedness - If the content of the file is not XML Well-formed, the transformation will

automatically convert non-well-formed HTML content to a well-formed XML equivalent (assuming the

webhelp.enable.html.fragments.cleanup transformation parameter is set to true).

For example, if the HTML content includes several <script> or <link> elements, the XML fragment would

have multiple root elements and to make it well-formed, it would be wrapped it in an <html> element.

This element tag will be filtered out and only its children will be copied to the output documents.

Similarly, you can wrap your content in <head>, <body>, <html/head>, or <html/body> elements.

Note:

The converted fragments are stored in a file located in the whr-html-fragments subfolder

of the transformation's temporary directory.

Tip:

If you do not want the transformation to automatically convert non-well-formed content

into well-formed XML content, you can set the webhelp.enable.html.fragments.cleanup

transformation parameter to false. This will instead cause the transformation to fail if at least

one HTML fragment is not well-formed.

• Referencing Resources in the XML File - You can include references to local resources (such as

JavaScript or CSS files) by using the built-in ${oxygen-webhelp-output-dir} macro to specify their paths

relative to the output directory:

<html>

 <script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"/>

 <link rel="stylesheet" type="text/css"

 href="${oxygen-webhelp-output-dir}/css/test.css" />

</html>

If you want that the path of your resource to be relative to the templates directory (on page 63), you can

use the ${oxygen-webhelp-template-dir} macro.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 129

To copy the referenced resources to the output directory, follow the procedure in: How to Copy

Additional Resources to Output Directory (on page 177).

• Inline JavaScript or CSS Content:

JavaScript:

<script type="text/javascript">

 /* Include JavaScript code here. */

 function myFunction() {

 return true;

 }

</script>

CSS:

<style>

 /* Include CSS style rules here. */

 *{

 color:red

 }

</style>

Note:

If you have special characters (e.g. &, <) that break the well-formedness of the XML fragment, it

is important to place the content inside an XML comment.

Otherwise, the WebHelp transformation automatically wraps inline JavaScript or CSS content in

an XML comment. Also, if the commented content contains constructs that are not allowed in

an XML comment, those constructs are escaped.

[Important] XML comment tags (both the start and end tags) must be on lines by themselves.

If they are on the same line as any of the script's content, it will likely result in a JavaScript

error.

<script type="text/javascript">

 <!--

 /* Include JavaScript code here. */

 function myFunction() {

 return true;

 }

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 130

 --/>

</script>

Using WebHelp Macros

The XML file can use WebHelp macros, which are variables that will be expanded when the content of the

HTML fragment file will be copied in the final output.

There are two possibilities for using macros:

• Directly in attribute values - For example, if you want to reference a JavaScript file from the Publishing

Template directory, you can use the following construct:

<script type="text/javascript" src="${path(oxygen-webhelp-template-dir)}/"></script>

• In text content - Using the <whc:macro> template component:

<script type="text/javascript">

 var outDirPath = '<whc:macro value="${path(oxygen-webhelp-output-dir)}"

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>';

 console.log("The output directory path is:", outDirPath);

</script>

Note:

When using the <whc:macro> element, you should also include the xmlns:whc="http://

www.oxygenxml.com/webhelp/components" namespace declaration for the whc prefix. This is

necessary for the XML fragment to be well-formed.

The following macros are supported:

i18n

For localizing a string.

${i18n(string.id)}

param

Returns the value of a transformation parameter.

${param(webhelp.show.main.page.tiles)}

env

Returns the value of an environment variable.

${env(JAVA_HOME)}

system-property

Returns the value of a system property.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 131

${system-property(os.name)}

timestamp

Can be used to format the current date and time. Accepts a string (as a parameter) that

determines how the date and time will be formatted (format string or picture string as it is known

in the XSLT specification). The format string must comply with the rules of the XSLT format-

dateTime function specification.

${timestamp([h1]:[m01] [P] [M01]/[D01]/[Y0001])}

path

Returns the path associated with the specified path ID. The following paths IDs are supported:

• oxygen-webhelp-output-dir - The path to the output directory. The path is relative to the

current HTML file.

• oxygen-webhelp-assets-dir - The path to the oxygen-webhelp subdirectory from the

output directory. The path is relative to the current HTML file.

• oxygen-webhelp-template-dir - The path to the template directory. The path is relative to

the current HTML file.

${path(oxygen-webhelp-template-dir)}

Note:

New paths IDs can be added by overriding the wh-macro-custom-path template from

com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl:

<!-- Extension template for expanding a custom path macro. -->

<xsl:template name="wh-macro-custom-path">

 <xsl:param name="pathId"/>

 <xsl:value-of select="$pathId"/>

</xsl:template>

map-xpath

Can be used to execute an XPath expression over the DITA map file from the temporary

directory.

Tip:

Available in all template layout HTML pages.

${map-xpath(/map/title)}

topic-xpath

Can be used to execute an XPath expression over the current topic.

https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string
https://www.w3.org/TR/xslt20/#date-picture-string

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 132

Tip:

Available only in the topic HTML page template (wt_topic.html).

${topic-xpath(string-join(//shortdesc//text(), ' '))}

oxygen-webhelp-build-number

Returns the current WebHelp distribution ID (build number).

${oxygen-webhelp-build-number}

Referencing the HTML fragment using a Publishing Template

1. If you have not already created a Publishing Template, see Working with Publishing Templates (on page

116).

2. Insert the HTML content in a file that is XML well-formed (for example, custom-html.xml).

3. Using the Project view, copy your custom XML file in a folder inside publishing the template root folder

(for example, in the custom_footer_template/html-fragments folder).

4. Open the template descriptor file (on page 67) associated with your publishing template and add a

reference to the custom HTML fragment in the html-fragments section.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment

 file="html-fragments/custom-html.xml"

 placeholder="webhelp.fragment.head"/>

Note:

If you want to insert the content in another location within the output document, you can

reference the XML file from any other HTML Fragment extension points (on page 73).

5. Open the DITA Map WebHelp Responsive transformation scenario.

6. Click the Choose Custom Publishing Template link and select your template.

7. Click OK to save the changes to the transformation scenario.

8. Run the transformation scenario.

Results: Your additional content will be included at the end of the <head> element of your output document.

Referencing the HTML Fragment using a Transformation Parameter

1. Insert the HTML content in a well-formed XML file.

2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 133

3. Edit the value of the webhelp.fragment.head parameter and set it to the absolute path of your XML file.

Note:

If you want to insert the content in another location within the output document, you can

reference the XML file from any other HTML Fragment extension points (on page 73).

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Results: Your additional content will be included at the end of the <head> element of your output document.

Related Information:

HTML Fragment Placeholders (on page 73)

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 66)

How to Insert JavaScript AMD Modules

In the WebHelp Responsive output, you may want to include a JavaScript module that uses the Asynchronous

Module Definition (AMD) format. Unlike the traditional JavaScript resources that are loaded using <script>

tags, these modules are loaded using the RequireJS library. For the traditional JavaScript libraries, the

standard procedure to contribute your script to the output would be to use an HTML fragment file as described

here (on page 128).

Although following the procedure that uses HTML fragments (on page 128) would result in having your JS

file included in the output, loading the JS code in the browser will result in an error. Since your JS module uses

the AMD API, it cannot be loaded using a <script> element. For example, because many jQuery plugins use the

AMD format, it will be difficult for you to use those libraries in your custom WebHelp output.

Normally, a JavaScript AMD module can be loaded in one of the following ways:

• As a top-level script, using the @data-main attribute of the <script> element used to load the RequireJS

library.

<script data-main="js/template-main.js" src="js/require.js"></script>

However, since WebHelp already loads its internal JS modules using RequireJS, a top-level script is

already specified and you cannot specify another top-level script in the same page. Therefore, this

approach cannot be used to load your custom JS module in Oxygen XML WebHelp, leaving you with

only the following option.

• As a dependency module, using a require() call from the top-level (main) script or from one of its

dependency modules. This means that you would have to alter one of the WebHelp core JS libraries

and inject a require() call to load your custom module:

https://github.com/amdjs/amdjs-api/blob/master/AMD.md

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 134

require(['js/template-main.js']);

Note:

Altering the WebHelp core libraries is not recommended because when you will upgrade the

WebHelp plugin to a newer version, those modifications will be lost.

Contributing JavaScript AMD Modules Using a Publishing Template

Oxygen XML WebHelp provides the ability to contribute a custom JavaScript Asynchronous Module Definition

(AMD) resource in the output by referencing it in the Publishing Template descriptor file (on page 67). This

module is automatically copied to the output directory and it is automatically loaded in the output HTML

pages using a require() call. Thus, you can include your scripts in the output without altering WebHelp's core

JavaScript libraries.

This module may contain all of your custom functionality or can be used to load other AMD JavaScript

modules. The additional sub-modules can be stored either locally in your custom Publishing Template or on a

remote web server.

Important:

To enable loading of a JS module you should set the webhelp.enable.template.js.module.loading

parameter to yes (the default value is no) in the Publishing Template descriptor file or in the

transformation scenario.

The JavaScript Modules

The JS Modules sample template contains a main JavaScript module (template-main.js) that loads other

modules stored in the template package or in a remote location on the Internet.

define(['require'], function (require) {

 require(['./red', './italic', './tables']);

});

Besides the main JavaScript example, the template contains 3 other sub-modules:

• red.js - Changes the font color of the publication title.

define(["jquery"], function ($) {

 $(document).ready(function () {

 // Make the title red

 $('.wh_publication_title a').attr('style', 'color:red');

 });

});

• italic.js - Changes the font style of your publication title.

https://github.com/oxygenxml/oxygen-publishing-template-samples/wiki/JavaScript-AMD-Modules
https://github.com/oxygenxml/oxygen-publishing-template-samples/wiki/JavaScript-AMD-Modules
https://github.com/oxygenxml/oxygen-publishing-template-samples/wiki/JavaScript-AMD-Modules

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 135

define(["jquery"], function ($) {

 $(document).ready(function () {

 // Make the title italic

 $('.wh_publication_title a').wrapInner('<i></i>');

 });

});

• tables.js - Loads the DataTables jQuery plugin from a CDN.

define(["jquery",

 "https://cdn.datatables.net/1.10.16/js/jquery.dataTables.min.js"], function ($) {

 $(document).ready(function () {

 $('.table').DataTable();

 });

});

The JavaScript modules are stored in the Publishing Template package as follows:

[template-dir]

 [js]

 template-main.js

 italic.js

 red.js

 tables.js

Notes:

• The main module should be referenced in the Publishing Template descriptor file (on page 67)

by specifying its path relative to the base directory of the template.

<js-amd-module file="js/template-main.js"/>

• The main JS module is copied automatically to the output directory, but the sub-modules are

not. To instruct the Publishing Template engine to copy those modules to the output directory

you should include a <fileset> section in the Publishing Template descriptor file (on page 67).

<fileset>

 <include name="js/*.js"/>

</fileset>

• The main module can reference other modules bundled in the publishing template package as

follows:

https://datatables.net/

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 136

◦ Relative to template directory - Prefix their paths with the ID of the template directory:

template-base-dir (for example: template-base-dir/js/italic).

◦ Relative to the name of the current JS module - Use ./ to prefix the paths of the

referenced modules.

◦ The .js extension should be omitted for local modules, because the RequireJS library

will add it automatically.

Related Information:

How to Insert Custom HTML Content (on page 128)

How to Change Numbering Styles for Ordered Lists

Ordered lists () are usually numbered in XHTML output using numerals. If you want to change the

numbering to alphabetical, follow these steps:

1. Define a custom @outputclass value and set it as an attribute of the ordered list, as in the following

example:

<ol outputclass="number-alpha">

 A

 B

 C

2. Add the following code snippet in a custom CSS file:

ol.number-alpha{

 list-style-type:lower-alpha;

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 136) or the args.css parameter (on page 137).

Referencing the Custom CSS from a Publishing Template

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Using the Project view, copy your custom CSS in a folder inside the publishing template root folder (for

example, in the custom_footer_template/resources folder).

3. Open the template descriptor file (on page 67) associated with your publishing template and add your

custom CSS in the resources section.

<publishing-template>

 ...

 <webhelp>

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 137

 ...

 <resources>

 ...

 <css file="resources/MyCustom.css"/>

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

Referencing the CSS Using the args.css Parameter

1. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

2. Set the args.css parameter to the path of your custom CSS file.

3. Set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when

the transformation scenario is processed.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will

reflect the changes you made.

Adding Syntax Highlights for Codeblocks in the Output

Syntax Highlighting makes it easier to read the semantics of the structured content by displaying each type of

code (language) in different colors and fonts. The application provides the ability to add syntax highlights in

codeblocks for DITA to PDF or HTML-based output through the use of the @outputclass attribute and a variety

of predefined values are available.

To provide syntax highlighting in the codeblocks that appear in the output, add the @outputclass attribute on

the <codeblock> element and set its value to one of the predefined language values. The Content Completion

Assistant offers a list of the possible values when adding the @outputclass attribute in Text mode but there are

also two very simple ways to set the value in Author mode:

• Select the <codeblock> element in the editor and in the Attributes view, click on the Value cell for the

@outputclass attribute and select one of the predefined values (for example, language-xml).

• Select the <codeblock> element in the editor and use the Alt + Enter keyboard shortcut to open the in-

place attributes editor window. Then select one of the predefined values from the Value drop-down

menu.

The predefined values that can be selected are:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 138

• language-bourne

• language-c

• language-cpp

• language-csharp

• language-css

• language-ini

• language-java

• language-javascript

• language-json

• language-lua

• language-perl

• language-php

• language-python

• language-ruby

• language-sql

• language-xml

• language-xquery

Attention:

It is recommended that you do not add inline elements in the codeblocks when using this @outputclass

attribute, as it may lead to improper highlighting.

Tip:

Starting with version 24.0, the language values can also be set without using the language-

prefix.

Example:

This codeblock:

<codeblock outputclass="language-xml">

 <p>This code is an example of how to use a coderef.</p>

 <codeblock><coderef href="MyExternalCode.xsl"/></codeblock>

</codeblock>

would result in this in the output:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 139

How to Show or Hide Navigation Links in Topic Pages

The topic pages (on page 20) in WebHelp Responsive output can contain navigation links (Previous /

Next arrows) that can be used to navigate to the previous or next topic.

How to Control Which Topic Pages Include Navigation Links

The navigation links are controlled by the @collection-type attribute. For example, if you set collection-

type="sequence" on a parent topic reference in your DITA map, navigation links will be generated in the output

for all of its child topics (from children to parent, and from child to previous sibling and next sibling).

<map id="example_map" title="Example Map">

 <topicref href="../topics/ParentTopic.dita" collection-type="sequence">

 <topicref href="../topics/Childtopic.dita"/>

 </topicref>

How to Generate Navigation Links for All Topics (Ignoring the Collection Type Attribute)

You can use the webhelp.default.collection.type.sequence parameter in the transformation and set its value

to yes to generate navigation links for all topics, regardless of whether or not the collection-type attribute is

present.

How to Hide All Navigation Links

To hide all navigation links, use the webhelp.show.navigation.links parameter in the transformation and set

its value to no.

How to Change the Main Page Layout

This section contains topics that explain how to customize the layout of the main page in the WebHelp

Responsive output.

How to Customize the Menu

By default, the menu component is displayed in all WebHelp Responsive pages. However, you might want to

hide it completely, or only display some of its menu entries.

How to Hide Some of the Menu Entries

There are two methods for doing this. One of them involves editing the DITA map (on page 191) and

marking the topics that do not need to be included in the menu, and another one that uses a small CSS

customization.

Editing the DITA Map

To edit the metadata in the DITA map to control which topics will not be displayed in the menu, follow these

steps:

https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html#Artefact/Maps/c_Collection_Types.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html#Artefact/Maps/c_Collection_Types.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 140

1. Open the DITA map in the Text editing mode of Oxygen XML Editor/Author.

2. Add the following metadata information in the topicref element (or any of its specializations) for each

topic you do not want to be displayed in the menu:

<topicmeta>

 <data name="wh-menu">

 <data name="hide" value="yes"/>

 </data>

</topicmeta>

Customizing the CSS

To customize the CSS to control which topics will not be displayed in the menu, follow these steps:

1. Make sure you set an ID on the topic that you do not want to include in the menu.

2. Create a new CSS file that contains a rule that hides the menu entry generated for the topic (identified

by the topic ID growing-flowers in the following example). The CSS file should have content that is

similar to this:

.wh_top_menu *[data-id='growing-flowers'] {

 display:none;

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 127) or the args.css parameter (on page 127).

How to Hide the Entire Menu

If you do not want to include a main menu in the pages of the WebHelp Responsive output, you can instruct

the transformation scenario to skip the menu generation completely.

Using a Publishing Template

To hide the menu using an Oxygen Publishing Template (on page 63), follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Open the template descriptor file (on page 67) associated with your publishing template and add the

webhelp.show.top.menu parameter in the parameters section with its value set to no.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="webhelp.show.top.menu" value="no"/>

 </parameters>

 </webhelp>

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 141

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To hide the menu using a transformation scenario from within Oxygen XML Editor/Author, follow this

procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.show.top.menu parameter to no.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

How to Add a Welcome Message in the WebHelp Responsive Main Page

The main page of the WebHelp Responsive output contains a set of empty placeholders (on page 73)

that can be used to display customized text fragments. These placeholders are available to you through

WebHelp Responsive transformation scenario parameters. For example, the placeholder identified through the

webhelp.fragment.welcome parameter displays text content above the search box in the main page.

Using a Publishing Template

To add a customized welcome message in the main page of the WebHelp Responsive output using an Oxygen

Publishing Template (on page 63), follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Open the template descriptor file (on page 67) associated with your publishing template and add

the webhelp.fragment.welcome parameter in the parameters section with its value set to one of the

following:

◦ A small well-formed XHTML fragment (such as: <i>Welcome to the User Guide</i>).

◦ A path to a file that contains well-formed XHTML content.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="webhelp.fragment.welcome" value="c:\myMessage.xhtml"/>

 </parameters>

 </webhelp>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 142

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Result: In the WebHelp output, your custom message will be displayed above the search box in the main page.

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a customized welcome message in the main page of the WebHelp Responsive output using a

transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.fragment.welcome parameter with its value set to one of

the following:

◦ A small well-formed XHTML fragment (such as: <i>Welcome to the User Guide</i>).

◦ A path to a file that contains well-formed XHTML content.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

Result: In the WebHelp output, your custom message will be displayed above the search box in the main page.

How to Create a Custom Footer

The main page of the WebHelp Responsive output contains a set of empty placeholders (on page 73)

that can be used to display customized text fragments. These placeholders are available to you through

WebHelp Responsive transformation scenario parameters. For example, the placeholder identified through the

webhelp.fragment.footer parameter displays the custom content at the bottom of the page.

Using a Publishing Template

To create a custom footer in the WebHelp Responsive output using an Oxygen Publishing Template (on page

63), follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Open the template descriptor file (on page 67) associated with your publishing template and add the

webhelp.fragment.footer parameter in the parameters section with its value set to one of the following:

◦ A small well-formed XHTML fragment.

◦ A path to a file that contains well-formed XHTML content.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="webhelp.fragment.footer" value="c:\myFooter.xhtml"/>

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 143

 </parameters>

 </webhelp>

Important:

This parameter should only be used if you are using a valid, purchased license of Oxygen XML

WebHelp Responsive plugin (do not use it with a trial license).

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Result: In the WebHelp output, your custom footer will be displayed at the bottom of the page.

Using a Transformation Scenario in Oxygen XML Editor/Author

To create a custom footer in the WebHelp Responsive output using a transformation scenario from within

Oxygen XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.fragment.footer parameter with its value set to one of

the following:

◦ A small well-formed XHTML fragment.

◦ A path to a file that contains well-formed XHTML content.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

Result: In the WebHelp output, your custom footer will be displayed at the bottom of the page.

How to Configure the Tiles on the WebHelp Responsive Main Page

The tiles version of the main page of the WebHelp Responsive output displays a tile for each topic found on

the first level of the DITA map (on page 191). However, you might want to customize the way they look or

even to hide some of them.

Depending on your particular setup, you can choose to customize the tiles either by setting metadata

information in the DITA map or by customizing the CSS that is associated with the DITA map.

How to Hide Some of the Tiles

If your documentation is very large or there is a large number of topics on the first level, you might want to

hide some of the tiles. Also, this might be useful if you only want to display the topics in the first page that are

most relevant to your intended audience.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 144

There are two methods for doing this. One of them involves editing the DITA map and marking the topics that

do not need to be displayed as tiles, and another one that uses a small CSS customization level to hide some

tiles identified by the ID of the topic.

Editing the DITA Map

To edit the metadata in the DITA map to control which topics on the first level of the DITA map will not be

displayed as a tile, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Editor/Author.

2. Add the following metadata information in the <topicref> element (or any of its specializations) for each

first-level topic that you do not want to be displayed as a tile:

<topicmeta>

 <data name="wh-tile">

 <data name="hide" value="yes"/>

 </data>

</topicmeta>

Customizing the CSS

To customize the CSS to control which topics on the first level of the DITA map will not be displayed as a tile,

follow these steps:

1. Make sure you set an ID on the topic you want to hide.

2. Create a new CSS file that contains a rule that hides the tile generated for the topic (identified in the

following example by the topic ID growing-flowers). The CSS file should have content that is similar to

this:

.wh_tile [data-id='growing-flowers'] {

 display:none;

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 127) or the args.css parameter (on page 127).

How to Add an Image to the Tiles

There are two methods that you can use to add an image to a tile. One of them involves editing the DITA map,

and the other uses a CSS customization.

Editing the DITA Map

To edit the metadata in the DITA map to set an image to be displayed in a tile, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Editor/Author.

2. Add the following metadata information in the <topicref> element (or any of its specializations) for each

first-level topic that will have an image displayed in the corresponding tile:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 145

<topicmeta>

 <data name="wh-tile">

 <data name="image" href="img/tile-image.png" format="png">

 <data name="attr-width" value="64"/>

 <data name="attr-height" value="64"/>

 </data>

 </data>

</topicmeta>

Note:

The @attr-width and @attr-height attributes can be used to control the size of the image, but

they are optional.

Customizing the CSS

To customize the CSS to set an image to be displayed in a tile, follow these steps:

1. Make sure you set an ID on the topic that you want the tile to include an image.

2. Create a new CSS file that contains a rule that associates an image with a specific tile. The CSS file

should have content that is similar to this:

.wh_tile[data-id='growing-flowers']> div {

 background-image:url('resources/flower.png');

}

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template

(on page 127) or the args.css parameter (on page 127).

Adding Graphics and Media Resources
This section contains topics that explain how to add media resources to the published output or the output

directory.

How to Add a Logo Image in the Title Area

You can customize WebHelp Responsive output to include a logo in the title area. It will be displayed before

the publication title. You can also specify a URL that can be used to send users to a specific website when

they click the logo image.

This customization can be done using an Oxygen Publishing Template or using a transformation scenario

from within Oxygen XML Editor/Author.

Using a Publishing Template

To add a logo in the title area of your WebHelp output using an Oxygen Publishing Template (on page 63),

follow this procedure:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 146

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Open the template descriptor file (on page 67) associated with your publishing template and add the

<logo> element in the <resources> section and set the @file attribute value to the path of your logo.

3. If you also want to add a link to your website when you click the logo image, set its URL in the @target-

url attribute.

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 <logo

 file="images/logo.png"

 target-url="http://www.example.com"

 alt="Alternate text for the logo image"/>

 </resources>

 </webhelp>

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a logo in the title area of your WebHelp output using a transformation scenario from within Oxygen

XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.logo.image parameter to the path of your logo.

3. If you also want to add a link to your website when you click the logo image, set its URL in the

webhelp.logo.image.target.url parameter.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

How to Add a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp output by simply using a parameter in the transformation

scenario to point to your favicon image.

This customization can be done using an Oxygen Publishing Template or using a transformation scenario

from within Oxygen XML Editor/Author.

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 147

Using a Publishing Template

To add a favicon to your WebHelp output using an Oxygen Publishing Template (on page 63), follow this

procedure:

1. If you have not already created a Publishing Template, see Working with Publishing Templates (on page

116).

2. Open the template descriptor file (on page 67) associated with your publishing template and add the

<favicon> element in the resources section. The path to the image is relative to the template root folder.

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 ...

 <favicon file="images/favicon.png"/>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Result: Browsers that provide favicon support display the favicon (typically in the browser's address bar, in the

list of bookmarks, and in the history).

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a favicon to your WebHelp output using a transformation scenario from within Oxygen XML Editor/

Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

2. Open the Parameters tab and set the webhelp.favicon parameter to the path of your image.

3. Click OK to save the changes to the transformation scenario.

4. Run the transformation scenario.

How to Add Video and Audio Objects in DITA WebHelp Output

You can insert references to video and audio media resources (such as videos, audio clips, or embedded

HTML frames) in your DITA topics and then publish them to WebHelp output. The media objects can be played

directly in all HTML5-based outputs, including WebHelp systems.

To add media objects in the WebHelp output generated from DITA documents, follow the procedures below.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 148

Adding Videos to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the video by adding an <object> element, as in one of the

following examples:

<object outputclass="video" type="video/mp4" data="MyVideo.mp4"/>

or, instead of the @data attribute, you can specify the video using a parameter like this:

<object outputclass="video">

 <param name="src" value="videos/MyVideo.mp4"/>

</object>

2. Apply a DITA to WebHelp transformation to obtain the output.

Result: The transformation converts the <object> element to an HTML5 <video> element.

<video controls="controls"><source type="video/mp4" src="MyVideo.mp4"></source>

</video>

Adding Audio Clips to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the audio clip by adding an <object> element, as in one of

the following examples:

<object outputclass="audio" type="audio/mpeg" data="MyClip.mp3"/>

or, instead of the @data attribute, you can specify the video using a parameter like this:

<object outputclass="audio">

 <param name="src" value="audio/MyClip.mp3"/>

</object>

2. Apply a DITA to WebHelp transformation to obtain the output.

Result: The transformation converts the <object> element to an HTML5 <audio> element.

<audio controls="controls"><source type="audio/mpeg" src="MyClip.mp3"></source>

</audio>

Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the embedded object by manually adding an <object>

element, as in one of the following examples:

<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>

or, instead of the @data attribute, you can specify the object using a parameter like this:

<object outputclass="iframe">

 <param name="src" value="http://www.youtube.com/embed/m_vv2s5Trn4"/>

</object>

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 149

2. If you want the video to be allowed to play in full screen mode once the document is converted to

XHTML output, also add an allowfullscreen parameter and set its value to true:

<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>

 <param name="allowfullscreen" value="true"/>

</object>

3. Apply a DITA to WebHelp transformation to obtain the output.

Result: The transformation converts the <object> element to an HTML5 <iframe> element.

<iframe controls="controls" src="https://www.youtube.com/embed/m_vv2s5Trn4">

</iframe>

How to Add MathML Equations in WebHelp Output

Currently, only Firefox can render MathML equations embedded in the HTML code. MathJax is a solution to

properly view MathML equations embedded in HTML content in a variety of browsers.

If you have DocBook content that has embedded MathML equations and you want to properly view the

equations in published HTML output types (such as WebHelp), you need to add a reference to the MathJax

script in the head element of all HTML files that have the equation embedded.

For example:

<script type="text/javascript"

 src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMM

L">

</script>

Result: The equation should now be properly rendered in the WebHelp output for other browsers.

Searching the Output
This section contains topics that explain how to use some of the search features in WebHelp Responsive

output.

How to Change Element Scoring in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that

matches the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated

for the search results. The WebHelp directory includes a properties file that defines the scoring values for tag

elements and this file can be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

http://www.mathjax.org/

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 150

1. Edit the scoring properties file for DITA. The properties file includes instructions and

examples to help you with your customization. The file is located in: DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\indexer\scoring.properties.

The values that can be edited in the scoring.properties file:

h1 = 10

h2 = 9

h3 = 8

h4 = 7

h5 = 6

h6 = 5

b = 5

strong = 5

em = 3

i=3

u=3

div.toc=-10

title=20

div.ignore=ignored

meta_keywords = 20

meta_indexterms = 20

meta_description = 25

shortdesc=25

2. Save your changes to the file.

3. Re-run your WebHelp transformation.

How to Exclude Certain DITA Topics from Search Results

There are several ways to exclude certain DITA resources from your WebHelp system's search results. This

is useful if you have topics in your DITA map (on page 191) structure that you do not want to be included

in search results for your WebHelp system. The first method involves setting a parameter in the WebHelp

transformation scenario and the second involves setting an attribute for each DITA topic reference that you

want to exclude.

Transformation Parameter Method

To exclude DITA topics from WebHelp search results using a transformation parameter, follow these steps:

1. Create a simple text file that will contain your excluded file patterns. Each pattern must be on a new

line. The patterns are considered to be relative to the output directory and they accept wildcards such

as '*' (matches zero or more characters) or '?' (matches one character). For more information about

the patterns, see https://ant.apache.org/manual/dirtasks.html#patterns.

https://ant.apache.org/manual/dirtasks.html#patterns

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 151

Example: Suppose that in your project, you want to exclude all files located in the resources directory

and all files located in the topics directory that have a .bak file extension. You could create a simple

text file (for example, named exclude.properties), and add the following lines:

resources/*

topics/*.bak

2. Set the webhelp.search.custom.excludes.file parameter to specify the path to the file that contains the

excluded file patterns (for example, exclude.properties in step 1). The parameter can be specified

in the parameters section of the template descriptor file (on page 72) associated with your publishing

template or in the Parameters tab of the transformation scenario dialog box in Oxygen XML Editor/

Author.

3. Run the transformation.

Search Attribute Method

The WebHelp Search engine does not index DITA topics that have the @search attribute set to no.

To exclude DITA topics from WebHelp search results using this attribute, follow these steps:

1. Edit the DITA map and for any <topicref> that you want to exclude from search results, set the @search

attribute to no. For example:

<topicref href="../topics/internal-topic1.dita" search="no"/>

2. Save your changes to the DITA map.

3. Run your WebHelp system transformation.

How to Optimize Search Results

A DITA Map WebHelp transformation scenario produces a sitemap.xml file that is used by search engines

to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system and allows web

admins to provide additional information about each page, such as the date it was last updated, change

frequency, and importance of each page in relation to other pages in your WebHelp deployment.

Important:

If the webhelp.sitemap.base.url parameter is specified, the loc element will contain the value of

this parameter plus the relative path to the page. If the webhelp.sitemap.base.url parameter is not

specified, the loc element will only contain the relative path of the page.

You can also set these additional parameters:

• webhelp.sitemap.change.frequency - Specifies how frequently the WebHelp pages are likely to

change (accepted values are: always, hourly, daily, weekly, monthly, yearly, and never).

• webhelp.sitemap.priority - Specifies the priority of each page (a value ranging from 0.0 to 1.0).

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 152

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

 <url>

 <loc>http://www.example.com/topics/introduction.html</loc>

 <lastmod>2014-10-24</lastmod>

 <changefreq>weekly</changefreq>

 <priority>0.5</priority>

 </url>

 <url>

 <loc>http://www.example.com/topics/care.html#care</loc>

 <lastmod>2014-10-24</lastmod>

 <changefreq>weekly</changefreq>

 <priority>0.5</priority>

 </url>

 . . .

</urlset>

Each page has a <url> element structure containing additional information, such as:

• loc - The URL of the page. This URL must begin with the protocol (such as http), if required by your

web server. It is constructed from the value of the webhelp.sitemap.base.url parameter from the

transformation scenario and the relative path to the page (collected from the href attribute of a

topicref element in the DITA map).

Note:

The value must have fewer than 2,048 characters.

• lastmod (optional) - The date when the page was last modified. The date format is YYYY-MM-DD

hh:mm:ss.

• changefreq (optional) - Indicates how frequently the page is likely to change. This value provides

general information to assist search engines, but may not correlate exactly to how often they

crawl the page. Valid values are: always, hourly, daily, weekly, monthly, yearly, and never. The

first time the sitemap.xml file is generated, the value is set based upon the value of the

webhelp.sitemap.change.frequency parameter in the DITA WebHelp transformation scenario. You can

change the value in each url element by editing the sitemap.xml file.

Note:

The value always should be used to describe documents that change each time they are

accessed. The value never should be used to describe archived URLs.

• priority (optional) - The priority of this page relative to other pages on your site. Valid values range from

0.0 to 1.0. This value does not affect how your pages are compared to pages on other sites. It only lets

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 153

the search engines know which pages you deem most important for the crawlers. The first time the

sitemap.xml file is generated, the value is set based upon the value of the webhelp.sitemap.priority

parameter in the DITA WebHelp transformation scenario. You can change the value in each url element

by editing the sitemap.xml file.

How to Index Japanese Content

To optimize the indexing of Japanese content in WebHelp pages, the Lucene Kuromoji Japanese analyzer can

be used. This analyzer is included in the Oxygen XML Editor/Author installation kit.

Restriction:

The Kuromoji analyzer does not work if your WebHelp output is accessed locally. In this scenario,

a warning message will be displayed informing you that the Kuromoji analyzer is disabled.

It is possible to hide this warning message by using a transformation parameter named

webhelp.enable.search.kuromoji.js. By default, its value is yes, which means the Kuromoji analyzer

is enabled by default. To hide the warning message, set the value of that parameter to no using either

of the methods listed below. When it is set to no, the Kuromoji analyzer is disabled even if you deploy

your WebHelp output on a web server.

Using a Publishing Template

To add a logo in the title area of your WebHelp output using an Oxygen Publishing Template (on page 63),

follow this procedure:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Open the template descriptor file (on page 67) associated with your publishing template and add the

default.language parameter in the parameters section with its value set to ja-jp.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="default.language" value="ja-jp"/>

 </parameters>

 </webhelp>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 154

Using a Transformation Scenario in Oxygen XML Editor/Author

To activate the Japanese indexing in your WebHelp output using a transformation scenario from within

Oxygen XML Editor/Author, follow this procedure:

1. Edit a DITA to WebHelp transformation scenario and in the Parameters tab, set the value of the

default.language parameter to ja-jp.

Note:

Alternatively, you could set the @xml:lang attribute on the root of the DITA map (on page

191) and the referenced topics to ja-jp. Another alternative for DITA output is to use the

webhelp.search.japanese.dictionary parameter to specify a path to a Japanese dictionary that

will be used by the Kuromoji morphological engine (note that the encoding for the dictionary

must be UTF8).

2. Run the WebHelp transformation scenario to generate the output.

Localization
This section contains topics that explain how to use the localization support in WebHelp Responsive output.

How to Localize the Interface of WebHelp Responsive Output

Oxygen XML WebHelp Responsive plugin comes with support for the following built-in languages: English,

French, German, Japanese, and Chinese. It is possible to edit existing localization strings or add a new

language.

Static labels used in the WebHelp output are stored in translation files that have the strings-lang1-lang2.xml

name format, where lang1 and lang2 are ISO language codes. For example, the US English labels are kept in

the strings-en-us.xml file.

These translation files are collected from two locations:

• DITA-OT-DIR/plugins/org.dita.base/xsl/common folder - DITA-OT's default translations

(generated text for <note>, <fig>, and <table> elements).

• DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/

resources/localization folder - These translations are contributed by the WebHelp plugin and

extend the default ones provided by DITA-OT. The labels defined in this folder take precedence over the

DITA-OT defaults.

There are two major reasons you may want to use modify the translation files: to modify the existing strings or

to translate to a new language.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 155

Related Information:

How to Index Japanese Content (on page 153)

Customizing Generated Text

Modifying the Existing Strings

To modify the generated text for WebHelp transformations, you need to create a DITA-OT extension plugin that

uses the dita.xsl.strings extension point. The following procedure is for changing English labels, but you can

adapt it for any language:

1. Create a com.oxygenxml.webhelp.localization plugin directory inside the DITA-OT-

DIR/plugins/ location.

2. Create a plugin.xml file inside that com.oxygenxml.webhelp.localization directory with the

following content:

<plugin id="com.oxygenxml.webhelp.localization">

 <require plugin="com.oxygenxml.webhelp.responsive"/>

 <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>

</plugin>

3. Create a webhelp-extension-strings.xml file with the following content:

<langlist>

 <lang xml:lang="en" filename="strings-en-us.xml"/>

 <lang xml:lang="en-us" filename="strings-en-us.xml"/>

</langlist>

4. Copy the strings you want to change from the translation files (on page 154) to the strings-en-

us.xml file. Make sure you leave the name attribute unchanged because this is the key used to look up

the string. A sample content might be:

<strings xml:lang="en-US">

 <str name="Figure">Fig</str>

 <str name="Draft comment">ADDRESS THIS DRAFT COMMENT</str>

</strings>

5. In the DITA-OT-DIR/bin directory of the DITA-OT, run one of the following scripts, depending on your

operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DITA-OT-DIR/bin/dita --install

Adding a New Language

To add a new language for WebHelp transformations, you need to create a DITA-OT extension plugin that

uses the dita.xsl.strings extension point. The following sample procedure is for adding translation files for the

Polish language, but you can adapt it for any language:

http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 156

1. Create a com.oxygenxml.webhelp.localization plugin directory inside the DITA-OT-

DIR/plugins/ location.

2. Create a plugin.xml file inside that com.oxygenxml.webhelp.localization directory with the

following content:

<plugin id="com.oxygenxml.webhelp.localization">

 <require plugin="com.oxygenxml.webhelp.responsive"/>

 <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>

</plugin>

3. Create a webhelp-extension-strings.xml file with the following content:

<langlist>

 <lang xml:lang="pl" filename="strings-pl-pl.xml"/>

 <lang xml:lang="pl-PL" filename="strings-pl-pl.xml"/>

</langlist>

4. Copy the WebHelp strings file (DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/

oxygen-webhelp/resources/localization/strings-en-us.xml) to your plugin directory,

and rename it as strings-pl-pl.xml.

5. In the strings-pl-pl.xml file, change the @xml:lang attribute on the root element that conforms

with the new language.

<strings xml:lang="pl-PL">

 ...

</strings>

6. Translate the content of each <str> element (make sure to leave the name attribute unchanged).

<strings xml:lang="pl-PL">

...

 <str name="webhelp.content" js="true" php="false">Polish translation for 'Content'.</str>

 <str name="webhelp.search" js="true" php="false">Polish translation for 'Search'</str>

...

</strings>

7. Copy the common DITA-OT strings defined in the DITA-OT-DIR/plugins/org.dita.base/

xsl/common/strings-en-us.xml file. It defines a set generated text available for HTML-based

transformations (such as <note>, <fig>, and <table> elements). Translate the content of each <str>

element.

<strings xml:lang="pl-PL">

...

 <str name="webhelp.content" js="true" php="false">Polish translation for 'Content'.</str>

 <str name="webhelp.search" js="true" php="false">Polish translation for 'Search'</str>

...

 <str name="Figure">Polish translation for 'Figure'</str>

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 157

 <str name="Table">Polish translation for 'Table'</str>

...

</strings>

8. In the DITA-OT-DIR/bin directory of the DITA-OT, run one of the following scripts, depending on your

operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DITA-OT-DIR/bin/dita --install

How to Activate Support for Right-to-Left (RTL) Languages

To activate support for RTL (right-to-left) languages in WebHelp output, edit the DITA map (on page 191)

and set the @xml:lang attribute on its root element (<map>). The corresponding attribute value can be set for

following RTL languages:

• ar-eg - Arabic

• he-il - Hebrew

• ur-pk - Urdu

Integrating Social Media and Google Tools in the WebHelp
Output
This section contains topics that explain how to integrate some of the most popular social media sites in

WebHelp output.

How to Add a Facebook Like Button in WebHelp Responsive Output

It is possible to integrate Facebook™ into your WebHelp Responsive output and you can specify where you

want the widget to appear in your WebHelp page.

Using a Publishing Template

To add a Facebook™ Like widget to your WebHelp output using an Oxygen Publishing Template (on page 63),

follow this procedure:

1. Go to the Facebook Developers website.

2. Fill in the displayed form, then click the Get Code button.

3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-

widget.xml. Make sure you follow these rules:

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line. The content of the

XML file should look like this:

<div id="facebook">

 <div id="fb-root"/>

https://developers.facebook.com/docs/plugins/like-button

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 158

 <script>

 <!--

 (function(d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (d.getElementById(id)) return;

 js = d.createElement(s); js.id = id;

 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";

 fjs.parentNode.insertBefore(js, fjs);

 }(document, 'script', 'facebook-jssdk'));

 -->

 </script>

 <div class="fb-like" data-layout="standard" data-action="like"

 data-show-faces="true" data-share="true"/>

</div>

4. Open the template descriptor file (on page 67) associated with your publishing template.

5. Use one of the parameters that begin with webhelp.fragment (on page 73) in the html-fragments

section of the descriptor file. Set the value of that parameter to reference the facebook-widget.xml

file that you created earlier.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment

 file="HTML-fragments/facebook-widget.xml"

 placeholder="webhelp.fragment.after.toc_or_tiles"/>

 </html-fragments>

 </webhelp>

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a Facebook™ Like widget to your WebHelp output using a transformation scenario from within Oxygen

XML Editor/Author, follow this procedure:

1. Go to the Facebook Developers website.

2. Fill in the displayed form, then click the Get Code button.

3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-

widget.xml. Make sure you follow these rules:

https://developers.facebook.com/docs/plugins/like-button

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 159

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line. The content of the

XML file should look like this:

<div id="facebook">

 <div id="fb-root"/>

 <script>

 <!--

 (function(d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (d.getElementById(id)) return;

 js = d.createElement(s); js.id = id;

 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";

 fjs.parentNode.insertBefore(js, fjs);

 }(document, 'script', 'facebook-jssdk'));

 -->

 </script>

 <div class="fb-like" data-layout="standard" data-action="like"

 data-show-faces="true" data-share="true"/>

</div>

4. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

5. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the

parameters that begin with webhelp.fragment (on page 73). Set that parameter to reference the

facebook-widget.xml file that you created earlier.

6. Click Ok and run the transformation scenario.

How to Add Tweet Button in WebHelp Responsive Output

It is possible to integrate Twitter into your WebHelp Responsive output and you can specify where you want

the widget to appear in your WebHelp page.

Using a Publishing Template

To add a Twitter™ Tweet widget to your WebHelp Responsive output using an Oxygen Publishing Template

(on page 63), follow this procedure:

1. Go to the Tweet button generator page.

2. Fill in the displayed form. The Preview and code area displays the code that you will need.

3. Copy the code snippet displayed in the Preview and code area and paste it into a <div> element inside

an XML file called tweet-button.xml. Make sure you follow these rules:

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line.

https://publish.twitter.com

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 160

The content of the XML file should look like this:

<div id="twitter">

 Tweet

 <script>

 <!--

 !function (d, s, id) {

 var

 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location)

 ? 'http': 'https';

 if (! d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = p + '://platform.twitter.com/widgets.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }

 (document,

 'script', 'twitter-wjs');

 -->

 </script>

</div>

4. Open the template descriptor file (on page 67) associated with your publishing template.

5. Use one of the parameters that begin with webhelp.fragment (on page 73) in the html-fragments

section of the descriptor file. Set the value of that parameter to reference the tweet-button.xml file

that you created earlier.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment

 file="HTML-fragments/tweet-button.xml"

 placeholder="webhelp.fragment.after.toc_or_tiles"/>

 </html-fragments>

 </webhelp>

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 161

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a Twitter™ Tweet widget to your WebHelp Responsive output using a transformation scenario from

within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Tweet button generator page.

2. Fill in the displayed form. The Preview and code area displays the code that you will need.

3. Copy the code snippet displayed in the Preview and code area and paste it into a <div> element inside

an XML file called tweet-button.xml. Make sure you follow these rules:

◦ The file must be well-formed.

◦ The code for each <script> element must be included in an XML comment.

◦ The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">

 Tweet

 <script>

 <!--

 !function (d, s, id) {

 var

 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location)

 ? 'http': 'https';

 if (! d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = p + '://platform.twitter.com/widgets.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }

 (document,

 'script', 'twitter-wjs');

 -->

 </script>

</div>

4. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

5. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the

parameters that begin with webhelp.fragment (on page 73). Set that parameter to reference the

tweet-button.xml file that you created earlier.

6. Click Ok and run the transformation scenario.

How to Integrate Google Analytics in WebHelp Responsive Output

You can use Google Analytics to track and report site data for your WebHelp Responsive output.

https://publish.twitter.com

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 162

Using a Publishing Template

To integrate Google Analytics into your WebHelp Responsive output using an Oxygen Publishing Template (on

page 63), follow this procedure:

1. Create a new Google Analytics account (if you do not already have one) and log on.

2. Choose the Analytics solution that best fits the needs of your website.

3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID. A Tracking

Code looks like this:

<script>

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');

 ga('send', 'pageview');

</script>

4. Save the Tracking Code (obtained in the previous step) in a new XML file called

googleAnalytics.xml. Note that the file should only contain the tracking code.

5. Open the template descriptor file (on page 67) associated with your publishing template.

6. Use the webhelp.fragment.after.body parameter (on page 100) in the html-fragments section of the

descriptor file. Set the value of that parameter to reference the googleAnalytics.xml file that you

created earlier. The content of this file will be copied at the end of all generated output pages, right

before the ending <body> element. This ensures that the page is loaded before the Google Analytics

servers are contacted, thus reducing page loading time.

<publishing-template>

 ...

 <webhelp>

 ...

 <html-fragments>

 <fragment

 file="HTML-fragments/googleAnalytics.xml"

 placeholder="webhelp.fragment.after.body"/>

 </html-fragments>

 </webhelp>

7. Open the DITA Map WebHelp Responsive transformation scenario.

8. Click the Choose Custom Publishing Template link and select your template.

9. Click OK to save the changes to the transformation scenario.

10. Run the transformation scenario.

https://analytics.google.com

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 163

Using a Transformation Scenario in Oxygen XML Editor/Author

To integrate Google Analytics into your WebHelp Responsive output using a transformation scenario from

within Oxygen XML Editor/Author, follow this procedure:

1. Create a new Google Analytics account (if you do not already have one) and log on.

2. Choose the Analytics solution that best fits the needs of your website.

3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID. A Tracking

Code looks like this:

<script>

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');

 ga('send', 'pageview');

</script>

4. Save the Tracking Code (obtained in the previous step) in a new XML file called

googleAnalytics.xml. Note that the file should only contain the tracking code.

5. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

6. Switch to the Parameters tab. Edit the webhelp.fragment.after.body parameter (on page 100) and set

it to reference the googleAnalytics.xml file that you created earlier. The content of this file will be

copied at the end of all generated output pages, right before the ending <body> element. This ensures

that the page is loaded before the Google Analytics servers are contacted, thus reducing page loading

time.

7. Click Ok and run the transformation scenario.

How to Integrate Google Search in WebHelp Responsive Output

It is possible to integrate the Google Search Engine into your WebHelp Responsive output and you can

specify where you want the results to appear in your WebHelp page.

Using a Publishing Template

To integrate the Google Search Engine into your WebHelp Responsive output using an Oxygen Publishing

Template (on page 63), follow this procedure:

1. Go to the Google Custom Search Engine page using your Google account.

2. Select the Create a custom search engine button.

3. Follow the on-screen instructions to create a search engine component for your site.

https://analytics.google.com
https://cse.google.com/cse/

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 164

Important:

For the Layout, you must select Results only for the Google Search Engine to work with

Oxygen XML WebHelp Responsive.

4. At the end of this process you should obtain a code snippet that looks like this:

<script>

 (function() {

 var cx =

 '000888210889775888983:8mn4x_mf-yg';

 var gcse = document.createElement('script');

 gcse.type = 'text/javascript';

 gcse.async = true;

 gcse.src = (document.location.protocol == 'https:' ?

 'https:' : 'http:') + '//www.google.com/cse/cse.js?cx=' + cx;

 var s = document.getElementsByTagName('script')[0];

 s.parentNode.insertBefore(gcse, s);

 }

)();

</script>

5. Save the script into a well-formed HTML file called googlecse.html.

6. Open the template descriptor file (on page 67) associated with your publishing template and add the

webhelp.google.search.script parameter in the parameters section with its value set to reference the

googlecse.html file that you created earlier.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter

 name="webhelp.google.search.script"

 value="resources/googlecse.html"

 type="filePath"/>

 </parameters>

 </webhelp>

7. You can also use the webhelp.google.search.results parameter to choose where to display the search

results.

a. Create an HTML file with the following content: <div class="gcse-searchresults-only" data-

autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div> (you must use the

HTML5 version for the GCSE). For more information about other supported attributes, see

Google Custom Search: Supported Attributes.

https://developers.google.com/custom-search/docs/element#html5
https://developers.google.com/custom-search/docs/element#supported_attributes

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 165

b. Set the value of the webhelp.google.search.results parameter to the file path of the file you

just created. If this parameter is not specified, the following code is used: <div class="gcse-

searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></

div>.

8. Open the DITA Map WebHelp Responsive transformation scenario.

9. Click the Choose Custom Publishing Template link and select your template.

10. Click OK to save the changes to the transformation scenario.

11. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To integrate the Google Search Engine into your WebHelp Responsive output using a transformation scenario

from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Google Custom Search Engine page using your Google account.

2. Select the Create a custom search engine button.

3. Follow the on-screen instructions to create a search engine for your site.

Important:

For the Layout, you must select Results only for the Google Search Engine to work with

Oxygen XML WebHelp Responsive.

4. At the end of this process you should obtain a code snippet that looks like this:

<script>

 (function() {

 var cx =

 '000888210889775888983:8mn4x_mf-yg';

 var gcse = document.createElement('script');

 gcse.type = 'text/javascript';

 gcse.async = true;

 gcse.src = (document.location.protocol == 'https:' ?

 'https:' : 'http:') + '//www.google.com/cse/cse.js?cx=' + cx;

 var s = document.getElementsByTagName('script')[0];

 s.parentNode.insertBefore(gcse, s);

 }

)();

</script>

5. Save the script into a well-formed HTML file called googlecse.html.

6. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

7. Switch to the Parameters tab and edit the webhelp.google.search.script parameter to reference the

googlecse.html file that you created earlier.

https://cse.google.com/cse/

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 166

8. You can also use the webhelp.google.search.results parameter to choose where to display the search

results.

a. Create an HTML file with the following content: <div class="gcse-searchresults-only" data-

autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div> (you must use the

HTML5 version for the GCSE). For more information about other supported attributes, see

Google Custom Search: Supported Attributes.

b. Set the value of the webhelp.google.search.results parameter to the file path of the file you

just created. If this parameter is not specified, the following code is used: <div class="gcse-

searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></

div>.

9. Click Ok and run the transformation scenario.

Ant Extensions for WebHelp Responsive
The WebHelp Responsive plugin provides extension points that allow you to implement custom Ant targets to

perform additional operations before and after certain processing stages. The following extension points are

available in WebHelp Responsive:

whr-init-pre

Runs a custom Ant target before the whr-init processing stage.

whr-init-post

Runs a custom Ant target after the whr-init processing stage.

whr-collect-indexterms-pre

Runs a custom Ant target before the whr-collect-indexterms processing stage.

whr-collect-indexterms-post

Runs a custom Ant target after the whr-collect-indexterms processing stage.

whr-toc-xml-pre

Runs a custom Ant target before the whr-toc-xml processing stage.

whr-toc-xml-post

Runs a custom Ant target after the whr-toc-xml processing stage.

whr-context-help-map-pre

Runs a custom Ant target before the whr-context-help-map processing stage.

whr-context-help-map-post

Runs a custom Ant target after the whr-context-help-map processing stage.

whr-sitemap-pre

Runs a custom Ant target before the whr-sitemap processing stage.

whr-sitemap-post

Runs a custom Ant target after the whr-sitemap processing stage.

https://developers.google.com/custom-search/docs/element#html5
https://developers.google.com/custom-search/docs/element#supported_attributes

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 167

whr-copy-resources-pre

Runs a custom Ant target before the whr-copy-resources processing stage.

whr-copy-resources-post

Runs a custom Ant target after the whr-copy-resources processing stage.

whr-create-topic-pages-pre

Runs a custom Ant target before the whr-create-topic-pages processing stage.

whr-create-topic-pages-post

Runs a custom Ant target after the whr-create-topic-pages processing stage.

whr-create-main-page-pre

Runs a custom Ant target before the whr-create-main-page processing stage.

whr-create-main-page-post

Runs a custom Ant target after the whr-create-main-page processing stage.

whr-create-search-page-pre

Runs a custom Ant target before the whr-create-search-page processing stage.

whr-create-search-page-post

Runs a custom Ant target after the whr-create-search-page processing stage.

whr-create-indexterms-page-pre

Runs a custom Ant target before the whr-create-indexterms-page processing stage.

whr-create-indexterms-page-post

Runs a custom Ant target after the whr-create-indexterms-page processing stage.

whr-search-index-pre

Runs a custom Ant target before the whr-search-index processing stage.

whr-search-index-post

Runs a custom Ant target after the whr-search-index processing stage.

To use Ant extension points for WebHelp Responsive, follow these steps:

1. In the DITA-OT-DIR/plugins/ folder, create a folder for this plugin (for example,

com.oxygenxml.webhelp.responsive.custom.ant.extensions).

2. Create a plugin.xml file (in the folder you created in step 1) that extends the WebHelp Responsive

plugin and specifies an Ant extension point with your custom Ant project file that contains the new

build targets. For example:

<plugin id="com.oxygenxml.webhelp.responsive.custom.ant.extensions">

 <require plugin="com.oxygenxml.webhelp.responsive"/>

 <feature extension="ant.import" file="custom_build_file.xml"/>

</plugin>

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 168

3. Create the custom_build_file.xml file (in the folder you created in step 1) that contains your custom Ant

project implementing one or more extension points:

<project name="custom.ant.extensions.integrator" basedir=".">

 <target name="custom-whr-init-pre" extensionOf="whr-init-pre">

 <echo>Extension point that executes before whr-init</echo>

 </target>

 <target name="custom-whr-init-post" extensionOf="whr-init-post">

 <echo>Extension point that executes after whr-init</echo>

 </target>

</project>

4. Integrate the plugin into the DITA-OT. In the DITA-OT-DIR/bin directory of the DITA Open Toolkit, run

one of the following scripts, depending on your operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DOTA-OT-DIR/bin/dita --install

5. Execute a DITA Map to WebHelp Responsive transformation script.

XSLT Extensions for WebHelp Responsive
Since WebHelp Responsive output is primarily obtained by running XSLT transformations over the DITA

input files, one customization method would be to override the default XSLT templates that are used by the

WebHelp Responsive transformations.

There are two methods available to override the XSLT stylesheets implied by the WebHelp Responsive

transformation.

• Use XSLT-import extension points from an Oxygen Publishing Template (on page 192).

Note:

Use this method if you want to affect only the transformations that use this publishing

template.

• Use XSLT-import extension points from a DITA-OT extension plugin.

Note:

This method will affect all the outputs generated with the WebHelp system.

Related information

XSLT-Import and XSLT-Parameter Extension Points (on page 112)

http://userguide.sync.ro/webhelp-responsive/glossary/dita-ot-gloss-entry.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 169

How to Use XSLT Extension Points from a Publishing Template
This example demonstrates how to use WebHelp XSLT-import Extension Points from an Oxygen Publishing

Template (on page 63).

Use Case 1: Add Copyright Information Extracted from a DITA Bookmap

Suppose you want to customize the WebHelp Responsive main page by adding information about the legal

rights associated with the book in the footer (for example, copyright dates and owner). This information is

specified in the bookmap:

<bookrights>

 <copyrfirst>

 <year>2002</year>

 </copyrfirst>

 <copyrlast>

 <year>2017</year>

 </copyrlast>

 <bookowner>

 <organization>SyncRO Soft SRL</organization>

 </bookowner>

</bookrights>

Figure 18. Example: Copyright Information Added in the WebHelp Footer

The XSLT stylesheet that generates the main page is located in: DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\xsl\mainFiles\createMainPage.xsl. This XSLT

stylesheet declares the copy_template mode that processes the main page template (on page 83) to expand

its components. The main page template declares a component for the footer section that looks like this:

<div class=" footer-container text-center ">

 <whc:include_html href="${webhelp.fragment.footer}"/>

</div>

In the following example, the extension stylesheet will add a template that matches this component. It applies

the default processing and adds the copyright information at the end.

<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">

 <!-- Apply the default processing -->

 <xsl:next-match/>

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 170

 <!-- Add a div containing the copyright information -->

 <div class="copyright_info">

 <xsl:choose>

 <!-- Adds the start-end years if they are defined -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and

 exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>

 </xsl:when>

 <!-- Adds only the first year if last is not defined. -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 </xsl:when>

 </xsl:choose>

 <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">

 <xsl:text> </xsl:text><xsl:value-of

 select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>

 <xsl:text>. All rights reserved.</xsl:text>

 </xsl:if>

 </div>

</xsl:template>

To add this functionality using a Oxygen Publishing Template, follow these steps:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Link the folder associated with the publishing template to your current project in the Project view.

You should have the custom_footer_template folder linked in your project.

3. Using the Project view, create an xslt folder inside the project root folder.

You should have the custom_footer_template/xsl folder in your project.

4. Create your customization stylesheet (for example, custom_mainpage.xsl) in the

custom_footer_template/xsl folder. Edit it to override the template that produces the footer

section:

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 171

<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">

 <!-- Apply the default processing -->

 <xsl:next-match/>

 <!-- Add a div containing the copyright information -->

 <div class="copyright_info">

 <xsl:choose>

 <!-- Adds the start-end years if they are defined -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and

 exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>

 </xsl:when>

 <!-- Adds only the first year if last is not defined. -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 </xsl:when>

 </xsl:choose>

 <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">

 <xsl:text> </xsl:text><xsl:value-of

 select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>

 <xsl:text>. All rights reserved.</xsl:text>

 </xsl:if>

 </div>

</xsl:template>

5. Open the template descriptor file (on page 67) associated with your publishing template and set the

XSLT stylesheet created in the previous step with the com.oxygenxml.webhelp.xsl.createMainPage

XSLT extension point.

<publishing-template>

 ...

 <webhelp>

 ...

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 172

 <xslt>

 <extension

 file="xslt/customMainPage.xsl"

 id="com.oxygenxml.webhelp.xsl.createMainPage"/>

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

Use Case 2: Add Generation Time in the Output Footer

Another possible customization for the main page is to add the generation time in its footer. A transformation

parameter is used to control whether or not this customization is active.

Figure 19. Generation Time Added in the WebHelp Footer

To add this functionality, follow these steps:

1. In the customization stylesheet that you just created (for example, custom_mainpage.xsl), modify the

template by adding the following XSLT code at the end.

<xsl:if test="oxyf:getParameter('webhelp.footer.add.generation.time') = 'yes'">

 <div class="generation_time">

 Generation date: <xsl:value-of

 select="format-dateTime(

 current-dateTime(),

 '[h1]:[m01] [P] on [M01]/[D01]/[Y0001].')"/>

 </div>

</xsl:if>

Note:

You can read the value of a WebHelp transformation parameter from your XSLT

extension stylesheets by using the getParameter(param.name) function from the http://

www.oxygenxml.com/functions namespace.

2. Open the template descriptor file (on page 67) associated with your publishing template and set the

webhelp.footer.add.generation.time parameter to the default value.

<publishing-template>

 ...

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 173

 <webhelp>

 ...

 <parameters>

 <parameter

 name="webhelp.footer.add.generation.time"

 value="yes"/>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. In the Parameters tab, you can change the value of the webhelp.footer.add.generation.time parameter.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

How to Use XSLT Extension Points from a DITA-OT Plugin

In this example, the main page footer is modified by adding copyright information extracted from the DITA

bookmap or by adding the output generation time. The first use-case uses an XSLT-Import extension point

while the second uses an XSLT-Parameter extension point.

Note:

This customization is available as a GitHub project at: https://github.com/oxygenxml/

com.oxygenxml.webhelp.responsive.custom.footer.

Use Case 1: WebHelp XSLT-Import extension point to add copyright information extracted
from a DITA Bookmap

Suppose you want to customize the WebHelp Responsive main page by adding information about the legal

rights associated with the book in the footer (for example, copyright dates and owner). This information is

specified in the bookmap:

<bookrights>

 <copyrfirst>

 <year>2002</year>

 </copyrfirst>

 <copyrlast>

 <year>2017</year>

 </copyrlast>

 <bookowner>

 <organization>SyncRO Soft SRL</organization>

 </bookowner>

</bookrights>

https://github.com/oxygenxml/com.oxygenxml.webhelp.responsive.custom.footer
https://github.com/oxygenxml/com.oxygenxml.webhelp.responsive.custom.footer

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 174

Figure 20. Example: Copyright Information Added in the WebHelp Footer

The XSLT stylesheet that generates the main page is located in: DITA-OT-DIR\plugins

\com.oxygenxml.webhelp.responsive\xsl\mainFiles\createMainPage.xsl. This XSLT

stylesheet declares the copy_template mode that processes the main page template to expand its

components. The main page template (on page 83) declares a component for the footer section that looks

like this:

<div class=" footer-container text-center ">

 <whc:include_html href="${webhelp.fragment.footer}"/>

</div>

In the following example, the extension stylesheet will add a template that matches this component. It applies

the default processing and adds the copyright information at the end.

<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">

 <!-- Apply the default processing -->

 <xsl:next-match/>

 <!-- Add a div containing the copyright information -->

 <div class="copyright_info">

 <xsl:choose>

 <!-- Adds the start-end years if they are defined -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and

 exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>

 </xsl:when>

 <!-- Adds only the first year if last is not defined. -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 </xsl:when>

 </xsl:choose>

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 175

 <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">

 <xsl:text> </xsl:text><xsl:value-of

 select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>

 <xsl:text>. All rights reserved.</xsl:text>

 </xsl:if>

 </div>

</xsl:template>

You can implement this functionality with a WebHelp extension plugin that uses the

com.oxygenxml.webhelp.xsl.createMainPage extension point (on page 113). This extension point allows you

to specify a customization stylesheet that will override the template described above.

To add this functionality as a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,

com.oxygenxml.webhelp.responsive.custom.footer).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your

customization stylesheet. For example:

<plugin id="com.oxygenxml.webhelp.responsive.custom.footer">

 <feature extension="com.oxygenxml.webhelp.xsl.createMainPage"

 file="custom_mainpage.xsl"/>

</plugin>

3. Create your customization stylesheet (for example, custom_mainpage.xsl), and edit it to override the

template that produces the footer section:

<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">

 <!-- Apply the default processing -->

 <xsl:next-match/>

 <!-- Add a div containing the copyright information -->

 <div class="copyright_info">

 <xsl:choose>

 <!-- Adds the start-end years if they are defined -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and

 exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 176

 </xsl:when>

 <!-- Adds only the first year if last is not defined. -->

 <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">

 ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>

 </xsl:when>

 </xsl:choose>

 <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">

 <xsl:text> </xsl:text><xsl:value-of

 select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>

 <xsl:text>. All rights reserved.</xsl:text>

 </xsl:if>

 </div>

</xsl:template>

4. In the DITA-OT-DIR/bin directory of the DITA-OT, run one of the following scripts, depending on your

operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DITA-OT-DIR/bin/dita --install

5. Execute a DITA Map to WebHelp Responsive transformation script.

Use-Case 2: WebHelp XSLT-Parameter Extension Point to Control if Generation Time is
Displayed in the Output

Another possible customization for the main page is to add the generation time in its footer. You can use an

XSLT-Parameter extension point to control whether or note this customization is active. In this case, you can

use the com.oxygenxml.webhelp.xsl.createMainPage.param extension point (on page 114).

Figure 21. Generation Time Added in the WebHelp Footer

To add this functionality, follow these steps:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 177

1. Create a DITA-OT plugin structure by following the first 3 steps in the procedure above (on page 173).

2. In the customization stylesheet that you just created (for example, custom_mainpage.xsl), declare

webhelp.footer.add.generation.time as a global parameter and modify the template by adding the

following XSLT code at the end.

<xsl:if test="$webhelp.footer.add.generation.time = 'yes'">

 <div class="generation_time">

 Generation date: <xsl:value-of select="format-dateTime(

 current-dateTime(), '[h1]:[m01] [P] on [M01]/[D01]/[Y0001].')"/>

 </div>

</xsl:if>

3. Edit the plugin.xml file to specify the com.oxygenxml.webhelp.xsl.createMainPage.param extension

point and a custom parameter file by adding the following line:

<feature extension="com.oxygenxml.webhelp.xsl.createMainPage.param" file="params.xml"/>

4. Create a custom parameter file (for example, params.xml). It should look like this:

<dummy>

 <param name="webhelp.footer.add.generation.time"

 expression="${webhelp.footer.add.generation.time}"

 if="webhelp.footer.add.generation.time"/>

</dummy>

5. In the DITA-OT-DIR/bin directory of the DITA-OT, run one of the following scripts, depending on your

operating system:

◦ Windows: DITA-OT-DIR/bin/dita.bat --install

◦ Linux/macOS: sh DITA-OT-DIR/bin/dita --install

6. Use the webhelp.footer.add.generation.time parameter in your DITA transformation script and specify

the desired value (yes or no).

7. Run the transformation scenario.

Related Information:

[DITA-OT] XSLT-Import Extension Points

[DITA-OT] XSLT-Parameter Extension Points

Miscellaneous Customization Topics
This section contains miscellaneous topics about how to customize the WebHelp Responsive output.

How to Copy Additional Resources to Output Directory

You can copy additional resources (such as graphics, JavaScript, CSS, entire folders, or other resources)

to the output directory either by using an Oxygen Publishing Template (on page 192) or the

webhelp.custom.resources parameter.

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 178

Copying Additional Resources to the Output Directory using a Publishing Template

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Add a new <fileset> element in the resources section of the template descriptor file (on page 70).

<publishing-template>

 ...

 <webhelp>

 ...

 <resources>

 <fileset>

 <include name="custom-resources/**/*"/>

 <exclude name="**/*.git"/>

 </fileset>

Note:

Relative paths in the descriptor file are relative to the template root folder.

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Results: All files from the custom resources directory will be copied to the WebHelp Output

Directory/oxygen-webhelp/template folder.

Copying Additional Resources to the Output Directory using a Transformation Parameter

1. Place all your resources in the same directory.

2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

3. Edit the value of the webhelp.custom.resources parameter and set it to the absolute path of the directory

in step 1.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Results: All files from the new directory will be copied to the root of the WebHelp output directory.

How to Add an Edit Link to Launch Oxygen XML Web Author

You can embed Edit links in the DITA WebHelp Responsive output that will automatically launch a particular

document in Oxygen XML Web Author. A reviewer can then click the link to open the particular file in Oxygen

XML Web Author where they can make or propose changes.

unique_52
unique_52
unique_52
unique_52
https://www.oxygenxml.com/doc/ug-webauthor/

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 179

Using a Publishing Template

To embed an Edit link in the DITA Map WebHelp Responsive output using an Oxygen Publishing Template (on

page 63), follow this procedure:

1. If you have not already created a Publishing Template, see Working with Publishing Templates (on page

116).

2. Open the template descriptor file (on page 67) associated with your publishing template and add the

following parameters with their values set to the URLs:

◦ editlink.ditamap.edit.url - The URL of the DITA map used to publish your content. The easiest

way to obtain the URL is to open the map in Web Author and copy the URL from the browser's

address bar.

◦ editlink.additional.query.parameters - Optional query parameters to be appended to each

generated edit link. Each parameter must start with & (e.g. &tags-mode=no-tags).

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="editlink.ditamap.edit.url"

 value="webdav-https://dav.box.com/dav/my.ditamap"/>

 </parameters>

 </webhelp>

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. Click the Choose Custom Publishing Template link and select your template.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

Result: In the WebHelp output, all topics will have an Edit link to the right side of the title and clicking the link

will launch that particular document in Oxygen XML Web Author.

For example:

• Windows:

dita.bat -i c:\mySample.ditamap -f webhelp-responsive -Deditlink.ditamap.edit.url=webdav-

https://dav.box.com/dav/my.ditamap

• macOS/ Linux:

dita -i /mySample.ditamap -f webhelp-responsive -Deditlink.ditamap.edit.url=webdav-https://

dav.box.com/dav/my.ditamap

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 180

Using a Transformation Scenario in Oxygen XML Editor/Author

To embed an Edit link in the DITA Map WebHelp Responsive output using a transformation scenario from

within Oxygen XML Editor/Author, follow this procedure:

1. Edit a DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

2. Set values for the following parameters:

◦ editlink.ditamap.edit.url - The URL of the Oxygen XML Web Author that have opened the DITA

map for editing.

◦ editlink.additional.query.parameters - Optional query parameters to be appended to each

generated edit link. Must start with & (e.g.: &tags-mode=no-tags).

3. Run the transformation scenario.

Result: In the WebHelp output, all topics will have an Edit link to the right side of the title and clicking the link

will launch that particular document in Oxygen XML Web Author.

Related information

Web Author Customization Guide: Embedding an Edit Link that will Launch Web Author

How to Flag DITA Content in WebHelp Output

Flagging content in WebHelp output involves defining a set of images that will be used for marking content

across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to

be flagged. Generally, flagging is supported for block elements (on page 191) (such as paragraphs), but not

for phrase-level elements within a paragraph. This ensures that the images that will flag the content are easily

scanned by the reader, instead of being buried in the text.

Using a Publishing Template

To flag content in DITA Map to WebHelp output using an Oxygen Publishing Template (on page 63), follow

this procedure:

1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named

myFile.ditaval.

2. Define the property for the elements you want to be flagged. For example, if you want to flag any

element that has the @audience attribute set to programmer, the content of the DITAVAL file should look

like this:

<?xml version="1.0" encoding="UTF-8"?>

<val>

 <prop att="audience" val="programmer" action="flag"

 img="D:\resource\delta.gif" alt="sample alt text"/>

</val>

https://www.oxygenxml.com/doc/ug-waCustom/topics/webauthor-integrate-embedded-launch.html

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 181

Note:

For an element to be flagged, at least one attribute-value pair needs to have a property declared

in the DITAVAL file.

3. Open the template descriptor file (on page 67) associated with your publishing template and add the

args.filter parameter in the parameters section with its value set to the path of the DITAVAL file you

created.

<publishing-template>

 ...

 <webhelp>

 ...

 <parameters>

 <parameter name="args.filter" value="resources/myFile.ditaval"/>

 </parameters>

 </webhelp>

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To flag content in the DITA Map to WebHelp output using a transformation scenario from within Oxygen XML

Editor/Author, follow this procedure:

1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named

myFile.ditaval.

2. Define the property for the elements you want to be flagged. For example, if you want to flag any

element that has the @audience attribute set to programmer, the content of the DITAVAL file should look

like this:

<?xml version="1.0" encoding="UTF-8"?>

<val>

 <prop att="audience" val="programmer" action="flag"

 img="D:\resource\delta.gif" alt="sample alt text"/>

</val>

Note:

For an element to be flagged, at least one attribute-value pair needs to have a property declared

in the DITAVAL file.

3. Edit a DITA Map to WebHelp transformation scenario.

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 182

4. Specify the DITAVAL file in the Filters tab (with the Use DITAVAL File option).

5. Run the transformation scenario.

How to View MathML Equations in HTML Output

By default, only Firefox can render MathML equations embedded in the HTML code. MathJax is a solution to

properly view MathML equations embedded in HTML content in a variety of browsers.

If you have DocBook or DITA content that has embedded MathML equations and you want to properly view

the equations in published HTML output types (WebHelp, CHM, EPUB, etc.), you need to add a reference to the

MathJax script in the head element of all HTML files that have the equation embedded.

For example:

<script type="text/javascript"

 src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMM

L">

</script>

Alternate Method for DITA

For DITA documents, you can also use the following procedure:

1. Create an XML file that contains a script similar to the one shown in the example above.

2. Edit the DITA Map transformation scenario and open the Parameters tab.

3. Set the following parameter to point to the XML file created in step 1:

◦ WebHelp Responsive Systems - Set the webhelp.fragment.head parameter to point to your XML

file.

◦ WebHelp Classic Systems - Set the webhelp.head.script parameter to point to your XML file.

◦ Any other type of HTML-based publishing - Set the args.hdf parameter to point to your XML file.

4. Run the transformation scenario.

Result: The equation should now be properly rendered in other browsers, such as Edge, IE, or Chrome.

How to Disable Caching in WebHelp Responsive Output

In cases where a set of WebHelp Responsive pages need to be updated on a regular basis to deliver the

latest version of the documentation, the WebHelp pages should always be requested from the server upon re-

loading it in a web browser on the client side, (rather than re-using an outdated cached version in the browser).

To disable caching in WebHelp Responsive output, follow this procedure:

1. Create a new well-formed XML file and add the following code snippet:

<meta http-equiv="Pragma" content="no-cache" />

<meta http-equiv="Expires" content="-1" />

http://www.mathjax.org/

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 183

Note:

The code should look like this:

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Pragma" content="no-cache" />

 <meta http-equiv="Expires" content="-1" />

 </head>

</html>

2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

3. Edit the value of the webhelp.fragment.head parameter and set it to the absolute path of your XML file.

4. Click OK to save the changes to the transformation scenario.

5. Run the transformation scenario.

Result: Your additional content is included at the end of the <head> element of your output document.

How to Configure a Custom Search Engine

It is possible to integrate a custom search engine into your WebHelp Responsive output. This is done by using

the following transformation parameters:

webhelp.fragment.custom.search.engine.results

This parameter can be used to replace the search results area with custom XHTML content. The

value of the parameter is the path to an XHTML file that contains your custom content.

webhelp.fragment.custom.search.engine.script

This parameter can be used to replace WebHelp's built-in search engine with your own custom

search engine. The value of the parameter is the path to an XHTML file that contains the scripts

required for your custom search engine to run.

To integrate a custom search engine into your WebHelp Responsive output, follow these steps:

1. If you have not already created a Publishing Template, see How to Create a Publishing Template (on

page).

2. Create the following items in the folder that contains your publishing descriptor file (the .opt file):

◦ A file named custom-search-results-fragment.xml.

◦ A file named custom-search-script-fragment.xml.

◦ A folder named js.

3. In the custom-search-results-fragment.xml file, define the HTML structure that will be used as the

search results area. For example:

<div id="cumstom-search-results">...</div>

unique_52
unique_52
unique_52
unique_52

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 184

Note:

The custom search engine script will need to find an HTML element from the HTML structure

that will be used as the search results area and write the search results inside it. In this

example, it is the <div> element with the id custom-search-results.

4. In the js folder, create a file named custom-search.js.

5. As a starting point, you can copy the following content to the custom-search.js file:

$(document).ready(function () {

 const params = new URLSearchParams(window.location.search);

 const searchQuery = params.get('searchQuery');

 // Implement your custom search engine

 // Display the search results

});

Important:

The value entered by the user in the search page will be available in the URL's query parameters

in a parameter named searchQuery.

Attention:

URLSearchParams is not supported on all browsers (it is used as an example). A list with

the supported browsers can be found here. A different solution should be used if you need to

support other browsers.

6. Implement your custom search engine.

Note:

The search results should be pushed into the <div> element created earlier with the id custom-

search-results.

7. In the custom-search-script-fragment.xml file, define the scripts that are required for your custom

search engine to run. For example:

<div>

 <script src="${oxygen-webhelp-template-dir}/js/custom-search.js"></script>

</div>

8. Copy the js folder to the output folder during the transformation process. For this, open the .opt file

and add the following content in the <resources> section (see Template Resources (on page 70) for

more details):

https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams#browser_compatibility

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 185

<fileset>

 <include name="js/**"/>

</fileset>

9. Set the transformation parameters needed to enable the custom search engine. For this, open the .opt

file and add the following content inside the <webhelp> element:

<html-fragments>

 <fragment file="custom-search-script-fragment.xml"

 placeholder="webhelp.fragment.custom.search.engine.script"/>

 <fragment file="custom-search-results-fragment.xml"

 placeholder="webhelp.fragment.custom.search.engine.results"/>

</html-fragments>

10. Run the transformation with this publishing template selected.

Note:

A publishing template containing all the steps we described, except for the actual custom

search engine implementation is available to download here. You can use it as a starting point.

How to Add a Link to PDF Documentation

It is possible to add a component in your WebHelp output that links to an external PDF resource. For example,

it could link to the PDF equivalent of the documentation. This is achieved by configuring some transformation

parameters and the link component is added in the header/breadcrumb stripe, next to the navigation links.

The transformation parameters used for generating a PDF link component in the WebHelp Responsive output

are:

webhelp.pdf.link.url

Specifies the target URL for the PDF link component.

webhelp.pdf.link.text

Specifies the text for the PDF link component.

webhelp.pdf.link.icon.path

Specifies the path or URL of the image icon to be used for the PDF link component. If not

specified, a default icon is used.

webhelp.show.pdf.link

Specifies whether or not the PDF link component is shown in the WebHelp Responsive output.

Allowed values are: yes (default) and no.

webhelp.pdf.link.anchor.enabled

Specifies whether or not the current topic ID should be appended as the name destination at the

end of the PDF link. Allowed values are: yes (default) and no.

https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/custom-search-engine

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 186

How to Add a Custom Component for WebHelp Output

This topic explains how to use several customization methods to define and implement a custom component

for WebHelp output pages.

Predefined components

The WebHelp output is based on a set of HTML Page Layout Files (on page 82) that define the default

layout of the generated pages. Each layout file is made of a set of various components. Each component

is described using an associated XML element that is processed at the generation time resulting in its

associated component being included in the output pages.

Here are a few examples of predefined components: Logo, Title, Menu, Search Input, Topics Tiles, Topic

Breadcrumb, Topic Content, Publication Table of Contents. A complete list with all the available components

is available here: Layout of the Responsive Page Types (on page 16).

For example, the page component that is used to define the Search Input field in the WebHelp HTML pages is

defined as follows:

<!-- Search form -->

<whc:webhelp_search_input class="navbar-form wh_topic_page_search search" role="form"/>

At publishing time, the above component will be expanded into:

<div class=" wh_search_input navbar-form wh_topic_page_search search">

 <form id="searchForm" method="get" role="search" action="../search.html">

 <div>

 <input type="search" placeholder="Search "

 class="wh_search_textfield ui-autocomplete-input" id="textToSearch"

 name="searchQuery" aria-label="Search query" required="required"

 autocomplete="off"/>

 <button type="submit" class="wh_search_button" aria-label="Search">

 Search

 </button>

 </div>

 </form>

</div>

Customization Methods

The most common customization methods for the WebHelp Responsive output include:

• Apply custom CSS styles (on page 126) to change the default layout and styles.

• Insert additional HTML content (on page 128) using one of the available HTML Fragment Placeholder

parameters (on page 73).

• Extend the default processing using XSLT Extension Points (on page 73).

• Configure available Transformation Parameters (on page 99).

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 187

Use Case: Custom Link Component

For the subsequent procedure, suppose you have a DITA project for a User Manual and you also have various

video demonstrations available on your website that supplement the documentation. You may want to link a

video demonstration for a particular feature it its associated DITA topic in the WebHelp output.

You could simply add a link somewhere in your DITA topic, but this approach would not be very suitable for

a printable (PDF) version of your User Manual. Thus, you need to include the link to the associated video

demonstration only in the WebHelp output of your User Manual (and not the PDF version).

One way to link a video with its associated topic is to include its URL in the metadata section. For example:

<prolog>

 <metadata>

 <othermeta name="video-link" content="https://www.youtube.com/watch?v=zNmXfKWXwO8"/>

 </metadata>

</prolog>

Next, you need to instruct WebHelp to pick up the URL from the metadata and generate a link in a specific

location of the HTML output page. You can achieve this by creating your own WebHelp custom component.

Creating a Custom Component

You can combine several of the available customization methods to define and implement your own WebHelp

custom component.

Figure 22. Custom Component

To create a custom component that displays a link to the current topic's associated video tutorial, follow these

steps:

1. Define your component. For example, it may have the following form:

<comp:video-link xmlns:comp="http://example.com/custom-components"/>

The component is an XML element that belongs to a custom defined namespace.

2. Insert the component in your topic pages. To do this, you will have to save the associated XML element

in an HTML Fragment file (for example, named video-link-fragment.xml).

3. Reference the HTML Fragment file in your current Publishing Template's descriptor file (on page

67) and associate it with an HTML Fragment placeholder that is available for the topic pages

(webhelp.fragment.before.topic.toolbar in this case):

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 188

<html-fragments>

 <fragment file="component/html-fragment/video-link-fragment.xml"

 placeholder="webhelp.fragment.before.topic.toolbar"/>

</html-fragments>

Note:

The HTML Fragment file is referenced using a path relative to the Publishing Template root

directory.

4. Create a custom XSLT file that processes the custom component and picks up the video URL available

in the current topic's metadata and generates a link to the page that contains the video:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:comp="http://example.com/custom-components"

 exclude-result-prefixes="xs comp"

 version="3.0">

 <!-- Custom component implementation -->

 <xsl:template match="comp:video-link" mode="copy_template">

 <xsl:param name="ditaot_topicContent" tunnel="yes"/>

 <!-- Look for a 'video-link' <meta> element in the current topic content -->

 <xsl:variable name="videoLinkMeta"

 select="$ditaot_topicContent//*:meta[@name='video-link']"/>

 <xsl:if test="exists($videoLinkMeta)">

 <div class="video-link-container">

 <a href="{$videoLinkMeta[1]/@content}"

 class="video-link" target="_blank" aria-label="Video">

 Video

 </div>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

The HTML content generated for your component will look like this:

<div class="video-link-container">

 <a href="https://www.youtube.com/watch?v=zNmXfKWXwO8"

 class="video-link" target="_blank"

 aria-label="Video">

 Video

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 189

</div>

5. Reference the above XSL file in your Publishing Template's descriptor file using the XSLT extension

point associated with the XSL module that generates an HTML file for each DITA topic:

<xslt>

 <extension file="component/xsl/video-link-impl.xsl"

 id="com.oxygenxml.webhelp.xsl.dita2webhelp"/>

</xslt>

6. Create a custom CSS file that contains the rules for styling the output for your component:

@import url('https://fonts.googleapis.com/icon?family=Material+Icons');

.video-link-container {

 display: flex;

 align-items: center;

 flex-grow: 10;

 justify-content: flex-end;

}

.video-link {

 display: flex;

 align-items: center;

 color: #fff !important;

}

.video-link:before {

 content: "smart_display";

 font-family: 'Material Icons';

 font-size: 20px;

 display: inline-block;

 word-wrap: normal;

 white-space: nowrap;

}

.video-link span {

 display: none;

}

.wh_right_tools {

 padding: 0;

}

7. Reference the above CSS file in your Publishing Template's descriptor file:

Oxygen XML WebHelp Responsive plugin 24.1 | 5 - Customizing WebHelp Responsive Output | 190

<resources>

 <!-- -->

 <css file="component/css/video-link.css"/>

</resources>

Result: An icon that is a link to the video appears in the header stripe in the output page.

Figure 23. Custom Link to Video Component

Sample Publishing Template

A sample Publishing Template that contains all the above customizations is available here: https://

github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-

component.

How to Group Related Links by Type

By default, all links from DITA relationship tables or related link elements within topics are grouped under one

"Related information" heading:

Related information

 Target Topic

 Target Concept

 Target Task

It is possible to group the links by target type (topic type) by setting the webhelp.rellinks.group.mode=group-

by-type parameter. The output will look like this:

Related concepts

 Target Concept

Related tasks

 Target Task

Related information

 Target Topic

https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-component
https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-component
https://github.com/oxygenxml/oxygen-publishing-template-samples/tree/master/templates/video-link-custom-component

6.
Glossary
Anchor

An Anchor is used in various types of links to take the user to a specific location within the target

document. It is designated in a URL or in the value of the @href attribute with a # symbol followed by the

anchor that is defined in a target ID (for example href="MyTopic.dita#anchor).

Block Element
A block element is intended to be visually separated from its siblings, usually vertically. For instance,

paragraphs and list items are block elements. It is distinct from a inline element, which has no such

separation.

Bookmap
A bookmap is a specialized DITA map used for creating books. A bookmap supports book divisions

such as chapters and book lists such as indexes.

DITA Map

A DITA map is a component of the DITA framework (on page 192) that provides the means for a

hierarchical collection of DITA topics that can be processed to form an output. Maps do not contain the

content of topics, but only references to them. These are known as topic references. Usually, the maps

are saved on disk or in a CMS with the extension .ditamap.

Maps can also contain relationship tables that establish relationships between the topics contained

within the map. Relationship tables are also used to generate links in your published document.

You can use your map or bookmap (on page 191) to generate a deliverable using an output type such

as XHTML, PDF, HTML Help, or Eclipse Help.

DITA Open Toolkit
DITA Open Toolkit is an open-source publishing engine for content authored in the Darwin Information

Typing Architecture. It is a vendor-independent, open-source implementation of the DITA standard,

released under the Apache License, Version 2.0.

The toolkit supports all versions of the OASIS DITA specification, including 1.0, 1.1, 1.2, and 1.3.

http://www.apache.org/licenses/LICENSE-2.0
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html

Oxygen XML WebHelp Responsive plugin 24.1 | 6 - Glossary | 192

DITA-OT

Related Information:

http://www.dita-ot.org/

DITA-OT-DIR

DITA_OT_DIR refers to the default directory for your DITA Open Toolkit distribution.

Framework
A framework refers to a package that contains resources and configuration information to provide

ready-to-use support for an XML vocabulary or document type. A framework is associated to an XML

document type according to a set of rules. It also includes a variety of settings that improve editing

capabilities for its particular file type.

Inline Element
An inline element is intended to be displayed in the same line of text as its siblings or the surrounding

text. For instance, strong and emphasis in HTML are inline elements. It is distinct from a block element,

which is visually separated from its siblings.

Key Space

The concept of a Key Space in DITA refers to a set of all possible keys that can be used in a DITA map

structure. A Key Space is established when a root map (on page 192) defines a set of effective key

bindings.

Oxygen Publishing Template

Oxygen Publishing Template defines all the aspects related with the look and feel(layout and styles) for

the WebHelp Responsive output.

The template is self-contained and packed as a ZIP archive making it easy t share with others. It

represents the main method for customizing the WebHelp Responsive output.

Related Information:

Publishing Template Package Contents for WebHelp Responsive Customizations (on page 66)

Root Map

A Root Map (or main map) specifies a DITA map (on page 191) that defines a hierarchical structure

of submaps that are contained within the root map. Essentially, the root map defines a scope and

provides the mechanism to allow your defined keys to be propagated throughout the entire map

structure (this mechanism is also known as a key space (on page 192)).

http://www.dita-ot.org/

Oxygen XML WebHelp Responsive plugin 24.1 | 6 - Glossary | 193

WebHelp Output Directory

WebHelp_OUTPUT_DIR refers to the output directory where WebHelp transformation files will be

generated.

When running the WebHelp transformation from a command line, the output directory can be specified

using the -o or --output option.

Index
A

Add link to PDF

 185

Adding audio objects

 147

Adding favicon

 146

Adding logo

 145

Adding videos

 147

Adding welcome message

 141

Author editing mode

MathML equations in HTML output

 182

Automate Output with Jenkins

 10

Automate Output with Travis CI

 12

B
Built-in templates

 65

C
Changing numbers for ordered lists

 136

Changing scoring values in search results

 149

Comments section

 59

Context-sensitive help

 29

Copy resources to output directory

 177

Creating publishing templates

 116

CSS styling

 126

Custom templates

 65

Customizing main page layout

 139

Customizing output with CSS

 126

Customizing output with HTML content

 128

Customizing the footer

 142

Customizing the menu

 139

Customizing the tiles

 143

D
DITA-OT process stages

 61

E
Edit link to launch Web Author

 178

Editing publishing templates

 118

Excluding topics from search results

 150

F
Facebook Like button

 157

Flagging DITA content

 180

G
Google Analytics

 161

Google Search

 163

I
Increase memory

 14

Index terms layout page

 26

Inserting HTML

 128

J

a

Jenkins integration

 10

L
Localizing interface

 154

M
Main layout page

 17

MathML equations in HTML output in Author

mode

 182

MathML equations in WebHelp output

 149

Memory issues

 14

N
Navigation links

 139

O
Optimizing Japanese content indexing

 153

Optimizing search results

 151

Out of memory

 14

OutOfMemoryError

 14

P
PDF link

 185

Previous/Next arrows

 139

Publishing Template

Adding to gallery

 118

Converting old templates

 121

Converting old templates to version 20

 124

Converting old templates to version 21

 125

Converting publishing templates to version 22

 123

Converting publishing templates to version 23

 123

Converting publishing templates to version 24

 122

Converting publishing templates to version 24.1

 121

Converting version 20 publishing templates to

version 21

 124

Could not be loaded error message

 121

Creating

 116

Descriptor file

 67

Editing

 118

HTML fragments

 73

HTML page layout files

 82

Resources

 70

Running from a command line

 119

Sharing

 120

Transformation parameters

 72

Troubleshooting

 121

XSLT extensions

 73

Publishing Template package

 66

R
Right-to-left languages

 157

S
Search features

 27

b

Search layout page

 23

Search rules

 27

Sharing publishing templates

 120

Sharing templates

 65

Syntax highlights in codeblocks

 137

T
Topic layout page

 20

Transformation parameters

 99

Travis CI integration

 12

Tweet button

 159

X
XML documents

Author Mode editing

MathML equations in HTML output

 182

XSLT Import extension points

 112

XSLT Parameter extension points

 112

XSLT-import

extension points

 168

c

Copyright
Oxygen XML WebHelp Responsive plugin User

Manual

Syncro Soft SRL.

Copyright © 2002-2020 Syncro Soft SRL. All Rights

Reserved.

All rights reserved: No parts of this work may be

reproduced in any form or by any means - graphic,

electronic, or mechanical, including photocopying,

recording, taping, or information storage and

retrieval systems - without the written permission

of the publisher. Products that are referred to in

this document may be either trademarks and/or

registered trademarks of the respective owners. The

publisher and the author make no claim to these

trademarks.

Trademarks: Many of the designations used by

manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those

designations appear in this document, and Syncro

Soft SRL was aware of a trademark claim, the

designations have been rendered in caps or initial

caps.

Notice: While every precaution has been taken in

the preparation of this document, the publisher and

the author assume no responsibility for errors or

omissions, or for damages resulting from the use

of information contained in this document or from

the use of programs and source code that may

accompany it. In no event shall the publisher and

the author be liable for any loss of profit or any other

commercial damage caused or alleged to have been

caused directly or indirectly by this document.

Link disclaimer: Syncro Soft SRL is not responsible

for the contents or reliability of any linked Websites

referenced elsewhere within this documentation,

and Syncro Soft SRL does not necessarily endorse

the products, services, or information described or

offered within them. Syncro Soft cannot guarantee

that these links will work all the time and has no

control over the availability of the linked pages.

Warranty: Syncro Soft SRL provides a limited

warranty on this product. Refer to your sales

agreement to establish the terms of the limited

warranty. In addition, Oxygen XML WebHelp

Responsive plugin End-User License Agreement,

as well as information regarding support for this

product, while under warranty, is available through

the Oxygen XML WebHelp Responsive plugin End-

User License Agreement.

Terms and conditions: For the terms and conditions

for using Oxygen XML WebHelp Responsive plugin,

see Oxygen XML WebHelp Responsive plugin End-

User License Agreement.

Documentation: For the most current versions of

documentation, see the Oxygen XML WebHelp

Responsive plugin User Manual.

Contact Syncro Soft SRL: Syncro Soft SRL provides

telephone numbers and e-mail addresses for you

to report problems or to ask questions about your

product, see the Oxygen support webpage.

d

https://www.oxygenxml.com/eula_webhelp.html
https://www.oxygenxml.com/eula_webhelp.html
https://www.oxygenxml.com/eula_webhelp.html
https://www.oxygenxml.com/eula_webhelp.html
https://www.oxygenxml.com/eula_webhelp.html
https://www.oxygenxml.com/eula_webhelp.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/
https://www.oxygenxml.com/doc/ug-webhelp-responsive/
https://www.oxygenxml.com/doc/ug-webhelp-responsive/
https://www.oxygenxml.com/support.html

	Oxygen XML WebHelp Responsive plugin 24.1
	Contents
	1.  Getting Started
	Browser Compatibility
	Installing
	Activating
	Upgrading
	Generating Output
	Running WebHelp Responsive from Oxygen XML Editor/Author
	Running WebHelp Responsive from Command Line
	dita Command Format
	WebHelp and DITA-OT parameters
	Command-Line Example

	Running WebHelp Responsive from an Integration Server
	Automating DITA to WebHelp Responsive Output with Jenkins
	Automating DITA to WebHelp Responsive Output with Travis CI
	Enable the Travis CI Build
	Configure the Travis CI Build in your GitHub Project
	Register Your License Key
	Commit to GitHub

	Running WebHelp Responsive from a Docker image

	Increasing Memory Allocation for Java
	When the Transformation is Started from Oxygen
	When the Transformation is Started from the Command Line

	2.  Layout and Features
	Layout of the Responsive Page Types
	Main Page
	Main Page - Tiles Layout
	Main Page - Tree Layout
	Main Page Components

	Topic Page
	Topic Page Components

	Search Page
	Search Page Components
	Auto-complete Suggestions in the Search Text Field
	Missing Terms

	Index Terms Page
	Index Terms Page Components

	Search Engine
	Search Field and Results Page
	5-Star Rating Mechanism and Sorting
	Tag Element Scoring Values
	Search Rules
	Excluded Terms

	Context-Sensitive Help System
	Generating Context-Sensitive Help
	Context-Sensitive Queries

	Accessibility
	Writing Guidelines for Accessible Documentation
	Accessible Images
	Short Text Equivalents for Images
	Long Descriptions of Images

	Accessible Image Maps
	Accessible Tables
	Table with Header Cells in the Top Row Only
	Table with Header Cells in the First Column Only
	Table with Header Cells in the Top Row and First Column

	WebHelp Responsive VPAT Accessibility Conformance Report
	International Edition
	Applicable Standards/Guidelines
	Terms
	WCAG 2.x Report
	Table 1: Success Criteria, Level A
	Table 2: Success Criteria, Level AA
	Table 3: Success Criteria, Level AAA
	Revised Section 508 Report
	Chapter 3: Functional Performance Criteria (FPC)
	Chapter 4: Hardware
	Chapter 5: Software
	Chapter 6: Support Documentation and Services
	Legal Disclaimer

	3.  Deploying an Oxygen Feedback Comments Component
	Adding the Feedback System to WebHelp Responsive Documentation

	4.  Developer Reference
	Processing Stages
	Publishing Templates
	Publishing Templates Gallery
	Built-in Templates
	Built-in Templates Location
	Custom Templates
	Sharing Publishing Template

	Publishing Template Package Contents
	Template Descriptor File
	Template Name and Description
	Template Author
	Webhelp Element
	Template Tags
	Template Preview Image

	Template Resources
	Transformation Parameters
	XSLT Extension Points
	HTML Fragment Placeholders
	Global Placeholder Parameters
	Main Page Placeholder Parameters
	Topic Page Placeholder Parameters
	Search Results Page Placeholder Parameters
	Index Terms Page Placeholder Parameters
	Using String Values in Placeholder Parameter Values

	WebHelp Responsive Macros
	Implementations
	Extensibility

	Combining WebHelp Responsive and PDF Customizations in a Template Package
	HTML Page Layout Files
	Main Page
	Topic Page
	Search Results Page
	Index Terms Page

	Transformation Parameters
	Publishing Template Parameters
	Custom Resource Parameters
	Oxygen Feedback Parameter
	HTML Fragment Extension Parameters
	Output Component Parameters
	Search-Related Parameters
	Publishing Speedup Parameters
	Parameters for Adding a Link to PDF Documentation in WebHelp Responsive Output

	XSLT-Import and XSLT-Parameter Extension Points
	Extension Points from an Oxygen Publishing Template
	Extension Points from a DITA-OT Extension Plug-in
	XSLT-Import Extension Points
	XSLT-Parameter Extension Points

	5.  Customization How to Guide
	Working with Publishing Templates
	How to Create a Publishing Template
	Creating a Publishing Template Starting from Scratch
	Creating a Publishing Template Starting from an Existing Template

	How to Edit a Packed Publishing Template
	How to Add a Publishing Template to the Publishing Templates Gallery
	How to Use a Publishing Template from a Command Line
	Using a Publishing Template with a Single Descriptor
	Using a Publishing Template with Multiple Descriptors

	How to Share a Publishing Template
	Troubleshooting: Errors Encountered when Loading Templates
	Converting Old Templates to Newer Versions
	Convert Version 24.0 Publishing Templates to Version 24.1
	Convert Version 23 Publishing Templates to Version 24
	Convert Version 22 Publishing Templates to Version 23
	Convert Version 21 Publishing Templates to Version 22
	Convert Version 20 Publishing Templates to Version 21
	Convert Version 19 (and Older) Publishing Templates to Version 20
	Convert Version 19 (and Older) Publishing Templates to Version 21

	Changing the Layout and Styles
	How to Use CSS Styling to Customize the Output
	Using CSS Inspector to Identify Content for Custom CSS File
	Create the Custom CSS
	Referencing the CSS Using a Publishing Template
	Referencing the CSS Using the args.css Parameter

	How to Insert Custom HTML Content
	The XML File
	Using WebHelp Macros
	Referencing the HTML fragment using a Publishing Template
	Referencing the HTML Fragment using a Transformation Parameter

	How to Insert JavaScript AMD Modules
	Contributing JavaScript AMD Modules Using a Publishing Template
	The JavaScript Modules

	How to Change Numbering Styles for Ordered Lists
	Referencing the Custom CSS from a Publishing Template
	Referencing the CSS Using the args.css Parameter

	Adding Syntax Highlights for Codeblocks in the Output
	How to Show or Hide Navigation Links in Topic Pages
	How to Control Which Topic Pages Include Navigation Links
	How to Generate Navigation Links for All Topics (Ignoring the Collection Type Attribute)
	How to Hide All Navigation Links

	How to Change the Main Page Layout
	How to Customize the Menu
	How to Hide Some of the Menu Entries
	How to Hide the Entire Menu

	How to Add a Welcome Message
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Create a Custom Footer
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Configure the Tiles
	How to Hide Some of the Tiles
	How to Add an Image to the Tiles

	Adding Graphics and Media Resources
	How to Add a Logo Image in the Title Area
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Add a Favicon
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Add Video and Audio Objects
	Adding Videos to DITA WebHelp Output
	Adding Audio Clips to DITA WebHelp Output
	Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

	How to Add MathML Equations in WebHelp Output

	Searching the Output
	How to Change Element Scoring in Search Results
	How to Exclude Certain DITA Topics from Search Results
	Transformation Parameter Method
	Search Attribute Method

	How to Optimize Search Results
	How to Index Japanese Content
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	Localization
	How to Localize the Interface
	Modifying the Existing Strings
	Adding a New Language

	How to Activate Support for Right-to-Left (RTL) Languages

	Social Media and Google Tools
	How to Add a Facebook Like Button
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Add a Tweet Button
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Integrate Google Analytics
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Integrate Google Search
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	Ant Extensions for WebHelp Responsive
	XSLT Extensions for WebHelp Responsive
	How to Use XSLT Extension Points from a Publishing Template
	Use Case 1: Add Copyright Information Extracted from a DITA Bookmap
	Use Case 2: Add Generation Time in the Output Footer

	How to Use XSLT Extension Points from a DITA-OT Plugin
	Use Case 1: WebHelp XSLT-Import extension point to add copyright information extracted from a DITA Bookmap
	Use-Case 2: WebHelp XSLT-Parameter Extension Point to Control if Generation Time is Displayed in the Output

	Miscellaneous Customization Topics
	How to Copy Additional Resources to Output Directory
	Copying Additional Resources to the Output Directory using a Publishing Template
	Copying Additional Resources to the Output Directory using a Transformation Parameter

	How to Add an Edit Link to Launch Oxygen XML Web Author
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to Flag DITA Content
	Using a Publishing Template
	Using a Transformation Scenario in Oxygen XML Editor/Author

	How to View MathML Equations in HTML Output
	Alternate Method for DITA

	How to Disable Caching in WebHelp Responsive Output
	How to Configure a Custom Search Engine
	How to Add a Link to PDF Documentation
	How to Add a Custom Component for WebHelp Output
	Predefined components
	Customization Methods
	Use Case: Custom Link Component
	Creating a Custom Component
	Sample Publishing Template

	How to Group Related Links by Type

	6.  Glossary
	Anchor
	Block Element
	Bookmap
	DITA Map
	DITA Open Toolkit
	DITA-OT

	DITA-OT-DIR
	Framework
	Inline Element
	Key Space
	Root Map
	WebHelp Output Directory

	Index
	Copyright

