opencv-devel-4.9.0-150600.3.6.1<>,gPXp9|>9̺8ɯԔ_0ŎJmxpK8UHwr ? lJɑԓYhʀB-S`(_{_gJ;سľ!"I\uxJ0^aO(W4srJ')2g^tBg/3,.^ Kح!Ju,AJ/v)q"5a0q zPoxW/å9ӍW-6z>GfxBlW+{_U}F24"<>A ?d " Q 5Vc y         @     4 k  Do(8@9@:\@BF G  HL Ix XYZ[\ ] ^Fb?cdienfqlsuֈ v޴w8 xd yzCopencv-devel4.9.0150600.3.6.1Development files for using the OpenCV libraryThis package contains the OpenCV C/C++ library and header files, as well as documentation. It should be installed if you want to develop programs that will use the OpenCV library.gPXh03-ch2b`SUSE Linux Enterprise 15SUSE LLC BSD-3-Clausehttps://www.suse.com/Development/Libraries/C and C++https://opencv.org/linuxx86_64h)#f AaT h! M >? `<)pj<0[-D!c 'M'~ ~.B'#$yp "54-  !JS]xP:787ZMZ .u<)hquF  y0 Bq%:[P-* ! a"HYT  > 8 e o  L5+^TW?i x. R05 y!/$l !vI e xwY'1 " ' P$B  \7 = = D'm z$LR3sD ?$|  g~*0OP 5=bH " s; A (9FUB4)J#k=<y( ]F D l!H 0^5t:S +tg8a 0 ^_`o#: x5 GRL X,xFB B J o #W. qYs#+voh@O A(_e C '-/^ BFi <"KX; *   C 7Uu2 ?  ?))9x) -F*\3( ~7]Z^V$z _"/7G*  J~M 53_ ?b2y AZ/N,+ r( 5(, @ A "5aXE [ Q "+ O@"i;.j90-,^,^m jAA큤A큤A큤A큤A큤A큤A큤A큤AA큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤gP'gP'eDeDeDgP'eTeTeTgP'eTeTeTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgP'eTeTeTgP'gP'eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgP'gP'eTeTeTeTeTeTeTeTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTeTeTeTeTeTgKgP'eTeTeTeTeTeTeTeTgP'eTeTeTgP'eDeDeDeDeDeDeDeDeDeDgP'eTeTgP'eTgP'eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgP'eTeTgP'eTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTeTgP'eTeTgP'eTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTgP'eTeTeTgP'eTgP'eTeTeTeTgP'eTeTeTgP'eTeTeTgP'eTeTeTgP'eTeTeTeTeTeTeTeTeTgP'eTeTeTeTeTeTeTeTeTgP'eTeTeTgP'eTeTeTeTgP'eTeTgP'eTeTgP'eTgP'eTeTeTeTeTeTgP'eTeTeTgP'eTeTeTeTeTeTeTeTeTeTeTgKgP'eDeDeDeDeDgP'eTeTgP'eTeTeDgP'eDeDeDeDeDeDgP'eTgP'eTeTeTeTeTeTeTeTeTeTeTeTeTgP'eDeDgP'eDeDeDeDeDeDeDeDeDgP'eTeTgP'eTgP'eTeTeTgP'eTeTgP'eTeTeTeTgP'eDeDeDeDeDeDeDeDeDeDeDeDeDeDeDgP'eDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDgP&gKgKgKgKgP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP'gP(gPVeTgKeTeT611cd1d9648000e31c4a09806ff30eb538d2d63e7af055feb6f6721a9424576c0480e30b3077af75563f645a778a521ee70be996d440b817f7b422815ac9d0b88012a042d86f9fe430dcb431db60af5003ae09c044fdbd6172178496de3a90fb0802032b19e2a63bace383e774a616904b2079b672bf9d87439eb1f5c02f9b3d84cafb3c18dbf7c5f6c34e9eff0c018185c12ca9c3cb00955d1452e42fcbf5e5c0208fdc32f171d444d25d7096ac9a6f1dbb903176dc3ddf366a974293028bd7ae5663b2a537b782e2b81643371fb33fa549f5a9af7fed5d33cd42e6ade2ed112bb08c58a49aff38d5bf35e99612fb0d24f0bb1991ddf33b70ffc923393a887006b3e977168204f5c329ae60c9c4d4af1e7fe82ed7da130a5fcf7bbc2f4ee42731560c66dfdc85c81438a226d3d8265e8501dc207b4a259d12bf5863e82b9bf1008452b3a3a28a3e7431face1301ad1f20823a1d2142e8c85b36e92bfaeef833fcb61a830d257ca50c45822d9918e5fb8719e4f5294ab5791ed8f9ebfa79e723a18a9ac24e21f5c27d47c52a89ea407f0de90d630239a6cf54e14061abb42d6b21a4ea4d80847984ef8eafe4746ecc18d5bcafd10564ce4c24e2416043d857987c5d2883897df0d8f86a322078c32132cf890a34f45fcdb9460f1bde84e97466cf40cdd785de588f59ea8af6393aa17a820c72618d677957a2b022e5360b0ccccaff4880ae6c88f63db928666202f1468c8b16e02843acc24e31bfb0c50091b8706494ee8db1c697ffa51541ada3ea6eace83f2c776c9fd24f755bb412bc2c6dec035bb5aba46f139fe841ce5b09f0f098d330378a29b39db9f2d38f19be19c20092ae7b45369b4eb86bc3b9c2cd64331c93d3ad9c338285e7f842adc3dd33316a55dd5069214420988d6696d4408822c55fff74bd3908849ce927e4a14b2bf37f9cc05e1ba9db626bb6cdf2833b3f56c0423efa9ae8bbfac7a31ae7d4550bc479d28f503115106ed34f914e73a184e7691292afa0f2bf1abce5a50e6fa9ff41ffb0bf1cf90603ed95ccfebc0e3c697289f3cd3f5cab012d7bae116fa3f96811015e470bdb82af562d1ddd7216a9ca3078f57654a1c54a815603e74d17216c8672650821b8fd19a4a3b2c18a9bad2878064f41bb82206a1297c2bdbd0193aa82cf9aa11a5c0e8a599e93ffd40d3ae45d62d1da19a4b38a00d64c14d8caae8f2ac6db61c660a173e05a32ba205a113b562316fdeefaf70dcf9c12bc1a22d31a9b6c98892ee9425c177d54d8b1f434396b87124250a575cd2bbcd410b53888c9aa675546d761bb50159c27b8c1afc0b7f97981bbb6a3fe80befff04e6d2ed02f827be49a92d1376c9be94721c15fd1a3b6005a4db6cf1bc5d6ea2476a9ee2a3bb005038a7802c6f01d755f8bbfd78efe5d09790c3fb1722a8f24a68d4048ff38a38932acace59199f392c2d8404d163261a89c5e2f6a72d573b4ef24078d4205bdccd8bb12cc19901476bb61f5b25d62974661481f9e1126ed3af3439a85c100fad4b7b899797d2d47bde358a8baa0237041edbacce6027f2c513d21e0a5bb328f63d7ce621e96bad38aa846b9bb001da72048f1dbcd49311606c35a238ae5b9262c3f207fdaca653a09e9167fa3c0dec7e46469c029be17942c5fff0fe564f4375501456d3853386bfe71e11a2ab86b3e1c3122ea644d64bd1a3355bbfef48bba4ba3c9a282bb1e0d4fd0f00aacca8b4e00261e4c63f2c3e7f9ed472ef320b2884d88a91029fa59f1c37a0efb021efe332450c71e9c0194840fb01157fd193f778c6ab8996d00802d47194035304744ea6e81c7eddb4c7a20fa4143cb647051daf48fdf00b959c67edc38cdd107464c2901adc03dbb6c5e964267813332238195b254df03f9a8e51270f4458c97946d28bb84caf9762b9d00b3956fbc490fd90b8d2df7d1b4b560809d409e5d9ba2e3c12a5d85098a8987c897e239ac9a8a3109f96ba84d3b06426b3676a1ad09e621107adaf40fc3fd388e7dcbd323cd1db55e9ba443e97474d2a97cb8b99eb6c22f76659ba2cb8d352dffbb1c9deb9b9443738efd947fc7abae68bc81841a1243d49022a5328807143d3b818d82043eeeb82ce23118e9761e8eda3b9223aaf5ef040f58751a67d641953f48f29be9e354b31e4ed96ad8b43a414f90bb229b64770ef53de060b3bb3cc3261a033ceb03823e04001df40f104ac1eeb75333a2681d45ed501c4592b678a92d5f66a43bf09accaf3dafd54f9adbdb9bd39b7ed81f4ea25eeb81117356e974fede4648ded4ad16a97a3c55394ae0e29b76a76f60124055fe5cc2fb6536971028d63ef8f6592537dc3021d6a142e970f139567e9fa3621d44919fd3f300b677dd58399e84fc266fee33223f6f38d88607f3da7f02683ff91aa07279240d34084e1a0fe7b19ab5ca28babed4fc9c3d804502aa053c5add427600600f080984985812d8cce716b35ffa0339391fc8b45a4969fd5de62a80ea6370de7dd9d06f0c4a6702eeaf37060e59a6c812132580f4eaca6f35f2f19b32d40b24ef9ab0b75b51291c551c6b4224d97f4b91bfa9dc36c9a0ca6a7957d8cab2dcf9702dd1b7d7956a6f5d85c5d51993ef2b12df417633e49c8a7341e9f82d70eff7ff84fd944fa098947254ee491ea847ea8b7e561c68ef848f99639070c7db1c753d24a6a1e86f61823a85680182e61b6b478123cd15b7f24f2f3399d5c9199f7af979d9b57f0b0265a02cd42794849bd5d66e4970d874d3e5bbea4999dc645b74b119ea6d6f529a1d6bdd945604dec998f4ba12dfa95ca8c53807d0e52e094960f1e3a73211967574ffb963589f6818d8096aea9826c4af7aaa8436db51f58e3fa497ca097a3c912d482576abf43dbd11814cfd2c331eaa93b42d80a0911a4916f6afa99907f332fe8f641098eb437fec7357769d542ec08c291f503522dec8e10c042069d06f41d2d88e4aaf45d305aab645dfba7a238b84489dc49cc9a725f20ccb8871b6180b8fb4c19734e2f3082b4ee5842b9cb22024960688fe78fe703a7ae253f0881783259ee7a48b5bafb38acfbeb485bd3d4e00a8c5ef8bf7f00f49db44791709d62b449e838277760fad93e16fdad234aab37ccc96bd37768f213c6ee2fedb3c6309e1057307f621f27c85b2b3adc69054b1c6f60b3098dfdc6f4eb5c0080a4f14b2db729f56993cac34365011a979f3adbaa8aacff507e73971ce35cc2ceffc9d65800fbb3bfb33f260bc1a64157bfaefc84ebe0ee807eebe2bf1d7a9a1b43905a1287551f65cc2a0e426b5f8480771f4f00004feb164784f57e79a50b5011485abe58e4e4eca9aad639c734a2c54f61bad57b618024d466782da32a6e54a7182ede5ce762cabdfe348b15682847c42274ab12a2a6c521dd8924d96ff063eee02bc7a8f335d11170b9ef43498562ea790ea70a47255da0c57f5bde60ab4baff25d85da223431a8cdd8cf2b121803d8a37675cb0648f1d9a550bfe51cb7564a8561ea065feff118fe297b0feab592a11a67db1eecd01a7e9737762fc3b86582fbd17da2364ce84b078a94e709abcd7759ad4ccb9bb79feaa64b98bfe3d1c33b2fb701b7cf711365b263f6a6dd88d356ecfe8411669d40687da3a7a90882ab089271fa14a2a89d93dd0a72121f63c820568eb10a3caf99466cb17f384a146337d53d6a8d3f85c969d909a8369d287ff500756fae5577f528c360f011e04e5a4a44f5af1d697b1d1442a6ee953e463cf2d5e0082ff578bf8bba8681d07882ed011877528c8ce34f30e045b33c4d217016636143e476ee3e59c267ae07cc67ed3a171e377db2fc5f53f86bf5842830c95304950487c93f9f8ec5ac29ad659a316fb2ea80407229ee2a6e0a7416b4d5fc41cd2df66f4fdb36a0a85374d79de3dc5d8fb38ce40be049ff7723dfbb7141c796631e36fb8b6f6c12e62161fbe39f6ea7f12a51c17172d7cdd75b1a8daf936c5b96ffb029cad7dcd3a3f7df798e02db6425eed7bc3e857c8d86e4a130e9c21fb97f76dc4d5a271f595fd2a98a2090b7e33ccfc74d6943b8f7695ac4f537960e50684671ca6a4b95c1eb6db5ba05e8d9f42f66b930ac8702ae7f9f9eaf56de5ce1f830af32a81b2b8ad243621c719c2e051c97390f3eba31137ec9744e968d9bdfea84cdee4aeae0c141e300cc90ce44329accdd535952c3c48dd9bdcabf71097dc339f80702269616dc5755f718843759941e79dfc25284c8e898a1c4d469a3e5f698c1cb69cd2b9f676a204cd3eaabe0098f09b55cbf1625bd873c8f9da9214399ecb88b7e478943ff311464db791abf5625b3b31be479c9da402380689f8e64c9343cf995bd05a24634215cb8c5ba0d1dc8ec5f447ee0ef8e2179a73296a8eaa588efbf2ab0b1a0d181a6ea506aecc50751611c1a97b285c3dfb5cbda14014100c23cbd29cd7f542ce6ce6389218532aa5e5db012bab985f513176bcb1c25904ff4795c0f70ab0fee92f7d4892cbd5250c9be4ed63612647b51b496c1015cb6ee9db7068bd3a6c6da80729d7ee815a15de93dbf9cee1da5d37bc9e212a5cf9019b75e2a47683c593a10390a1f7bddcb3ab796fb2fdb609c0523b76c057001979ee78c6208f13c8b684c4f0e4d5a7b4a7d597495b80e65b95ed3a68d279e239fa325d3abf0113061727251c04a4d629b2f85ce46426ef582e99b9e8a9b925a815d26bd1ce94741581f3568027d3b93993f0372a0cc84c650115ba119681e962a46083f2985fcb88c325a5277bf5b119e6a7b1508807ad0726628c3699033b34fe4502a0c891217a00322a4c8f21ff023fd820a6a0107707d95c85bb84fc5eaf8f110c3d31c42b691cdef2e9ba6a9a296a788c3e0892a934d7b72297538b39e076d21c167fb66facc41854293a82f5d34f245083c797cd9b0ffd56e3927d9adff9edd71c42fe675a962660527db1374901f08a8619a876bf9c6ae72f6ad28d18a825c8caff56eaca1642298aeb4af960b61ee1ef12e987c04719c7ee18c7bf334328e8faa00c6ed64af7458d9f9d1b081ac9d4d86d866df7b2060f04addaf6a9bc14a13d1e842a3b949c3b9a1e7da0468878d388a072993d418facfc26fa3409d2c7dc897fc816a6eab67554414a514a1a062de68a68cb351e80e4b13bc11c14d59f640ac59963bd02670ca352d533160d539b6e790052051530903d8ba56eae3158e816522c5a816e9e9811e41c62e812a34bbf1dbfde81132eaf6dd3c7162df172e8462b8c697f2fcddf2af1777f98a993ab3be8b33fb58b7e79c71d6191b0931cb1db9931ca4ecaa156cfec83bc6e4e71b8407722ed3d71946e67061742fa8f46abc2cff22f42b2be3325b22ad51c10beb6007dc6244da53a6f2e1ebe44bc17edd4359772260606708f5ab3d74e1bac61bab947c8270aa470c875f2ffefbe8a44f90109f0441669b52ed27ff35062eed54949a640e27051064ad0e5143af2998fd8f77e058918288ecde5466e26840d0ad7047ba12afc29b3ac81c6962c8b5679dfb63fe06487c27ae197946b66b1df90ad46e410a11a5a2043c01ea3c1b3f99352437dddaca1b9b862e9d9b734c7a901f63abad5b28e34122d9f170fdecb359c434387e6379fe5f16f9ffc77ef8dc4ba111ca517c3359023d42b16b07b48710d90aefd4a8dc1caa3e889bad5695b820a1ae09f68fb32426ea629ca41f674909959eb0e6207ac260d9c41f975560646a7f35984c134c2f442f3568b6a654eaa2af1dc2880f6f7916266159e864351ae8753adf43fe83916f407e6a2c4908d1b210239e98778d5a4d42820a71c1686189fbce1be74ae2ffa02260d7dff55a04646ae7f78bfe7af249fe2bbe368add0c934cad108703dbb56c1d5c95cc89c437bd27a862ff9d530e1d9e4e0cdb60030b3351474118ac5af2cd9584606928e15cdfa0846f97a4f1922860b6f193e0bc3e9f15bd58796edb10b862565900dff6e97772c2cb1434b8d136df85446e4596a708d73ae14f3cae9a8d8dcb6a1ae866d143f400f844a4761b52f64429342a7511d1f6402b87105511e9d03bc3fd53608846ee3ad1b1feeeb97ac68e9758f4ceb5827ecca87c58204304c4ead3a377c11c77bfe9832511b69ba41baac88dbe10989cbaff376ff47a6fc6f1ab5f6f986e02af6aec74d7881ce0676dd82b215c4a5b33087f7e8010a1808b53b3261c3900c2d1ab82496b6722979996cb899f3110492d7177651790b6f9aef0f0d8b3b0c68c871d026a95c549110e4438f8b349c42864ac7f49a9b5fe720663da1e78ac9e178d0ff6b2ef03e3cf912582139c1531142a338ba284b3906181bdf6998ab0f089ab041a50261bec0708fa763a68373ead7889f099ba59bdb9ef5277f51881e8aa3a3d178504522f7cb33222949de7d4a27ffcfbb4f701b8f27dd4558b1f3e01a66a01b9f55080496995f186bfbd9521bf17e9aa10ecf69e8efb5f2012cb1f4980d641f9dcacba7694c5b129af5589391154e2b2f00477ac3130916d3b6bdcd230746b0d374d3da321192d079880a2024c18a737686513575649c98faa03a299e950f04d48cec6d7305176fa696014a773b8a0a3a29ab9f9a614e9ee1fb41032cb1cbe2a3b058f3cf710ad24f4927718adf81d5d495ad12e146fac979c478eb31f7d03898c536f03d89e439c1c242c44f41dcd6fa63d776e5249075e0aa313cb8dad528be7ae4e9daa8bd77690e299d38c91182c8913364f64b74e3db29dbf6e4928c4a0023ca402e9a43921cd899731f4d763841b235ff503c0b99eb0735179508700667527805d2f0dfcf3a0735abd005da461e4f35235c7935186db370f2d2090247b7f92119ccd0af87086e370b31213db7fd943a5ec340f30deb20d27d8dbe6ca41cbc6e49fd082d8a7f3108c181be905e480cc5fa2570471513043d7b766e282712f0936e5877e51e09696fbe30f5b5e4409381f807ad3a46cf9fa849676be217a77c81546b26ee46f51cf2dafe3e9d5603f1e549803369bcd03f638743f97d4f50f7fb6edf29be408b4eafcb5da34efb92548666a8b44c52d461ffddf74eadd2230fb056752950ed3831c24871f565cb3db29027d021bca0291ee4d75ed90cf0dcaf681c7e7c39e69d0ce2c2512226b37ce73e026ebd7ac5b8efae55da64e7448104a20f84a0c48156df988170fd2ccccde7c8c5faa3b84457c2c846037c73a1f52d91eb32f8689f1ff49b16dbe14da606539737a14e46343c73930b2c63b5a797b84f7e5910e7610f807906d9a006ff79d522319da034812187f68b5e1a7c6239149611a3dcb86b962d5c724e5978c6c3d5c06733d06503f86ab5f0637564f6e2d5435540fbc005d83343e26426ef89178dcf8395c768ed2fad0381d625bb2bdfd3a9cbc49f8668119ae7ccb4a2ea48a5780b1f2854130db0680e0df847224e8e175dd8aaa97c983fc72bf3485641edb442bdb33c1d797a8c4b882ff82ee8d8aa892dccb13e26a0a091a18eadf17c64951490ee3026894fe9c4fa48d06743b83af7f3b7cc4c66da1fa7d6c94a927381827e72454c77d3a92499056728a84fd1db1463945694472191e2dd222e321aeff0271ffad8fe532c131b00b1ed7ee05af4c53dddf1a00892d34f23f87538a6bfa8513527aea320ebab6d628cec97c170904986fda475e31a2a48040d8a492cf891afa68ca4872b3b15f77754d790637d2ee5efd5ead1de2671717b87ce8d9852b1d40529040e4ab362c9836599fd561f4e7aa3f31fb076997b832f96d3d31f6e6819b8b0f7dd3d0e173a3858d5b586da6d7a0906a44797753c39e06fd8699ce72115b3c84fa35549ed7d14da392b58d47d4a415acef4402205eb18303b2f3170d87004951720d231953087864c437d95320bf26efe97389e7fd62ee270774d677703b8cbb9795a99d183bcd295074d90b0050a999a8a85d99d4ea72e94bd29dfbf01aaebc66e83751a24356b16b9016e02a33639261184c4e0ec98dfbfc91cfacf7113c25c1cc66899d64e113f09ca72ad99724df818841b86917f6e57c7488013dd233fa05d19d6777a4b56eb6e146bfaea5c5b44a463fd3cabb4dea779ee1eee36b6f3dc145dd72289ed979f27e18d7fa1ddc0e045906f357d68019fb7a2aee4ce4e57560662799f4921c510ca43c628bcda417249cf351cdedb7ca44bc19776a9f81a43ee3f5636a84a20e779b97d3cedc37d3eca6f32c1d456c8e8a534e6f12a08510ee8bba178cc304f1fb3b8ffb714a782a7eb967ab12e1e42e28523f3ad55fe68cc2896adfdda97000266fef461eca40133cf3e639be97c6372d5fd68ddba17934b723ba9a17c9c658da96d7cde411c4be255028451add15384e4ffa51b2c14b12096b23fd061ce7ab4aba8c6c851a27266c5ed724236843720d702fad2b1b4b3e690d5d0f8d3b3eef53e2ea963c68523d295027bddc604b8cdae96c7af2d2986a5dbf5eac6d1789a62c8b7e43d4f05d57ef04751e153fd648a200717d970d811881cab51faef882cfd60c900c8bcff4eca93e7b978568fcfd2a708f0d4743c69c1c733c7eb336c6e6135b6bc5285a8e8a21fde2f9642fb6a61d9a5263d2c202124ed1725e54ee147da535321720a48f354af259293173cf7d6edf725dd7ac3a45349fa4ca69de52d128f68a370044c7283805713a592b1fb0eff0826d3714d8adbfc704dea2c95568e2cd83e207837ed2b71775a28700dd87bfc0f80ea20ac22cd9dd14a8cd605f32c4d17f80dadb3d318b906b50fceac7c383ef25444c9dc01eee48303781603df865272cb64fbc9d451e5e923f6662ba6638a975077f0b032905bb02db931b91d4f31c2dcf09f68b94536ff8f75b9ab8450582f69460ea0f341e3148cf03504dbd1044ef74199e7cea34321e621cc41d182109c91358a3013f5562ec05f352e60c2100695f2dbb95ca205d8f1330f7613609ba5dbc2d231192dd0e5887342e351ce25feaab2af7a339e24a3becf5c84f662a21d27e924d0be2867cc77cf8ba969509820a0cade411f86f52e5324861e199e75594f3ae58a33320044aa4c77b910328536f0bbf5137d48248163f8520dc708c1aa696d748de472326ccc3f85aa53984cc472ff364fc26b054f222f3824c0d890d85c90cb6ce0ca8778d0bb3432120e46aef110001bce58319325567b75e0e496eaca3b36d519daafa63521431be8f7b1f9064077be93e70f942c14565e6b002edf778219aad206cc1884449b8f11af02522a9737e21e8052b07f287bf9ff18e4ff66be18d424b4eba1ae27dfb21fee730bee122e5a129aad1fdaad1c6a3b7d00672dce6ba9c2083ad47817171ab0b56ac7eaa9733efe8d024349dc93f8c2c96481dd3e35eeb280b2f87bfd130885523cf22c884333c87dab4e0de1b0ac4effec1c364082b15e386f526dadd02db9512dd92b15d15343a302dd06a6454dc4abd8319c06540c3f2cbdc424d5b9605c6ab58e2826f9fb7b7502bd0772364bc4538b62a492379c445b2ba2bcfca61a262655ac0d83484e68498299169d7b8e4c84a39b869fadf51c597a44d8344b940bdf5fa67f86f3c5a7b2fd0126eb7ce896407bd0f2f5df4226237dbaa6eea260a4153cbb1f4455e15e11e9bb17ceb2e6d1521f6838b2dfdb7e93a80f5b3869cf46b0b59738f6faeec42f09265a5c7fb1f2606aff58bdbe128a67dd5c163966c76880f9d87248055cd27aa848fc03a968bf44f39503ebc1106d39ad4eea88f7c802dbdc8dc49fbddcbbf0f7dda8933ece50f8212755d8dd84ff732a2d74d847bac3cd1c9201f79eb28c6644d302a7956fb64b4300e010244fe933813b30f82884ac7e1a3f82a28f5c587aad2ad3580b62fc7567485c73e71d1cf029d20157f5a40b3c1b5a4f428b7c394f13f9dd5726f43e8fee581ded5166725d2747afcc27b2369193ad081491b488a432582b1cb614484b3b3a039470f174122d620ed31616ffbda251f4349b042deb91dad6112d1b7d1020734617cd6c06d62fbc7c6dd7181ce383b5cba9d21a786ef1bcc1e8a50007a22ab7913c13c26d0b86c756e4ac3c0d1b3903ef456b34b013efd8d721c447b855d9e894c3bcabe8aa05115aaa66b39cd806f821f93b8f502ba3828112cb20d260779059a0bd6df033920c41529d1ee2c868ee3ad578405a1e58a08772fd401b04177f29bb241c892b3af2a325cc8d3abbde5a8ca48d089cf5e8439fdd7c6b024843c71238b89c36034fb96d07df8f64bdccaf6fa911f26b8d75b8acf3a63f0f70d2d7ff8d8ff6f4bbb3da2fbcba04d537adb9cffe8addcd9801ff96bab67f67fd60d783ff264665a417df3096fa8e055272bbb54f40dd3ac551769e44cd4c2c333d0e7013159c4501eca279730c6f704007182fd95cc38cfcd7714595b2553e6733aaffba9e8ff75618a3c48a30da5790e6a1d6c631b8f66ea153d181fba011689d0d8ccb7ea066ec741409a5c40a8dcedd19b137d3bc09658874c5edf03d6cebab19b6139804d83fe61a7dcb7cc50bf9a5c1634ed887add936b21cdb1bd8c995a9f608d13de53aa3596fd23683d9b2bdca6f3b7f7f94303b3ffacb8263a11745bd4daf385d948b3c5dfa97dfa8b79d16330a42d30014587e063451d81075eda38a49fdbec653536562ab586878d48dd724a173296c80b8cf94445f7f058da47067f6e6f10d80e9d43f0ea6f8e3f8de0b369d7b59f77baf87cbaac0d97f91c8005846b81c2a32c3e1284ad4d08c81f40b5af2f4eefb11f35dec3315068d91cc2f706f757f8628a563f48343fc7a86921eb92d682e28a98e491be72bc7fea7affd99cae1dda59ba56a327cb37db1b4313624b3f3ef9435f2d45eb0c947e370c8245e9c8c44dcaecf5e6e16291082e5ed1d90e969bd4b587eb50a012305fa0f4d10a0d01814b248ca61e1aa86b9e6d85baab9d67a1ba25e55f61a5404c4a7515fd874d145e5284c1f854d365f1a248b029a9acfa746c4cedb9bd2f0debc959f1f444530250c1689356417f6e21c507b0965110eadc14edb9c73296f4656dd7a6183e3ca3cdde835ab0ecc814d4c127d0039dd4cb4949f7e8ac2ae7f396a9b1eefaf0cfacd5c4ada707d9b2b072f2df6fc4a65fae3379f7c4a2406b44afaec44535e3b3ad9eab558924ae4d1bf40ff48bd510b250856ee5f936862ad546931bc81871b7ee756d02ed22e241e25d285eb4e881235d30fd7120696d596a17a9cedb22636ea63fe75f75119187629ea78517c3a013ea22d71dac9aa7543e62d04f5616794afc26c5c5e4ef765c52a7ed9a92ac8663e2be8df57469b6ad44526be816baecbb233d0aa5405a6cd564b4f92586355664a4c8a36334269e6affb3926a6cba22d21504af408f14863ab0889fd7f4d969a181f6bad094a7d2597adb2c8d59af3cb130c965e0cda81254927f4ce2522e6812549e872a277c4f88a4ad872fe7a15f014bd2a2f435140a5193be744430dcac5b66c21630d1cfcd7c384af41e268a3ca771f421cc225594fb7cfba5b68823e7889ebd9da7365c85664747108e935d2bb7cb6d95f09eb3e28bb7cab2e88b666ceca812ee464c75e8bf3bed2a1ae302654275b5c6ad41a19aa2f4e4142e063e4cd0b4761dbbcff37253a640f9080b27bb2b2065f0f07619e9981362c30104b5aa432e9ec21331aa6cd35ae75cee42866f8cdf95546fa16a4fe48b4377a30659cdc8eb568a76a954a52ec999841332dfbbb08f1238724e0f16a6b8c8d3f75261760e0a22681114b85ea8720913792d6670bc2776247718a014fc4de568bd9c1eceaad6b129d70cb8093c6407e58a0cfca0562a1ff3b21b7871b875f970bbf5df87340af63a7a567a25e8d9958cfd2570b2715211365761f8b59fd777f4b27174468b0833a44b4a6f588ccd3fff893a9ede60f3a1681920cfccec70e8008a2e16101436fee0cedacad5fb0d90b79e0c2869c3484b5542420b036aa55ed6f57b99968297b3ab548341c804d88fdb5e6aa5478067a51f2a37566b88460d043bb71aa0ead98863b908a1918029577834cd161311b324b09b817c56f2acbc8388cc8802dd60dc0a69f8b5370d10f4f9db327f9e11effbd38c587526f3ab516fa32a9d8591a831d9c5afd4abcf055d80bea152ede1cf96bf5a57047d88cd8176c989f7d284b97288351db4d216ca0a39e5c53bdd3f0c3fc2a830736271c1886daa2e2079b59a34ec8d3ac67a61cf2ff649462c132d09f68d3fa465eed54e30173220be4e1da12422767adb3bbe36a4a10c74cf449e61c99489c9e6e159a00f629d9879512b2425598d55ed63755e1a3305398f76fa20d7511fce0b68ded424586843f1c4eea894e3d57da9e806cfb4853e06b7eb02da7565483cfaff0ab10ee737547daa40b832fdbb28f25cf6d5e148041ff13281184f3293781ea34cd87bdaf727fbae75dd3e1d56dc559bed44a96274b464ce38479d6af12296a9492d7f8aa69289ea64645d281365ea29c545c0b7ba5ec141d324a9f30feb203f237c1a73e17a0e303438fd9f9b6f917a0117a6e89ee2b8e9f349e30dc029ec87f5963563268393bacb4c2f7e5ff9d7fec9cbc171b9e23d8305e87b09316658ab08db192630a972db387a93c037d64672d6b5822a2d139871ebd9f07f9c8bbd4146c9249bfb2ba8efa24ffdb48bc9cbe1875219395d6f4258a350ad924ab80f72f455b80bda20d90be263635a849d3772df6886a933900be905f34c3ca11b960bb1673141dde1304ee30018eea0f979b85162f2912c62423d05b497eb64f98f60246cdcd71ac912d05921cf3a2d2a937cb2f7d17d470020a38c6d59679ba8cfe7660080d55818ff98389c0bd1b49f25d9e3a2f692b23d5d1c265115383fdeaa947519e24bc0c37164904f5718856ce27102b5af8f20964b08ead71a142d7c8871151ce02ead0bffb8bcd8ccf2c2847cfff8f860e395f51615aee07631445dfb2c320378e04bf74afc85dbb676b617ad66738f5e0309980943269472aec68899a0e51706cdf670a58b185756c74f96322e71ba66c041b1f3538a06a0e0366f15afcc2d5d190c19d259870861fa3c3e82d78330846940813c402390eb816e91387900a5f01bf496715bb29fcdc4bc515bf8e1a0ca9aec01dd202cfbfd04adbd3c3754eca52ffac986ec2e260c3c071775b64dd2495bc0fa36c381cf46d1283b1a144b817cf4366621ef6cb1bb25f9a54b4b3565e80a5d17349ccf5393195dec3fd3b71734a36d578acafec412a68f2d70ab321408e498d570ee1ca3d35f27745bf1e8b5ebb8abf5d37062c914638cc086a7d6ef325006aae1a2a37cb2d8f700b542aab4d8fa5c29c5121310a8360b29a337483024e5e8380c3c59e04ff587faf0654800d23e0af1d7ebc6f284466078fdf2faf7b7de870957cd3bab613c7fc579e74c2f0f153ade6e441a4bb8c390ac3480df56e1137eff0510b96380f2e996f3b1427a10dff975b534d06ce9818e4fee152b38b5e875a03c31d17292c9d2908735ffab2ca2eb937eb514a2fc75077aff01202b231a84103b32e352a9ca5bdb25eec472c9ba52aedadcdedc4c31b12504678f528038c7d16aa4b996f4901b3696259646e7bc2ec1c9a2e0809c49eea381c4e455c8a55937d4b128ad167a51c04c235b2e413e34a738fceebb7ff9d9742cd7011c6451fb992c6beeb01300b5914dca6722705134ada3002073de9d41704da25540f13248bbfc2325c3a597f117e63cf4296f2ecd38bc086d8fd5645154537af247074c6ea2c21e6b6b514c3d1f2c5e7d42d1857e6e29f07e2efe20a29ae30d2cc4cffcd6c09ccf618fac1abcb893a2d4a2d8c47550206d0b6e0c9eeb8a367cb79adcb2176a8f408b6612d90252a40c708cf95c0b78a6f2468638b85f213b097ab4dda05ac5d9ca4de34ee8e0a618846dcbf9ec7d5cf531e98d1d0169ca9e59374fc9fc1ad5479178baee2909ac4e3dbf1d61db5018d9af8cf14ad3cd7cde3627235255aa45ca33a542ff04b610870f39ee52ae69039bdf1d69cad8191de866d754c0695e97e5f163162c818010654d3a81c05fad727502dd5114bd1b2bcb8265ea5a6142c005c9cd2a0dcf020bf39d0699d17c5584e5b51a9a3c619a646eff5638edf4bf785383006880e03c804da667ae9e67386e93dd84a428af70e31313a0240a4df982f6c184d50180d9d6c2ea2f97e19cec3d89a3690d616e5d8d2ee084bf0b04f6d2260f33f42547c4a3cfb1a2ebbf7b7f59d1e38b74e29be55fa1d643150e1b5cb03033cf5bc3ee1cf8e450218f519aaf5d2676014d46f0f29719baaa98c14c84bcf2311c10325e210a4103e70753e4bdd64333629147771bcac5cd76d955621fd027d1e11cce5188ba994ed7ccf124e4547bb9fdbe3ce8a1ae6d45d74ffb1c65985a02177fa440f57689533f49b818a837f0fddc6dcfd6f61e3c0bbd77be62ec7e896166e153c83479273e2cc5098960727be18259d2bdde7c99595f7427bdc5a3e155948aaa5abe56ea3f3deecd859e8d7208cd22381444201be96654bd21f4701e0e51e3a803a9f6b3fed7309eec0d780367bf9f468872c7726713492b2768ff05aed53eec31176e2cf6920bd1ce310e85286c839eec8c99ccca169e180718806b2b2ab1eb89b61a00ca9d9d37bf4e6110146a974f0237766c99b88acd7294b069c3a3da9b1b37ce687a3e315a7f21f644af6283f143c6348b6562e1700ec7a1d5e1a757954c40ef4d6d381d9b42b77cb890b4b7ff8173486a781896b9eeb6896c93fd778678a490d9fe0db96b0357f0b642f2bece8240b37adc0a2d7a21200d29090aad34b9eafc26e54da9f1ab988603d8c854e08b4342e6c192bf45d34731816bf35fafd5eee605ada653da91f0817026b85bc8500d5a4030c83c5b510868cf1972b2dcff80a559c040b6dff6c2c78451fd11b9f79eb1dfaf53c702db13bfc731b8920ee6a1de48c9f3a7b51fd12c89be9743d9f597905c6ffe15f343604828e13e48c4ebb08f5f1dbb609989e76da51cb2f28b30dbd172e7f26cba9a79ec015ac32dfa4a3223419bba437df4ccc15f8a6ed06e2099910c63e486841ddbd5bc2d303405bc34f8fd44b66069a5582350a81887dac1e36eb3f527693441d4fa9ae93b4d502d9a30cf7580550f41e0be6043b6460061fcac23ea96377baaee6bc4335c565b5ed639e0aac80eb184510d8676411c7e45d68367ca93bcff60271f504684c254ea54a895e4f377177edd21d8760c859060966b7a41ae45211f10c22606ebe806ee82afe475794595fc93147154ba0838532d28a250f6eb36611bec2218bdad338f74734e88ade2cc5d6ce96ee04e68e807caaadd473455f9d69c4a82eaba6f4ed7339735f54db588bfe50552f6a742d8a26ad98e973c138a89d1cf79c11aa65866452d691d0657beef7fc22becd12688e853bb983773b11dd8cec6faca4220c78c08affadf9fadd01c6afe89743ebfd863d7b8c17b80c7fa5c9f676ea69e372836cc26f0c040318b6aed6db6c14d4295e89f7c9bb8931c44320d97195921fff3c16ea4174d67f9f92ce9db5adc36070cbdd43264c49622e1812f40d6f5eb59f0ef2bb87e8ffafd4c7286a626a7db3518f9b5c163f65713dc0e68b4e39b6a4623287c01de5f85f842fa1cd1876c66619fdd7b87c2856a0745baa5bf54c627fbebe6901b3e16a81fc08c02c864ff47619507d1d289e874a8f783bba7c1e86817d12c4b48e974cb50132dcd4c9879db8f721e1944b0158449173460f2692d6288bd135445fa33677f5b7dbcb2a3040bcff4a90a8e27eee700bff24621943a783a3c00ef7668ee64020420c9c3a28b3810ccc6e370e9de4a87cb2574495645647607a1347926b5f2322342ce36b87f8c700a3cb8137fc73d258e000718d70c30f191c0a8c83a0999d2c4107e72bf872061c41659e85914ff644778a0ecaac57f1252274aa54af8301ff361d24611c38f1963d1dd59c980f21cb514730baf1300ff5bfe23dde1805ebb1a5d84045121ddd6db63a2045679e58e21e83a5224214a71791420dd17b2c7951c3131797c248f8ce0e58b90c1c90fef92dac51bc1134a5b0017fda6e81ea4c05c403322055d58e4c193e7dec41ba22b1e778512ab99d074d0a21a5c38961cf2e34fe92b9a8cd37976e5623956f7bd137c55fe23e61f6f97e81b8760bb9c885d26dbfa8dbdfe9ccd0e970a2f64e32b6c5444e8941a6cf150c7d454587b6cda78e13a2225415e9e4a633b3d0ce539e038271aedaeb7242afc0dfb58e55aa67716dfdc25654c4363868f778e338f65ee8e530d6012567f722d5ea458b0d06725a75ad5d758c607f78151db4e9485791d8ef5dda0d5e2b9e2b11d9675b81e97559af1cf71ae2346f1903a8e70b6f101e72246a361dfe5d5a6411c74d62bacc66c040b095deb217b04ffe19971a12892d5f898a3a6e7eb0f25cfd93110d31e11fde373cc82bb85e8525a5ce4b0f72beb0a7c64f56386244f0b943a0c5ec331df13a6bdc0d3ed0c3e89810c6c57eb25319b6340a47344f5526c6baf5c001ccbcbdac9ffabc8c6efa08bc3ac0fe1e3da55c1c7a0ad415fab6c47beec641a1e922491a5362366c9e9f96f9ffca16fc1d796b0eac4d5975e465d12e7018fa4aaad7317094cf125b4951a7ba4ae962e216235870f78a721155e91b4b8ecb6e4ca13068cb275d3746b7f726a5d259844856f1baf66a5e239efa3c6e6dc2b82489f201bd8ab2217a579bcf9830ddc9ae0324de3c8f1c6b94d8f7c3ea4e2740c9d1e484f149d2f3127c8fe8885e234a89b51a0cf0120105ef23878efd3dbfd6793e759b6d1e2d24fd6e1b888adff08aedda96ddeb39a7173c1dacee1e08236f43ab9c62e12930a99427ab8402256b314863752ce84128f374e83aab8cf03f1e999dc412d4a2159032629ff20c33f6bf470763a5806a0ce850e90ae9cb5f4951fa146be14342ff74982243daaa1927bfa30b51e89f0f317671ab39d74e26ec0e044268bac58834bdb4e1fa6011fe88098d82cb79bfb4e4977b522de267e345108521650bb984d7e52545ca5f968b1e4711054b50e32af92557d3aca8876e806482443c104a1681f3eea460ec6c87e851435c0fedf38b4fe6a46f6982531cdac916e0782552465c523ca5b04e4bb98a1ef77c87ae0ca87b6a4f3142f28737ef50115abb326299083e57505ea6852ce55598d0c8ee14c6490cd54be810380643833f922dd542cd67e31defa256825bb977d4126d7b00f53c90cb49638b8a9e43ec121568167e36acd6e3865ec91b94bf5ac1c86d455598fb13f7444a6c70ceb186f69bff09baea965ec83361a2cec8841a5c8db8e77bc453491a2f4f1bc489175446e0885c14b14b6227ef7de980fefc3cf4635bccde62ad8f82bc45c95969f76d467d0532e9813c5d3892dc0d89753202ec1a81ce6f22232318daac3785bdd4f2b19391636c2ed38fe912bef4af8a587bf820e2316202c1253c60fca72a339a32f94e85ac2c8148ad598cb1609b34ed1f8663a3839b49a65c9ea5998803aa026a42e5dfdab112a2deede3ce3536b94314dc4aa7631cf5ec6075b1329e8a80b2236177f415b091eb6de0d78b5639bc740826fe69d0111fb2e5b7a4ae009c8246beacf1d038fc090046b83157984dc58b087d45daedc1955fb61a19eb6b73645c15ccc5a33be70f68e447cefb8e1cd736c65098acccbfa23c75c5768ce4120e7b445e86ae7765e7e2be29adbf92d779d238ef2cf64e450e2bec229c06ea11f644ff571e7e1aec96234cbcac0366c066813674a8cc3eec10848afb337ba2693fab5a796e2df891445aecb663b4a731bd6d7529e8aec698cbad19ea0b247c1fd2ef6d67ed6930517d7bf72dd243d5508f638c0c0b3bd9f4d0bc3aa70b226dd7f3cb88a608b63670c0ddcba5788d59ca724107b8feac5a7a042ebf61e2520f212592a249147119f808722b986a143f8c1fe44b44e4305f4285214142219aa8fdff9735e5540ccc2b4fc1ec5dcd1038f7ed3391663c1d87ff86d056a98775dbe01b1027ea7f6dcf79a3a1858d173bddfcf9da945849890b4ec35c0cbd84262fabccbcfe99346177602200608847b25889172025b0f4246a404fa686a6affc711734739580d131e39c17712875083e7d153025e792bf48be691d4869cb3cb04ac44aa660174dbb461c8388dd6ad6a750322ccf2dd65b43fa1d60006708085fcb92fa79007ddb5418274c443fbdcf145a81b48974b4ae3934aec1465909c7b008401e80359bc2066064c7298434f38dc179f2d52015c615b224396925f2f99790b918d3c0cb95a963512eb5c50f0c23a07df2fb89f614e30c9cbd3ede876ebd3485409417d5e11c37da0e00283ee1d30207f12dfc7c75b2b30c8d76745e2d03dc5ed446ab8962481b86a8ea3595554a67f381ebdb6c41590575ecb8f7c51e8d6ca8d4e06fb07fbccc2c093d883b46d500815ba7c9111526845a6e19721070aa160669101261a581904a19f124e40691edae101e08078669c0783ff84de022dc8a4457c357e4d71c32f26d7ce02b969ec1a3f4adca5d8124795b5da395cca4433ab39a781929cbaa06f288d8db4d5551215f94f0503b774f20c488c2f37b5164c8db16fe5a067221afea6d126eee3143567287c133c87fa901a3b31ec242e39d0a0d600fe5e7792b583fac2fcc71a01a13c14e125ee107fbc1ff34bd377b0292b79b438907bf4cfab31581059aef6fa96d9c72c1351ba02e72bf4522b2540874e20a8b12e7b4326ac426d2c042c2946abf978685fc155c6b84965ea52e75c7bc8df641cf7dba8fcd04796571401bf9c73bfa49b673cd1c55465f16c8b8b89afd9190ed1ff82dddd14fe76999a86fcdabba3c18637168438ada2e64c44cd4e0cc2f5ab6ee651ac38324b7bea8f79939c9e9bafda57206ec569ad7a86ec2c5ed31dd2d4de2917df9db4fdcaed46d82321b461f954f40b0dc3d2d1f557b03f3d151b6f8c64bd0ed74f7cc785539125fd07605fb92e0a66a808190275486cea2a9e793de62b4141eb9d20386fd98d7e2fd8e76b4d62b2e612a03516c7b09c7f18d732955aa99b5d1ac3cc6a72403b5a30429082c4d7a2c34c1194ea4fc96d016b6eec3d156f806d707a49070575ce725a0e560f70bfba00d8da534bef7f14652040e1a40e673241c9567d249f6f5c52c82f76069fdb025a88769faab6e6db96f8cb79a13c57ec375f40c13a4cece2c98297ae51360590191ec826f4f63ce654cacc017756dbd51aec183603b75e081f71f73e6c6a9c86e486bcfbb4d9ecdca0a51e3b885c097580ffbcd1a6e03efb3e3905cc39d79a438d8f4ecc8b33217e9482ed9abb66322a51a6300a7f0034d4b773245a020f9ba350a53629edd16ecfa923504ea7c82e5eae92b7186c0b17ed2cc0bc4e2a37cbcc2ebf38b458fedc07cd9d9040981d0e107dfafc3e00106266cc1b398fed4afb038da170800bf165f15efb5328f745ad159525dee9173f3427711daaa933c1090a9da2bd9da470273b8b4482c3259d5d3dfaa052eb4caf47e51346cbc0697ad4c253bd15c5ee21352326b42c722e4d4c18c097b467d5013d1c13e236d1260f32982595569920fb78a2a1c0acff116dcfed62accbb31329d6d1718517968013e7bcb51686da4f60558d319773665fc6bc9d8ae616a386f5ecfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d30cfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d307eb994785409820c858f2100dc162663312f582480ca25389e3c4a7d9be3468278d529f0b77dad513878eaa74e65b2d0cf2cf515a94cf1c7cccad0ac2aa75b28libopencv_aruco.so.409libopencv_calib3d.so.409libopencv_core.so.409libopencv_dnn.so.409libopencv_face.so.409libopencv_features2d.so.409libopencv_flann.so.409libopencv_gapi.so.409libopencv_highgui.so.409libopencv_imgcodecs.so.409libopencv_imgproc.so.409libopencv_ml.so.409libopencv_objdetect.so.409libopencv_optflow.so.409libopencv_photo.so.409libopencv_plot.so.409libopencv_shape.so.409libopencv_stitching.so.409libopencv_superres.so.409libopencv_tracking.so.409libopencv_video.so.409libopencv_videoio.so.409libopencv_videostab.so.409libopencv_ximgproc.so.409rootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootopencv-4.9.0-150600.3.6.1.src.rpmcmake(OpenCV)opencv-developencv-devel(x86-64)opencv-qt5-develpkgconfig(opencv4)@    /usr/bin/pkg-configlibopencv409libopencv_aruco409libopencv_face409libopencv_gapi409libopencv_highgui409libopencv_imgcodecs409libopencv_objdetect409libopencv_optflow409libopencv_superres409libopencv_videoio409libopencv_videostab409libopencv_ximgproc409opencvpkgconfig(gl)pkgconfig(glu)pkgconfig(ice)pkgconfig(sm)pkgconfig(x11)pkgconfig(xext)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)4.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.03.0.4-14.6.0-14.0-15.2-14.14.3ed@e@e_@c@c@bbk@bQu@aaa)@a,@`B`%@_`@__]@_^ _>e^^n@^&^%@^O@]@]@]fl]e@]Z@]N]M`@]G@[@[ @[ @ZkZS]@Z[@Z @ZYYZ@YYdYjY5GY5GY*W@WV@WEV@V@V'@V@VяVVzV^@VBU(U@U@T,@axel.braun@gmx.decabelo@opensuse.orgstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dechristophe@krop.frstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dealarrosa@suse.comstefan.bruens@rwth-aachen.dedmueller@suse.comjengelh@inai.destefan.bruens@rwth-aachen.dealoisio@gmx.comstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dedmueller@suse.commliska@suse.czstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dedimstar@opensuse.orgstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.demarius.kittler@suse.comjengelh@inai.dejbrielmaier@suse.dechristophe@krop.frchristophe@krop.frstefan.bruens@rwth-aachen.dechristophe@krop.frfabian@ritter-vogt.defvogt@suse.comschwab@suse.detchvatal@suse.comstefan.bruens@rwth-aachen.dempluskal@suse.comecsos@opensuse.orgecsos@opensuse.orgmpluskal@suse.commpluskal@suse.comkah0922@gmail.comstefan.bruens@rwth-aachen.detchvatal@suse.comtchvatal@suse.comstefan.bruens@rwth-aachen.deolaf@aepfle.dedimstar@opensuse.orgmartin.liska@suse.comtoddrme2178@gmail.comtoddrme2178@gmail.comtittiatcoke@gmail.comjoerg.lorenzen@ki.tng.dejoerg.lorenzen@ki.tng.deolaf@aepfle.dealarrosa@suse.comohering@suse.deolaf@aepfle.demlin@suse.comcoolo@suse.comcoolo@suse.comtittiatcoke@gmail.com- Add %{?sle15allpythons} and build python bindings for all configured versions (also for Tumbleweed)- update to 4.9.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version490 Highlights of this release: * Core Module: + Added cv::broadcast + Fixed several rounding issues on ARM platform + Added detection & dispatching of some modern NEON instructions (NEON_FP16, NEON_BF16) + Added optimization for LoongArch 128-bit vector, detection & dispatching of LoongArch * DNN module patches: + Experimental transformers support + ONNX Attention layer support + ONNX Einsum layer support + OpenVINO backend for INT8 models + ONNX Gather Elements layer + ONNX InstanceNorm layer + Better support of ONNX Expand layer with cv::broadcast + Improved DNN graph fusion with shared nodes and commutative operations + New fastGEMM implementation and several layers on top of it + Winograd fp16 optimizations on ARM + Tests and multiple fixes for Yolo family models support + New layers support and bug fixes in CUDA backend: GEMM, Gelu, Add + CANN backend: bug fix, support HardSwish, LayerNormalization and InstanceNormalization + LayerNormalization: support OpenVINO, OpenCL and CUDA backend. * G-API module: + Intel® OpenVINO™ DL inference backend: - Introduced "inferenence only" ("benchmark") mode in the OV2.0 backend. - Fixed model layout setting issue in the OV2.0 backend. - Fixed/relaxed various asserts in the OV2.0 backend. + Core and image processing functionality: - Fluid kernels were rewritten to new universal intrinsics. Thanks for this contribution! + Streaming and video functionality: - Introduced a QueueSource: an alternative way to manually push input frames to the G-API pipeline in the streaming mode. - Introduced VAS Object Tracker (OT) for the various video analytics scenarios. + Python bindings: - Exposed VAS OT in G-API Python bindings. + Other changes and fixes: - Updated ADE (the G-API's graph library) to the latest version. - Various code clean-ups and warning fixes. * Objdetect module: + Implemented own QR code decoder as replacement for QUIRC library + Bug fixes in QR code encoder version estimation + More accurate Aruco marker corner refinement with dynamic window + Fixed contour filtering in ArUco + QR code detection sample for Android + Multiple local bug fixes and documentation update for Aruco makers, Charuco boards and QR codes. * Video: + Google Summer of Code: added a new object tracking API TrackerVit for a vision transformer-based VitTrack. This work is done by LIU Pengyu. * VideoIO: + Videoio: Add raw encoded video stream encapsulation to cv::VideoWriter with CAP_FFMPEG + Fix GStreamer backend with manual pipelines. * Calibration module: + Multiple fixes and improvements chess board calibration rig detector. + calibrateCamera throws exception, if calibration system is underconstrained. + Fixed bug in findEssentialMat with USAC + Fixed out-of-image access in cv::cornerSubPix + Fixed crash in ap3p + Fixed stereoRectify image boundaries + Fixed "use after free" issue in essential_solver.cpp * Python Bindings: + Added type stub generation for missed types and manually wrapped types. + Added read-only flag handling for Numpy arrays. + Fixed exception handling and bindings for in module. + Improved error messages in Numpy array type handling. + Fixed constructors documentation in Python. * Platforms and hardware Support: + Experimental CUDA support as first class language in CMake + Added experimental support for Apple VisionOS platform + Add support Orbbec Gemini2 and Gemini2 XL camera + Fix fullscreen behavior on macOS * Other: + OpenCV Summer of Code: semi-automated refactoring across multiple pull requests by HAN Liutong made our CPU-optimized code compatible with SIMD with variable vector length (RISC-V RVV)- update to 4.8.1 * WebP security update for CVE-2023-4863 * Depthwise convolution 5x5 performance regression fix - update to 4.8.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version480 Highlights of this release: * DNN module patches: + TFLite models support, including int8 quantized models. + Enabled DNN module build without Protobuf dependency. + Improved layers => supported more models: - ONNX: Layer normalization, GELU and QLinearSoftmax. - Fixes in CANN backend: * support ONNX Split, Slice, Clip (Relu6) and Conv with auto_pad. * support ONNX Sub, PRelu, ConvTranspose. - Reduce Refactor for robustness and potential follow-up improvements. - Fixes for Segment Anything Model by Meta. - Fixes in nary element wise layer about broadcast: * Fixes in CPU. * and Fixes in CUDA backend. - Further increased DNN speed on ARM and X86 by improving convolution, covering 1D and 3D cases, supporting convolution+element-wise op fusion. - Added full FP16 computation branch on ARMv8 platform, 1.5x faster than FP32 (FP16 Winograd is still pending). - Vulkan backend refactor for better performance and robustness. It runs 4X faster than before. - Added API blobFromImageParam to build network inputs with pre-processings. - Modern OpenVINO support. * G-API module: + Intel® OpenVINO™ inference backend: - Streamlined preprocessing in OpenVINO Inference Engine (ie) API 1.0 backend. Note: this backend will be deprecated after OpenVINO removes the API 1.0 support in its subsequent releases. - Aligned OpenVINO IE API 1.0 backend with the latest OpenVINO 2023.0 (as some features were removed there). - Introduced a brand new OpenVINO API 2.0 backend. - Implemented the required inference operations for the OpenVINO API 2.0 backend. + Python bindings: - Exposed varions normalization options for ONNX RT backend in Python bindings. - Exposed Fluid kernels and kernel package manipulation functions (combine()) in Python. - Fixed issues in Stateful Python kernel state handling; also fixed various issues in Python tests. - Fixed issue with opaque kernel output information handling which broke Python custom kernels. + Samples: - Introduced a new Segmentation demo with desync() to enable slow-running networks in the real-time. - Updated stats calculation in the G-API-based pipeline modelling tool. + Other changes and fixes: - Fixed tolerance in Fluid resize tests to avoid issues on ARM. - Fluid backend: extended Merge3 kernel with more supported data types. - Fixed standalone mode compilation issues. * Objdetect module: + FaceDetectorYN upgrade for better performance, accuracy and facial landmarks support. + New QR code detection algorithm based on ArUco code. + Bar code detector and decoder moved from Contrib to main repository. + Introduced common API for all graphical codes like bar codes and QR codes. + Added flag for legacy pre-4.6.0 ChAruco boards support. + Multiple bug fixes and improvements in QR code detection and decoding pipelines. + Multiple bug fixes and improvements in ArUco based pipelines. * Calibration module: + USAC framework improvements. + Fixed stddev estimation in camera calibration pipelines. + Fixed incorrect pixel grid generation in icvGetRectangles that improves accuracy of getOptimalNewCameraMatrix, stereoRectify and some other calibration functions. Charuco board support in patterns generator, interactive calibration tool and calibration samples. * Image processing module: + Various fixes in line segments detector. + Fixed even input dimensions for INTER_NEAREST_EXACT in resize. + Optimise local cost computation in IntelligentScissorsMB::buildMap. + Keep inliers for linear remap with BORDER_TRANSPARENT + Fix distransform to work with large images. * Features2d module: + SIFT accuracy improvements. * Core module: + Added REDUCE_SUM2 option to cv::reduce. + Introduced cv::hasNonZero function. + Update IPP binaries update to version 20230330. + Improved RISC-V RVV vector extensions support. - Support RVV v0.11 intrinsics available in LLVM 16 and GCC 13 - Support build with T-Head RISC-V toolchain (RVV 0.7.1 and 1.0) + Several OpenCL vendor and version handling improvements. * Multimedia: + Added AVIF support through libavif. + Orbbec Femto Mega cameras support. + HEVC/H265 support in VideoWriter with MS Media Foundation backend. + Fixed FPS computation on some videos for FFmpeg backend. + Added support for VideoCapture CAP_PROP_AUTO_WB and CV_CAP_PROP_WHITE_BALANCE_BLUE_U for DShow backend. + Fixes OBS Virtual Camera capture. + CV_32S encoding support with tiff. * Python Bindings: + Python typing stubs. + Fix reference counting errors in registerNewType. + Fixed ChAruco and diamond boards detector bindings. + Added bindings to allow GpuMat and Stream objects to be initialized from memory initialized in other libraries + np.float16 support. + Python bindings for RotatedRect, CV_MAKETYPE, CV_8UC(n). * JavaScript bindings: + Added possibility for disabling inlining wasm in opencv.js + Extended JS bindings for Aruco, Charuco, QR codes and bar codes. * Other: + Several critical issue fixes in wechat_qrcode module (opencv_contrib)- update to 4.7.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version470 Highlights of this release: * DNN: + New ONNX layers: Scatter and ScatterND, Tile, ReduceL1, ReduceMin and more. + Signinficant performance optimization for convolutions. Winograd algoritm implementation. + Element-wise operation (add, sub, mul, div, ...): Broadcasting. + OpenVino 2022.1 support. + CANN backend support. * Algorithms: + ArUco markers and April tags support including ChAruco and diamond boards detection and calibration. + QR code detection and decoding quality imrovement. Alignment markers support. Benchmark for QR codes: link + Nanotrack v2 tracker based on neural networks. + Stackblur algoruthm implementation. * Multimedia: + FFmpeg 5.x support. + CUDA 12.0 support. Hardware accelerated video codecs support on NVIDIA platforms with modern Video Codec SDK (NVCUVID and NVENCODEAPI). + CV_16UC1 read/write video support with FFmpeg. + Orientation meta support on Mac with native media API. + New iterator-based API for multi-page image formats. + libSPNG support for PNG format. + SIMD acceleration for self-built libJPEG-Turbo + H264/H265 support on Android. Multiple fixes for video decoder, endcoder and camera memory layout. * G-API + Exposed all core APIs to Python, including stateful kernels. * Optimization: + New universal intrinsics backend for scalable vector instructions. The first scalable implementation for RISC-V RVV 1.0. + DNN module patches: - Improved layers / supported more models: * Scatter and ScatterND #22529, Tile #22809 * Fixes in Slice (support negative step #22898) * Support some reduce layers of ONNX #21601 - Added CANN backend support #22634. Link to the manual: https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend. - Added bacthed NMS for multi-class object detection #22857 - Accelerating convolution, especially for ARM CPU. - Winograd's convolution optimization + And many other contributions: + Added n-dimensional flip to core #22898 + Add StackBlur for imgproc #20379 - Removed upstream opencv-ffmpeg5.patch- Add upstream change to fix include issue with FFmpeg 5: * opencv-ffmpeg5.patch- update to 4.6.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version460 * OpenCV project infrastructure migrating on GitHub Actions workflows for CI and release purposes * Added support for GCC 12, Clang 15 * Added support for FFmpeg 5.0 * DNN module patches: + Improved layers / activations / supported more models: - LSTM (+CUDA), resize (+ONNX13), Sign, Shrink, Reciprocal, depth2space, space2depth - fixes in Reduce, Slice, Expand + Disabled floating-point denormals processing #21521 + Changed layer names in ONNX importer to support "output" entities properly + Added TIM-VX NPU backend support: https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU + Added Softmax parameter to ClassificationModel + Added audio speech recognition sample (C++) #21458 + Intel® Inference Engine backend (OpenVINO): - added initial support for OpenVINO 2022.1 release - removed support of legacy API (dropped since 2020.3) * G-API module: + G-API framework: - Introduced a Grayscale image format support for cv::MediaFrame: #21511; - Enabeled .reshape() support in the CPU backend: #21669; - Fixed possible hang in streaming execution mode with constant inputs: #21567; - Introduced proper error/exception propagation in the asynchronous streaming execution mode: #21660; - Fixed new stream event handling: #21731. + Fluid backend: - Fixed horizontal pass in the Resize kernel, fixed Valgrind issues: #21144; - Extended Resize kernel with F32 version: #21678, added AVX: #21728. - Enabled dynamic dispatch for Split4 kernel: #21520; - Enabled dynamic dispatch for Merge3 kernel: #21529; - Added a SIMD version for DivC kernel: #21474; - Added a SIMD version for DivRC kernel: #21530; - Enabled dynamic dispatch for Add kernel: #21686; - Enabled dynamic dispatch for Sub kernel: #21746; - Added a SIMD version for ConvertTo kernel: #21777; - Fixed kernel matrix size for Sobel kernel: #21613. + Intel® OpenVINO™ inference backend: - Fixed NV12 format support for remote memory when OpenVINO remote context is used: #21424. - Implemented correct error handling in the backend: #21579. - Fixed ngraph warnings #21362. + OpenCV AI Kit backend: - Introduced a new backend to program OpenCV AI Kit boards via G-API. Currently the backend is in experimental state, but allows to build Camera+NN pipeline and supports heterogeneity (mixing with host-side code): #20785, #21504. + Media integration: - Enabled GPU inference with oneVPL and DirectX11 on Windows in Intel OpenVINO inference backend: #21232, #21618, #21658, #21687, [#21688]. Now GPU textures decoded by oneVPL decoder can be preprocessed and inferred on GPU with no extra host processing. - Enabled oneVPL support on Linux: #21883. - Extended GStreamer pipeline source with Grayscale image format support: #21560. + Python bindings: - Exposed GStreamer pipeline source in Python bindings: #20832. - Fixed Python bindings for CudaBufferPool, cudacodec and cudastereo modules in OpenCV Contrib. + Samples: - Introduced a pipeline modelling tool for cascaded model benchmarking: #21477, #21636, #21719. The tool supports a declarative YAML-based config to describe pipelines with simulated pre-/post-processing. The tool collects and reports latency and throughput information for the modelled pipeline. + Other changes and fixes: - Moved GKernelPackage into cv:: namespace by default, its cv::gapi:: alias remain for compatibility: #21318; - Moved Resize kernel from core to imgproc kernel packages for CPU, OpenCL, and Fluid backends: #21157. Also moved tests appropriately: #21475; - Avoided sporadic test failures in DivC: #21626; - Fixed 1D Mat handling in the framework: #21782; - Reduced the number of G-API generated accuracy tests: #21909. - Drop upstream patches: * 0001-highgui-Fix-unresolved-OpenGL-functions-for-Qt-backe.patch * videoio_initial_FFmpeg_5_0_support.patch * videoio_ffmpeg_avoid_memory_leaks.patch- Add upstream patches for FFmpeg 5.0 support, add * videoio_initial_FFmpeg_5_0_support.patch * videoio_ffmpeg_avoid_memory_leaks.patch- Restore memoryperjob constraint, avoid being scheduled on a 16 core system and use less than half of it. - Adjust %limit_build to 1800, to avoid recurrent build failures on aarch64. (People should not care for their pet architecture only, but also carefully check if they break others.) - Add missing libopencv_aruco dependency in devel package.- Remove the memoryperjob constraint which doesn't work as one would expect and breaks ppc64 builds. - Use %limit_memory -m 1700 to set the number of concurrent jobs to a sane value and fix OOM errors when building in workers with many cores. - Decrease the disk constraint to 9G which seems to be enough- update to 4.5.5, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version455 * Audio support as part of VideoCapture API: GStreamer #21264 * Updated SOVERSION handling rules: #21178 * DNN module patches: + Added tests to cover ONNX conformance test suite: #21088 + Improved layers / activations / supported more models + Upgraded builtin protobuf from 3.5.2 to 3.19.1 + More optimizations for RISC-V platform + Intel® Inference Engine backend ( OpenVINO™ ): added support for OpenVINO 2021.4.2 LTS release * G-API module: + G-API framework: - Fixed issue with accessing 1D data from cv::RMat: #21103 - Restricted passing the G-API types to graph inputs/outputs for execution: #21041 - Various fixes in G-API Doxygen reference: #20924 - Renamed various internal structures for consistency #20836 #21040 + Fluid backend: - Introduced a better vectorized version of Resize: #20664. - Added vectorized version of Multiply kernel: #21024 - Added vectorized version of Divide kernel: #20914 - Added vectorized version of AddC kernel: #21119 - Added vectorized version of SubC kernel: #21158 - Added vectorized version of MulC kernel: #21177 - Added vectorized version of SubRC kernel: #21231 - Enabled SIMD dispatching for AbsDiffC: #21204 + OpenCL backend: - Fixed sporadic test failures in Multiply kernel running on GPU: #21205 + Intel® OpenVINO™ inference backend: - Extended ie::Params to support static batch size as input to inference: #20856 - Enabled 2D input tensor support in IE backend: #20925 - Fixed various issues with imported (pre-compiled) networks: #20918 + Media integration: - Introduced a GStreamer-based pipeline source for G-API: #20709 - Completed the integration of Intel® oneVPL as a pipeline source for G-API #20773 with device selection #20738, asynchronous execution #20901, intial demux support #21022, and GPU-side memory allocation via DirectX 11 #21049. + Samples: - Replaced custom kernels with now-standard G-API operations in several samples #21106 - Moved API snippets from G-API samples to a dedicated place #20857 + Other changes and fixes: - Fixed various static analysis issues for OpenVINO 2021.4 release: #21083 and #21212 - Fixed various build warnings introduced after OpenVINO update: #20937 - Continued clean-up in the G-API test suite on GTest macros [#20922] and test data #20995 - Added custom accuracy comparison functions to Fluid performance tests: #21150. * And many other contributions: + Added QRcode encoder: #17889 + GSoC - OpenCV.js: Accelerate OpenCV.js DNN via WebNN: #20406 + Add conventional Bayer naming: #20970 + (opencv_contrib) Add Radon transform function to ximgproc: #3090 + (opencv_contrib) New superpixel algorithm (F-DBSCAN): #3093 + Created Stitching Tool: #21020 + Improve CCL with new algorithms and tests: #21275 + (opencv_contrib) Update ArUco tutorial: #3126 - Adjust memory constraints (mostly required for aarch64 on Leap) - Add 0001-highgui-Fix-unresolved-OpenGL-functions-for-Qt-backe.patch- update to 4.5.4: * 8-bit quantization in the dnn module * Improved Julia bindings * Speech recognition sample * dnn module optimizations for RISC-V * Tutorial about universal intrinsics and parallel_for usage * Improvements in the dnn module: - New layers and models support - Some existing layers have been fixed - Soft-NMS implementation - Supported OpenVINO 2021.4.1 LTS release- Remove dependency on IlmBase, opencv never uses this directly.- update to 4.5.2, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version452 * core: added support for parallel backends. * imgproc: added IntelligentScissors implementation (JS demo). * videoio: improved hardware-accelerated video de-/encoding tasks. * DNN module: + Improved debugging of TensorFlow parsing errors: #19220 + Improved layers / activations / supported more models: - optimized: NMS processing, DetectionOutput - fixed: Div with constant, MatMul, Reshape (TensorFlow behaviour) - added support: Mish ONNX subgraph, NormalizeL2 (ONNX), LeakyReLU (TensorFlow), TanH + SAM (Darknet), Exp + Intel® Inference Engine backend ( OpenVINO™ ): added support for OpenVINO 2021.3 release * G-API module: + Python support: - Introduced a new Python backend - now G-API can run custom kernels written in Python as part of the pipeline: #19351 - Extended Inference support in the G-API bindings: #19318 - Added more graph data types in the G-API bindings: #19319 + Inference support: - Introduced dynamic input / CNN reshape functionality in the OpenVINO inference backend #18240 - Introduced asynchronous execution support in the OpenVINO inference backend, now it can run in multiple parallel requests to increase stream density/throughput: #19487, #19425 - Extended supported data types with INT64/INT32 in ONNX inference backend and with INT32 in the OpenVINO inference backend #19792 - Introduced cv::GFrame / cv::MediaFrame and constant support in the ONNX backend: #19070 + Media support: - Introduced cv::GFrame / cv::MediaFrame support in the drawing/rendering interface: #19516 - Introduced multi-stream input support in Streaming mode and frame synchronization policies to support cases like Stereo: #19731 - Added Y and UV operations to access NV12 data of cv::GFrame at the graph level; conversions are done on-the-fly if the media format is different: #19325 + Operations and kernels: - Added performance tests for new operations (MorphologyEx, BoundingRect, FitLine, FindContours, KMeans, Kalman, BackgroundSubtractor) - Fixed RMat input support in the PlaidML backend: #19782 - Added ARM NEON optimizations for Fluid AbsDiffC, AddWeighted, and bitwise operations: #18466, #19233 - Other various static analysis and warning fixes + Documentation: - [GSoC] Added TF/PyTorch classification conversion: #17604 - [GSoC] Added TF/PyTorch segmentation conversion: #17801 - [GSoC] Added TF/PyTorch detection model conversion: #18237 - Updated documentation to address Wide Universal Intrinsics (WUI) SIMD API: #18952 + And many other great contributions from OpenCV community: - core: cuda::Stream constructor with stream flags: #19286 - highgui: pollKey() implementation for w32 backend: #19411 - imgcodecs: Added Exif parsing for PNG: #19439 - imgcodecs: OpenEXR compression options: #19540 - imgproc: connectedComponents optimizations: (Spaghetti Labeling): #19631 - videoio: Android NDK camera support #19597 - (contrib) WeChat QRCode module open source: #2821 - (contrib) Implemented cv::cuda::inRange(): #2803 - (contrib) Added algorithms from Edge Drawing Library: #2313 - (contrib) Added Python bindings for Viz module: #2882 - Add libva build dependency for HW accelerated videoio - Slight bump for memory constraints- Enable aruco module (recognize markers to detect camera pose)- update to 4.5.1, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version451 * Continued merging of GSoC 2020 results: + Develop OpenCV.js DNN modules for promising web use cases together with their tutorials + OpenCV.js: WASM SIMD optimization 2.0 + High Level API and Samples for Scene Text Detection and Recognition + SIFT: SIMD optimization of GaussianBlur 16U * DNN module: + Improved layers / activations / supported more models: - optimized: 1D convolution, 1D pool - fixed: Resize, ReduceMean, Gather with multiple outputs, importing of Faster RCNN ONNX model - added support: INT32 ONNX tensors + Intel® Inference Engine backend (OpenVINO): - added support for OpenVINO 2021.2 release - added preview support for HDDL + Fixes and optimizations in DNN CUDA backend (thanks to @YashasSamaga) * G-API Framework: + Introduced serialization for cv::RMat, including serialization for user-defined memory adapters + Introduced desync, a new Operation for in-graph asynchronous execution - to allow different parts of the graph run with a different latency + Introduced a notion of "in-graph metadata", now various media-related information can be accessed in graph directly (currently only limited to timestamps and frame IDs) + Introduced a new generic task-based executor, based on Threading Building Blocks (TBB) + Extended infer<>() API to accept a new cv::GFrame data structure to allow handling of various media formats without changes in the graph structure + Made copy() an intrinsic where real copy may not happen (optimized out) based on graph structure, extended it to support cv::GFrame + Various fixes, including addressig static analysis, documentation, and test issues * G-API Operations: + Introduced new operations morphologyEx, boundingRect, fitLine, kmeans, Background Subtractor, Kalman filter * G-API Intel® Inference Engine backend (OpenVINO): + Extended cv::gapi::ie::Params<> to import CNN networks (e.g. pre-compiled ones) instead of passing .XML and .BIN files; also enabled configuring Inference Engine plugins via this structure + Added a new overload to infer<>() to run inference over a single region of interest + Added support for cv::MediaFrame input data type (projected from cv::GFrame) and handling for NV12 input image format * G-API Python bindings: + Exposed G-API's Inference and Streaming APIs in the OpenCV Python bindings + Added initial Python support for cv::GArray data structure * Significant progress on RISC-V port. - Updated constraints, bump memory to 5 GB - Cleaned up spec file- Split library package, move all libraries with external dependencies (Qt5, ffmpeg, gstreamer) into separate packages - Move haar and LBP cascades into separate package, pull in from objdetect and face (detect) libraries.- update to 4.5.0, see https://github.com/opencv/opencv/wiki/ChangeLog#version450 for details, highlights: * OpenCV license has been changed to Apache 2 (OpenCV 3.x will keep using BSD) * GSoC is over, all projects were success and most of them have already been merged. Optimizations for RISC-V, bindings for Julia language, real-time single object tracking, improved SIFT and others * OpenJPEG is now used by default for JPEG2000 * Supported multiple OpenCL contexts * Improvements in dnn module: + Support latest OpenVINO 2021.1 release + Tengine lite support for inference on ARM + Many fixes and optimizations in CUDA backend * Added Python bindings for G-API module * Multiple fixes and improvements in flann module * Added Robot-World/Hand-Eye calibration function- update to 4.4.0: * SIFT (Scale-Invariant Feature Transform) algorithm has been moved to the main repository (patent on SIFT is expired) * DNN module: * State-of-art Yolo v4 Detector: #17148. * onnx: Add support for Resnet_backbone * EfficientDet models * add text recognition sample / demo * FlowNet2 optical flow * Intel Inference Engine backend * added support for OpenVINO 2020.3 LTS / 2020.4 releases * support of NN Builder API is planned for removal in the next release * Many fixes and optimizations in CUDA backend * Obj-C / Swift bindings: #17165 * Julia bindings as part of ongoing GSoC project * BIMEF: A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement * Enable Otsu thresholding for CV_16UC1 images * Add Stroke Width Transform algorithm for Text Detection * Planned migration on Apache 2 license for next releases - remove opencv-includedir.patch (obsolete)- Use memoryperjob constraint instead of %limit_build macro.- Update to 4.3.0 * DNN module: + Improved layers / activations / supported more models: - ONNX: LSTM, Broadcasting, Algebra over constants, Slice with multiple inputs - DarkNet: grouped convolutions, sigmoid, swish, scale_channels - MobileNet-SSD v3: #16760 + New samples / demos: - Clothes parts segmentation and CP-VTON - DaSiamRPN tracker Intel® Inference Engine backend (OpenVINO™): - added support for custom layers through nGraph OpenVINO API: #16628 - nGraph OpenVINO API is used by default: #16746 + Many fixes and optimizations in CUDA backend (thanks to @YashasSamaga) + OPEN AI LAB team submitted the patch that accelerates OpenCV DNN on ARM using their Tengine library * G-API module: + Introduced a new graph-level data type GOpaque. This type can be used to pass arbitrary user data types between G-API nodes in the graph (supported for CPU/OpenCV backend only). + Introduced a way to declare G-API CPU (OpenCV) kernels in-place + Added a new sample "Privacy masking camera", combining Deep Learning with traditional Image Processing (link) + Added more operations in the default library: WarpAffine, WarpPerspective, NV12toGray. * Performance improvements: + IPP-ICV library with CPU optimizations has been updated to version 2020.0.0 Gold + SIMD intrinsics: integral, resize, (opencv_contrib) RLOF implementation #2476 * And many other great contributions from OpenCV community: + (opencv_contrib) Computer Vision based Alpha Matting (GSoC 2019) #2306 + calib3d: findChessboardCornersSB improvements: #16625 + calib3d: updated documentation for RT matrices: #16860 + core: improved getNumberOfCPUs(): #16268 + imgproc: new algorithm HOUGH_GRADIENT_ALT is added to HoughCircles() function #16561. It has much better recall and precision + imgcodecs: added initial support for OpenJPEG library (version 2+): #16494 + highgui(Qt): added Copy to clipboard: #16677 + dnn: TensorFlow, Darknet and ONNX importers improvements by @ashishkrshrivastava + (opencv_contrib) added rapid module for silhouette based 3D object tracking: #2356 + (opencv_contrib) SIFT detector is enabled by default due patents expiration (without requirement of NONFREE build option) + help materials: OpenCV Cheat Sheet in Python: #4875 * Changes that can potentially break compatibility: + image filtering functions throws exception on empty input (voting results) - Packaging changes: * Stop mangling CMake diagnostic output, no dependency versions end up in the packages anyway, drop opencv-build-compare.patch * Set empty OPENCV_DOWNLOAD_TRIES_LIST, skip downloads even when network is available during builds (e.g. local build). * Drop upstream GLES patches: + 0001-Do-not-include-glx.h-when-using-GLES.patch + opencv-gles.patch- Disable Python 2 bindings for Tumbleweed.- Drop Jasper (i.e jpeg2k) support (boo#1130404, boo#1144260) JasPer is unmaintained, CVEs are not being addressed (some issues received patches submitted to the upstream github project, but are not being merged, other CVEs are considered unfixable). openSUSE follows other distros in dropping JasPer now (much later than most others, incl. Debian).- Add webp build dependency to use system libwebp instead of bundled one. - Enable dispatch of AVX512 optimized code.- Update to 4.2.0 * DNN module: + Integrated GSoC project with CUDA backend: #14827 + Intel® Inference Engine backend ( OpenVINO™ ): - support for nGraph OpenVINO API (preview / experimental): #15537 * G-API module: + Enabled in-graph inference: #15090. Now G-API can express more complex hybrid CV/DL algorithms; - Intel® Inference Engine backend is the only available now, support for DNN module will be added in the future releases. + Extended execution model with streaming support: #15216. Decoding, image processing, inference, and post-processing are now pipelined efficiently when processing a video stream with G-API. + Added tutorials covering these new features: Face analytics pipeline and a sample Face beautification algorithm. * Performance improvements: + SIMD intrinsics: StereoBM/StereoSGBM algorithms, resize, integral, flip, accumulate with mask, HOG, demosaic, moments + Muti-threading: pyrDown * And many other great patches from OpenCV community: + VideoCapture: video stream extraction (demuxing) through FFmpeg backend. + VideoCapture: waitAny() API for camera input multiplexing (Video4Linux through poll() calls). + (opencv_contrib) new algorithm Rapid Frequency Selective Reconstruction (FSR): #2296 + tutorial. + (opencv_contrib) RIC method for sparse match interpolation: #2367. + (opencv_contrib) LOGOS features matching strategy: #2383. * Breaking changes: + Disabled constructors for legacy C API structures. + Implementation of Thread Local Storage (TLS) has been improved to release data from terminated threads. API has been changed. + Don't define unsafe CV_XADD implementation by default. + Python conversion rules of passed arguments will be updated in next releases: #15915.- Limit build parallelism with limit_build, some ARM and PPC workers have a high SMP/memory ratio and run out of memory otherwise. - Apply memory constraints (3GB) to all architectures, avoid being scheduled on very weak workers.- Update to 4.1.2 * DNN module: + Intel Inference Engine backend (OpenVINO): - 2019R3 has been supported - Support modern IE Core API - New approach for custom layers management. Now all the OpenCV layers fallbacks are implemented as IE custom layers which helps to improve efficiency due less graph partitioning. - High-level API which introduces dnn::Model class and set of task-specific classes such dnn::ClassificationModel, dnn::DetectionModel, dnn::SegmentationModel. It supports automatic pre- and post-processing for deep learning networks. * Performance improvements and platforms support: + MSA SIMD implementation has been contributed for MIPS platforms: https://github.com/opencv/opencv/pull/15422 + OpenCV.js optimization (threading and SIMD as part of GSoC project): https://github.com/opencv/opencv/pull/15371 + More optimizations using SIMD intrinsics: dotProd, FAST corners, HOG, LK pyramid (VSX), norm, warpPerspective, etc + Fixed detection of Cascade Lake CPUs * And many other great patches from OpenCV community: + GUI: support topmost window mode (Win32/COCOA): https://github.com/opencv/opencv/pull/14872 + Java: fix Mat.toString() for higher dimensions: https://github.com/opencv/opencv/pull/15181 + Implementation of colormap "Turbo" https://github.com/opencv/opencv/pull/15388 + QR-Code detection accuracy improvement: https://github.com/opencv/opencv/pull/15356 + GSoC: Add learning-based super-resolution module: https://github.com/opencv/opencv_contrib/pull/2229 and https://github.com/opencv/opencv_contrib/pull/2231 + Detection accuracy improvement of the white marker aruco corners: https://github.com/opencv/opencv_contrib/pull/2236 + Added pattern generator tool for aruco: https://github.com/opencv/opencv_contrib/pull/2250 + and special thanks to @sturkmen72 for improvind and cleaning up code of samples/tutorials * Breaking changes: + fixed values thresholding accuracy in calcHist() * Security fixes: CVE-2019-15939 (boo#1149742). - Enable Graph API (G-API) - Minor spec file cleanup- Include pkg-config file in opencv-devel package * Add opencv-includedir.patch- Avoid use of ®/™ signs in specfiles as per guidelines.- Disable LTO on ppc64le for now, as it fails to build when enabled (boo#1146096).- Increase the disk space needed to build opencv.- Update to 4.1.1 * DNN module: * 3D convolution networks initial support * A lot of improvements for ONNX and TenforFlow importers * Performance improvements * Added IPPE method for planar pose estimation in solvePnP * Added solvePnPRefineLM and solvePnPRefineVVS * Security fixes: CVE-2019-14491 (boo#1144352), CVE-2019-14492 (boo#1144348). - Check https://github.com/opencv/opencv/wiki/ChangeLog#version411 for the complete list of changes. - Drop fix_processor_detection_for_32bit_on_64bit.patch. Fixed upstream - Drop 0001-Handle-absolute-OPENCV_INCLUDE_INSTALL_PATH-correctl.patch Fixed upstream - Refresh 0001-Do-not-include-glx.h-when-using-GLES.patch and opencv-build-compare.patch.- Update to version 4.1.0 * DNN module: + Reduced peak memory consumption for some models up to 30%. + Inference Engine - Inference Engine 2018R3 is now a minimal supported version of IE. - Myriad X (Intel® Neural Compute Stick 2) is now supported and tested. - Automatic IR network reshaping for different inputs. - Improved samples to work with models from OpenVINO Open Model Zoo + New networks from TensorFlow Object Detection API: Faster-RCNNs, SSDs and Mask-RCNN with dilated convolutions, FPN SSD * Performance improvements: + More optimization using AVX2 instruction set. + Automatic runtime dispatching is available for large set of functions from core and imgproc modules. * Other improvements: + Matplotlib Perceptually Uniform Sequential colormaps + Add keypoints matching visualization for real-time pose estimation tutorial + Add Hand-Eye calibration methods + Java: improved support for multidimensional arrays (Mat) + Dynamically loaded videoio backends (FFmpeg, GStreamer) + opencv_contrib: Robust local optical flow (RLOF) implementations + opencv_contrib: Implementation of Quasi Dense Stereo algorithm + opencv_contrib: New module: Image Quality Analysis (IQA) API + opencv_contrib: BRISQUE No Reference Image Quality Assessment (IQA) API Check https://github.com/opencv/opencv/wiki/ChangeLog#version410 - Update to version 4.0.0 * A lot of C API from OpenCV 1.x has been removed. The affected modules are objdetect, photo, video, videoio, imgcodecs, calib3d. * Persistence (storing and loading structured data to/from XML, YAML or JSON) in the core module has been completely reimplemented. * OpenCV is now C++11 library and requires C++11-compliant compiler. Thanks to the extended C++11 standard library, we could get rid of hand-crafted cv::String and cv::Ptr. Now cv::String == std::string and cv::Ptr is a thin wrapper on top of std::shared_ptr. Also, on Linux/BSD for cv::parallel_for_ we now use std::thread's instead of pthreads. * DNN improvements * Completely new module opencv_gapi has been added. It is the engine for very efficient image processing, based on lazy evaluation and on-fly construction. * Performance improvements A few hundreds of basic kernels in OpenCV have been rewritten using so-called "wide universal intrinsics". Those intrinsics map to SSE2, SSE4, AVX2, NEON or VSX intrinsics, depending on the target platform and the compile flags. * QR code detector and decoder have been added to opencv/objdetect module. * The popular Kinect Fusion algorithm has been implemented, optimized for CPU and GPU (OpenCL), and integrated into opencv_contrib/rgbd module. * Very efficient and yet high-quality DIS dense optical flow algorithm has been moved from opencv_contrib to opencv, video module. See the example. * The slower TV L1 optical flow algorithm has been moved to opencv_contrib. Check https://github.com/opencv/opencv/wiki/ChangeLog#version400 - Drop obsolete opencv-lib_suffix.patch - Add 0001-Handle-absolute-OPENCV_INCLUDE_INSTALL_PATH-correctl.patch - As this is a major version upgrade, the old 3.4.x package is still available as opencv3- Update to 3.4.3 * Compatibility fixes with python 3.7 * Added a new computational target DNN_TARGET_OPENCL_FP16 * Extended support of Intel's Inference Engine backend * Enabled import of Intel's OpenVINO pre-trained networks from intermediate representation (IR). * tutorials improvements Check https://github.com/opencv/opencv/wiki/ChangeLog#version343 for the complete changelog. - Drop fix-build-i386-nosse.patch, build-workaround-issues-with-c.patch (fixed upstream) - Refresh patches- Add patch to fix use of headers from C: * build-workaround-issues-with-c.patch- Update to 3.4.1: * Added support for quantized TensorFlow networks * OpenCV is now able to use Intel DL inference engine as DNN acceleration backend * Added AVX-512 acceleration to the performance-critical kernels * Fix cmake mapping of RelWithDebInfo (boo#1154091). * For more information, read https://github.com/opencv/opencv/wiki/ChangeLog#version341 - Update contrib modules to 3.4.1: * No changelog available - Change mechanism the contrib modules are built - Include LICENSE of contrib tarball as well - Build with python3 on >= 15 - Add patch to fix build on i386 without SSE: * fix-build-i386-nosse.patch - Refresh patches: * fix_processor_detection_for_32bit_on_64bit.patch * opencv-build-compare.patch - Mention all libs explicitly - Rebase 3.4.0 update from i@marguerite.su - update to 3.4.0 * Added faster R-CNN support * Javascript bindings have been extended to cover DNN module * DNN has been further accelerated for iGPU using OpenCL * On-disk caching of precompiled OpenCL kernels has been finally implemented * possible to load and run pre-compiled OpenCL kernels via T-API * Bit-exact 8-bit and 16-bit resize has been implemented (currently supported only bilinear interpolation) - update face module to 3.4.0 - add opencv-lib_suffix.patch, remove LIB_SUFFIX from OPENCV_LIB_INSTALL_PATH, as CMAKE_INSTALL _LIBDIR is arch dependent.- Add option to build without openblas- Add conditionals for python2 and python3 to allow us enabling only desired python variants when needed - Do not depend on sphinx as py2 and py3 seem to collide there- Readd opencv-gles.patch, it is *not* included upstream; otherwise build breaks on all GLES Qt5 platforms (armv6l, armv7l, aarch64) - add fix_processor_detection_for_32bit_on_64bit.patch - Correctly set optimizations and dynamic dispatch on ARM, use OpenCV 3.3 syntax on x86.- Update licensing information- change requires of python-numpy-devel to build in Leap and to not break factory in future- fix build error/unresolvable for Leap 42.2 and 42.3- Update to version 3.3.1: * Lots of various bugfixes - Update source url- Rename python subpackage to python2 - Do not explicitly require python-base for python subpackages- Update to 3.3 - Dropped obsolete patches * opencv-gcc6-fix-pch-support-PR8345.patch * opencv-gles.patch - Updated opencv-build-compare.patch- Add 0001-Do-not-include-glx.h-when-using-GLES.patch Fix build for 32bit ARM, including both GLES and desktop GL headers causes incompatible pointer type errors- Add conditional for the qt5/qt4 integration * This is used only for gui tools, library is not affected - Add provides/obsoletes for the qt5 packages to allow migration - Drop patch opencv-qt5-sobump.diff * Used only by the obsoleted qt5 variant- Cleanup a bit with spec-cleaner - Use %cmake macros - Remove the conditions that are not really needed - Add tests conditional disabled by default * Many tests fail and there are missing testdata - Switch to pkgconfig style dependencies- Update to OpenCV 3.2.0 - Results from 11 GSoC 2016 projects have been submitted to the library: + sinusoidal patterns for structured light and phase unwrapping module [Ambroise Moreau (Delia Passalacqua)] + DIS optical flow (excellent dense optical flow algorithm that is both significantly better and significantly faster than Farneback’s algorithm – our baseline), and learning-based color constancy algorithms implementation [Alexander Bokov (Maksim Shabunin)] + CNN based tracking algorithm (GOTURN) [Tyan Vladimir (Antonella Cascitelli)] + PCAFlow and Global Patch Collider algorithms implementation [Vladislav Samsonov (Ethan Rublee)] + Multi-language OpenCV Tutorials in Python, C++ and Java [João Cartucho (Vincent Rabaud)] + New camera model and parallel processing for stitching pipeline [Jiri Horner (Bo Li)] + Optimizations and improvements of dnn module [Vitaliy Lyudvichenko (Anatoly Baksheev)] + Base64 and JSON support for file storage. Use names like “myfilestorage.xml?base64” when writing file storage to store big chunks of numerical data in base64-encoded form. [Iric Wu (Vadim Pisarevsky)] + tiny_dnn improvements and integration [Edgar Riba (Manuele Tamburrano, Stefano Fabri)] + Quantization and semantic saliency detection with tiny_dnn [Yida Wang (Manuele Tamburrano, Stefano Fabri)] + Word-spotting CNN based algorithm [Anguelos Nicolaou (Lluis Gomez)] - Contributions besides GSoC: + Greatly improved and accelerated dnn module in opencv_contrib: - Many new layers, including deconvolution, LSTM etc. - Support for semantic segmentation and SSD networks with samples. - TensorFlow importer + sample that runs Inception net by Google. + More image formats and camera backends supported + Interactive camera calibration app + Multiple algorithms implemented in opencv_contrib + Supported latest OSes, including Ubuntu 16.04 LTS and OSX 10.12 + Lot’s of optimizations for IA and ARM archs using parallelism, vector instructions and new OpenCL kernels. + OpenCV now can use vendor-provided OpenVX and LAPACK/BLAS (including Intel MKL, Apple’s Accelerate, OpenBLAS and Atlas) for acceleration - Refreshed opencv-build-compare.patch - Dropped upstream opencv-gcc5.patch - Replace opencv-gcc6-disable-pch.patch with upstream patch opencv-gcc6-fix-pch-support-PR8345.patch - Enable TBB support (C++ threading library) - Add dependency on openBLAS- Enable ffmpeg support unconditional- In case we build using GCC6 (or newer), add -mlra to CFLAGS to workaround gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71294.- Apply upstream patch opencv-gcc6-disable-pch.patch to disable PCH for GCC6.- Test for python versions greater than or equal to the current version.- Add python 3 support- Added opencv_contrib_face-3.1.0.tar.bz2 * This tarball is created to take only the face module from the contrib package. The Face module is required by libkface, which in its turn is required by digikam.- Added _constraints file to avoid random failures on small workers (at least for builds on PMBS)- Update to OpenCV 3.1.0 - A lot of new functionality has been introduced during Google Summer of Code 2015: + “Omnidirectional Cameras Calibration and Stereo 3D Reconstruction” – opencv_contrib/ccalib module (Baisheng Lai, Bo Li) + “Structure From Motion” – opencv_contrib/sfm module (Edgar Riba, Vincent Rabaud) + “Improved Deformable Part-based Models” – opencv_contrib/dpm module (Jiaolong Xu, Bence Magyar) + “Real-time Multi-object Tracking using Kernelized Correlation Filter” – opencv_contrib/tracking module (Laksono Kurnianggoro, Fernando J. Iglesias Garcia) + “Improved and expanded Scene Text Detection” – opencv_contrib/text module (Lluis Gomez, Vadim Pisarevsky) + “Stereo correspondence improvements” – opencv_contrib/stereo module (Mircea Paul Muresan, Sergei Nosov) + “Structured-Light System Calibration” – opencv_contrib/structured_light (Roberta Ravanelli, Delia Passalacqua, Stefano Fabri, Claudia Rapuano) + “Chessboard+ArUco for camera calibration” – opencv_contrib/aruco (Sergio Garrido, Prasanna, Gary Bradski) + “Implementation of universal interface for deep neural network frameworks” – opencv_contrib/dnn module (Vitaliy Lyudvichenko, Anatoly Baksheev) + “Recent advances in edge-aware filtering, improved SGBM stereo algorithm” – opencv/calib3d and opencv_contrib/ximgproc (Alexander Bokov, Maksim Shabunin) + “Improved ICF detector, waldboost implementation” – opencv_contrib/xobjdetect (Vlad Shakhuro, Alexander Bovyrin) + “Multi-target TLD tracking” – opencv_contrib/tracking module (Vladimir Tyan, Antonella Cascitelli) + “3D pose estimation using CNNs” – opencv_contrib/cnn_3dobj (Yida Wang, Manuele Tamburrano, Stefano Fabri) - Many great contributions made by the community, such as: + Support for HDF5 format + New/Improved optical flow algorithms + Multiple new image processing algorithms for filtering, segmentation and feature detection + Superpixel segmentation and much more - IPPICV is now based on IPP 9.0.1, which should make OpenCV even faster on modern Intel chips - opencv_contrib modules can now be included into the opencv2.framework for iOS - Newest operating systems are supported: Windows 10 and OSX 10.11 (Visual Studio 2015 and XCode 7.1.1) - Interoperability between T-API and OpenCL, OpenGL, DirectX and Video Acceleration API on Linux, as well as Android 5 camera. - HAL (Hardware Acceleration Layer) module functionality has been moved into corresponding basic modules; the HAL replacement mechanism has been implemented along with the examples - Removed improve-sphinx-search.diff, opencv-altivec-vector.patch, opencv-pkgconfig.patch and opencv-samples.patch, fixed upstream. - Fixed opencv-qt5-sobump.diff, opencv-build-compare.patch, opencv-gcc5.patch and opencv-gles.patch. - Version OpenCV 3.0.0 + ~1500 patches, submitted as PR @ github. All our patches go the same route. + opencv_contrib (http://github.com/itseez/opencv_contrib) repository has been added. A lot of new functionality is there already! opencv_contrib is only compatible with 3.0/master, not 2.4. Clone the repository and use “cmake … - D OPENCV_EXTRA_MODULES_PATH= …” to build opencv and opencv_contrib together. + a subset of Intel IPP (IPPCV) is given to us and our users free of charge, free of licensing fees, for commercial and non-commerical use. It’s used by default in x86 and x64 builds on Windows, Linux and Mac. + T-API (transparent API) has been introduced, this is transparent GPU acceleration layer using OpenCL. It does not add any compile-time or runtime dependency of OpenCL. When OpenCL is available, it’s detected and used, but it can be disabled at compile time or at runtime. It covers ~100 OpenCV functions. This work has been done by contract and with generous support from AMD and Intel companies. + ~40 OpenCV functions have been accelerated using NEON intrinsics and because these are mostly basic functions, some higher-level functions got accelerated as well. + There is also new OpenCV HAL layer that will simplifies creation of NEON-optimized code and that should form a base for the open-source and proprietary OpenCV accelerators. + The documentation is now in Doxygen: http://docs.opencv.org/master/ + We cleaned up API of many high-level algorithms from features2d, calib3d, objdetect etc. They now follow the uniform “abstract interface – hidden implementation” pattern and make extensive use of smart pointers (Ptr<>). + Greatly improved and extended Python & Java bindings (also, see below on the Python bindings), newly introduced Matlab bindings (still in alpha stage). + Improved Android support – now OpenCV Manager is in Java and supports both 2.4 and 3.0. + Greatly improved WinRT support, including video capturing and multi-threading capabilities. Thanks for Microsoft team for this! + Big thanks to Google who funded several successive GSoC programs and let OpenCV in. The results of many successful GSoC 2013 and 2014 projects have been integrated in opencv 3.0 and opencv_contrib (earlier results are also available in OpenCV 2.4.x). We can name: - text detection - many computational photography algorithms (HDR, inpainting, edge-aware filters, superpixels, …) - tracking and optical flow algorithms - new features, including line descriptors, KAZE/AKAZE - general use optimization (hill climbing, linear programming) - greatly improved Python support, including Python 3.0 support, many new tutorials & samples on how to use OpenCV with Python. - 2d shape matching module and 3d surface matching module - RGB-D module - VTK-based 3D visualization module - etc. + Besides Google, we enjoyed (and hope that you will enjoy too) many useful contributions from community, like: - biologically inspired vision module - DAISY features, LATCH descriptor, improved BRIEF - image registration module - etc.- Reduce build-compare noise opencv-build-compare.patch- Remove BuildRequirement for python-sphinx in SLE12, since it's not available there and it's not a mandatory requirement.- Reduce differences between two spec files- Use pkgconfig for ffmpeg BuildRequires- Update improve-sphinx-search.diff for new python-Sphinx(1.3.1) * now that sphinx-build disallow executing without arguments and give you "Insufficient arguments" error, use "sphinx-build -h" instead * the default usages output ie. sphinx-build(or --help) no longer are standard error but standard output, drop OUTPUT_QUIET and add OUTPUT_VARIABLE throws the output to SPHINX_OUTPUT as well- support gcc 5 (i.e. gcc versions without minor version): opencv-gcc5.patch- Update to OpenCV 2.4.11 - can't find NEWS or Changelog merely collecting bug fixes while 3.0 is in the making, 2.4.11 didn't even make it on their web page, it's only on download server - remove opencv-underlinking.patch as obsolete - remove upstream patch bomb_commit_gstreamer-1x-support.patch - commenting out opencv-pkgconfig.patch - possibly it requires a rebase, but the problem it tries to solve is unclear- Add specific buildrequires for libpng15, so that we are building against the system provided libpng.opencv-qt5-develh03-ch2b 1741181016  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~   4.9.0-150600.3.6.14.9.0-150600.3.6.14.9.04.9.04.9.0   !!!!""!!######!!!$$$$$$$$%%&&&&'&(()(**((((++,,,,,,,,,----../.00000122222222222213444444445565755889888::::::::::::::;;;;;;;;;;;;;;;;;;;;;;;;;;<====>?@A>>>>>>>>>>>>>>>>>>>>BCDDEEopencv2arucoaruco.hpparuco_calib.hppcharuco.hppcalib3dcalib3d.hppcalib3d.hppcalib3d_c.hcorecore.hppaffine.hppasync.hppbase.hppbindings_utils.hppbufferpool.hppcheck.hppcore.hppcore_c.hcudacuda.hppcuda.inl.hppblock.hppborder_interpolate.hppcolor.hppcommon.hppdatamov_utils.hppdetailcolor_detail.hppreduce.hppreduce_key_val.hpptransform_detail.hpptype_traits_detail.hppvec_distance_detail.hppdynamic_smem.hppemulation.hppfilters.hppfuncattrib.hppfunctional.hpplimits.hppreduce.hppsaturate_cast.hppscan.hppsimd_functions.hpptransform.hpptype_traits.hpputility.hppvec_distance.hppvec_math.hppvec_traits.hppwarp.hppwarp_reduce.hppwarp_shuffle.hppcuda_stream_accessor.hppcuda_types.hppcv_cpu_dispatch.hcv_cpu_helper.hcvdef.hcvstd.hppcvstd.inl.hppcvstd_wrapper.hppdetailasync_promise.hppdispatch_helper.impl.hppexception_ptr.hppdirectx.hppdualquaternion.hppdualquaternion.inl.hppeigen.hppfast_math.hpphalhal.hppinterface.hintrin.hppintrin_avx.hppintrin_avx512.hppintrin_cpp.hppintrin_forward.hppintrin_lasx.hppintrin_lsx.hppintrin_msa.hppintrin_neon.hppintrin_rvv.hppintrin_rvv071.hppintrin_rvv_010_compat_non-policy.hppintrin_rvv_010_compat_overloaded-non-policy.hppintrin_rvv_011_compat.hppintrin_rvv_compat_overloaded.hppintrin_rvv_scalable.hppintrin_sse.hppintrin_sse_em.hppintrin_vsx.hppintrin_wasm.hppmsa_macros.hsimd_utils.impl.hppmat.hppmat.inl.hppmatx.hppneon_utils.hppocl.hppocl_genbase.hppopenclocl_defs.hppopencl_info.hppopencl_svm.hppruntimeautogeneratedopencl_clblas.hppopencl_clfft.hppopencl_core.hppopencl_core_wrappers.hppopencl_gl.hppopencl_gl_wrappers.hppopencl_clblas.hppopencl_clfft.hppopencl_core.hppopencl_core_wrappers.hppopencl_gl.hppopencl_gl_wrappers.hppopencl_svm_20.hppopencl_svm_definitions.hppopencl_svm_hsa_extension.hppopengl.hppoperations.hppoptim.hppovx.hppparallelbackendparallel_for.openmp.hppparallel_for.tbb.hppparallel_backend.hpppersistence.hppquaternion.hppquaternion.inl.hppsaturate.hppsimd_intrinsics.hppsoftfloat.hppsse_utils.hpptraits.hpptypes.hpptypes_c.hutility.hpputilsallocator_stats.hppallocator_stats.impl.hppfilesystem.hppfp_control_utils.hppinstrumentation.hpplogger.defines.hpplogger.hpplogtag.hpptls.hpptrace.hppva_intel.hppversion.hppvsx_utils.hppcvconfig.hdnndnn.hppall_layers.hppdict.hppdnn.hppdnn.inl.hpplayer.details.hpplayer.hppshape_utils.hpputilsdebug_utils.hppinference_engine.hppversion.hppfaceface.hppbif.hppface_alignment.hppfacemark.hppfacemarkAAM.hppfacemarkLBF.hppfacemark_train.hppfacerec.hppmace.hpppredict_collector.hppfeatures2dfeatures2d.hppfeatures2d.hpphalinterface.hflannflann.hppall_indices.hallocator.hany.hautotuned_index.hcomposite_index.hconfig.hdefines.hdist.hdummy.hdynamic_bitset.hflann.hppflann_base.hppgeneral.hground_truth.hhdf5.hheap.hhierarchical_clustering_index.hindex_testing.hkdtree_index.hkdtree_single_index.hkmeans_index.hlinear_index.hlogger.hlsh_index.hlsh_table.hmatrix.hminiflann.hppnn_index.hobject_factory.hparams.hrandom.hresult_set.hsampling.hsaving.hsimplex_downhill.htimer.hgapigapi.hppcore.hppcpucore.hppgcpukernel.hppimgproc.hppot.hppstereo.hppvideo.hppfluidcore.hppgfluidbuffer.hppgfluidkernel.hppimgproc.hppgarg.hppgarray.hppgasync_context.hppgcall.hppgcommon.hppgcompiled.hppgcompiled_async.hppgcompoundkernel.hppgcomputation.hppgcomputation_async.hppgframe.hppgkernel.hppgmat.hppgmetaarg.hppgopaque.hppgproto.hppgpucore.hppggpukernel.hppimgproc.hppgscalar.hppgstreaming.hppgtransform.hppgtype_traits.hppgtyped.hppimgproc.hppinferinfer.hppbindings_ie.hppbindings_onnx.hppbindings_ov.hppie.hpponnx.hppov.hppparsers.hppmedia.hppoakinfer.hppoak.hppoclcore.hppgoclkernel.hppimgproc.hppopencv_includes.hppoperators.hppot.hppownassert.hppconvert.hppcvdefs.hppexports.hppmat.hppsaturate.hppscalar.hpptypes.hppplaidmlcore.hppgplaidmlkernel.hppplaidml.hpppythonpython.hpprenderrender.hpprender.hpprender_types.hpprmat.hpps11ns11n.hppbase.hppstereo.hppstreamingcap.hppdesync.hppformat.hppgstreamergstreamerpipeline.hppgstreamersource.hppmeta.hpponevplaccel_types.hppcfg_params.hppdata_provider_interface.hppdefault.hppdevice_selector_interface.hppsource.hppqueue_source.hppsource.hppsync.hpputilany.hppcompiler_hints.hppcopy_through_move.hppoptional.hppthrow.hpptype_traits.hpputil.hppvariant.hppvideo.hpphighguihighgui.hpphighgui.hpphighgui_c.himgcodecsimgcodecs.hppimgcodecs.hppimgcodecs_c.hios.hlegacyconstants_c.hmacosx.himgprocimgproc.hppbindings.hppdetailgcgraph.hpphalhal.hppinterface.himgproc.hppimgproc_c.hsegmentation.hpptypes_c.hmlml.hppml.hppml.inl.hppobjdetectobjdetect.hpparuco_board.hpparuco_detector.hpparuco_dictionary.hppbarcode.hppcharuco_detector.hppdetection_based_tracker.hppface.hppgraphical_code_detector.hppobjdetect.hppopencv.hppopencv_modules.hppoptflowoptflow.hppmotempl.hpppcaflow.hpprlofflow.hppsparse_matching_gpc.hppphotophoto.hppcuda.hpplegacyconstants_c.hphoto.hppplot.hppshapeshape.hppemdL1.hpphist_cost.hppshape.hppshape_distance.hppshape_transformer.hppstitchingstitching.hppdetailautocalib.hppblenders.hppcamera.hppexposure_compensate.hppmatchers.hppmotion_estimators.hppseam_finders.hpptimelapsers.hpputil.hpputil_inl.hppwarpers.hppwarpers_inl.hppwarpers.hppsuperressuperres.hppoptical_flow.hpptrackingtracking.hppfeature.hppkalman_filters.hpponlineBoosting.hpptldDataset.hpptracking.hpptracking_by_matching.hpptracking_internals.hpptracking_legacy.hppvideovideo.hppbackground_segm.hppdetailtracking.detail.hpplegacyconstants_c.htracking.hppvideo.hppvideoiovideoio.hppcap_ios.hlegacyconstants_c.hregistry.hppvideoio.hppvideoio_c.hvideostabvideostab.hppdeblurring.hppfast_marching.hppfast_marching_inl.hppframe_source.hppglobal_motion.hppinpainting.hpplog.hppmotion_core.hppmotion_stabilizing.hppoptical_flow.hppoutlier_rejection.hppring_buffer.hppstabilizer.hppwobble_suppression.hppximgprocximgproc.hppbrightedges.hppcolor_match.hppderiche_filter.hppdisparity_filter.hppedge_drawing.hppedge_filter.hppedgeboxes.hppedgepreserving_filter.hppestimated_covariance.hppfast_hough_transform.hppfast_line_detector.hppfind_ellipses.hppfourier_descriptors.hpplsc.hpppaillou_filter.hpppeilin.hppradon_transform.hppridgefilter.hpprun_length_morphology.hppscansegment.hppseeds.hppsegmentation.hppslic.hppsparse_match_interpolator.hppstructured_edge_detection.hppweighted_median_filter.hppopencv4OpenCVConfig-version.cmakeOpenCVConfig.cmakeOpenCVModules-release.cmakeOpenCVModules.cmakelibopencv_aruco.solibopencv_calib3d.solibopencv_core.solibopencv_dnn.solibopencv_face.solibopencv_features2d.solibopencv_flann.solibopencv_gapi.solibopencv_highgui.solibopencv_imgcodecs.solibopencv_imgproc.solibopencv_ml.solibopencv_objdetect.solibopencv_optflow.solibopencv_photo.solibopencv_plot.solibopencv_shape.solibopencv_stitching.solibopencv_superres.solibopencv_tracking.solibopencv_video.solibopencv_videoio.solibopencv_videostab.solibopencv_ximgproc.soopencv4.pcopencv-develLICENSELICENSE.contribvalgrind.suppvalgrind_3rdparty.supp/usr/include//usr/include/opencv2//usr/include/opencv2/aruco//usr/include/opencv2/calib3d//usr/include/opencv2/core//usr/include/opencv2/core/cuda//usr/include/opencv2/core/cuda/detail//usr/include/opencv2/core/detail//usr/include/opencv2/core/hal//usr/include/opencv2/core/opencl//usr/include/opencv2/core/opencl/runtime//usr/include/opencv2/core/opencl/runtime/autogenerated//usr/include/opencv2/core/parallel//usr/include/opencv2/core/parallel/backend//usr/include/opencv2/core/utils//usr/include/opencv2/dnn//usr/include/opencv2/dnn/utils//usr/include/opencv2/face//usr/include/opencv2/features2d//usr/include/opencv2/features2d/hal//usr/include/opencv2/flann//usr/include/opencv2/gapi//usr/include/opencv2/gapi/cpu//usr/include/opencv2/gapi/fluid//usr/include/opencv2/gapi/gpu//usr/include/opencv2/gapi/infer//usr/include/opencv2/gapi/oak//usr/include/opencv2/gapi/ocl//usr/include/opencv2/gapi/own//usr/include/opencv2/gapi/plaidml//usr/include/opencv2/gapi/python//usr/include/opencv2/gapi/render//usr/include/opencv2/gapi/s11n//usr/include/opencv2/gapi/streaming//usr/include/opencv2/gapi/streaming/gstreamer//usr/include/opencv2/gapi/streaming/onevpl//usr/include/opencv2/gapi/util//usr/include/opencv2/highgui//usr/include/opencv2/imgcodecs//usr/include/opencv2/imgcodecs/legacy//usr/include/opencv2/imgproc//usr/include/opencv2/imgproc/detail//usr/include/opencv2/imgproc/hal//usr/include/opencv2/ml//usr/include/opencv2/objdetect//usr/include/opencv2/optflow//usr/include/opencv2/photo//usr/include/opencv2/photo/legacy//usr/include/opencv2/shape//usr/include/opencv2/stitching//usr/include/opencv2/stitching/detail//usr/include/opencv2/superres//usr/include/opencv2/tracking//usr/include/opencv2/video//usr/include/opencv2/video/detail//usr/include/opencv2/video/legacy//usr/include/opencv2/videoio//usr/include/opencv2/videoio/legacy//usr/include/opencv2/videostab//usr/include/opencv2/ximgproc//usr/lib64/cmake//usr/lib64/cmake/opencv4//usr/lib64//usr/lib64//usr/lib64//usr/lib64//usr/lib64/pkgconfig//usr/share/licenses//usr/share/licenses/opencv-devel//usr/share/opencv4/-fmessage-length=0 -grecord-gcc-switches -O2 -Wall -D_FORTIFY_SOURCE=2 -fstack-protector-strong -funwind-tables -fasynchronous-unwind-tables -fstack-clash-protection -gobs://build.suse.de/SUSE:Maintenance:37755/SUSE_SLE-15-SP6_Update/f752a70d735c202bdf7ac2d425a92bb3-opencv.SUSE_SLE-15-SP6_Updatedrpmxz5x86_64-suse-linux       directoryC++ source, ASCII textC source, UTF-8 Unicode textC source, ASCII textC++ source, UTF-8 Unicode text, with very long linesC source, ASCII text, with very long linesC++ source, ASCII text, with very long linesASCII textC++ source, UTF-8 Unicode textC++ source, UTF-8 Unicode (with BOM) textObjective-C source, ASCII textASCII text, with very long linespkgconfig filePPR/ʀT}9utf-8e72e1bfde11dc46b0e51405b8da9bc09d536b4312cf4b201d70c72c8c48ed70b?7zXZ !t/柪]"k% .V8(wxn1n5h P&0x%mddEo%]\{# rsnFg ..'4g}KZ ỵ-)i!:9&j 05g0g7X4ɰ4_{=-ÐxHzW|NWFiҷ7IcPH˅0sJ(X<~•OoU9:BEk)ũ6_ԭh|9l+-Cf(-8ԄwۉO 3K59LDa%Ƣy-'/;Z1֙@)08ήɷՈ2c3&?eEP3]|eZ'o|Ԭ;*QMnj_ [oxsz5-dYGSSd:SҜ|>_P^߬ZeCH  \̣&yV(^H<^]C{R֎x$]c74g5ւKٌСɷFua`^gt,+SF;X#I/ AG?p2یnq;eI#eUսߤ,ݹab.~'ݝA!$]0(^.Wӓ|OF@fh(J@4ͮZ辦* @zu%!LVyacrps @/IUpC-7f0a 9mXqD>8ƴEf>=)\tI8IS#Q-SJ%70ahþeĄ{FuC> tF]jEc>F)Ʊ{{v%%>SSTA{vs&GUfS%gv,^Mf.0|gK:2ToQ-IeiD ;A=p6؈*xɒK:v%hȢeӵe=vD  9ܥ/b>cv*oB6WTt%7J̒V(pY'b>P/C/P@gM(yiٚjE6.1tL3MTovnB7$8+w}YXD.]y.8=p= x 8`>@VZ&juXͧp6'\ʊ;pc[0Rڡ{E~F@ݚ1ʶm'tV+ey3v:ΎPD}( 'x.ꜿČjp}_);2G@dCzdC Tr={JS}9˹@% y b3VEK}!?T,%qe"_X(_̏zBUWrEmxx 3p"~ d`vAFڂ51Gbà1?ǒ*{R }(o{Ĝh,+>?PܶjCvS{&8U(0J|8ai4{g NW ]t.:F4c>5'>SЭoapo5!Y "Mv̬COFݩW;_$f4!AE l>T D"1ÖX#suY ey}{">&|e[dW̖0i_/^cti[VGm"4%hz=c'CL!H8xk K[[bSdf4ILCE>Fo\>UlH ^9J [;<;l}b$suV+)6a429)b>7_tܕ]CGEpJ&\ќ0!-#%Fۄ"Ѧo4鎠8Fh.}7k/F94NtDZ-Pꜳg ]#,xϿppn<557%oQ`H] z-58ww}K`lI.2c땉&k,&Bv) wL^e ܑF޸'P0~Ԛp]LΧ eLWYu_Ӈ䐃eQ]TM95Ȅ۔OT dDb5\ )EˆJް(uBl_oDl ,6 9N!"L؏d@8!172.Q2HO=ܧ:Xh8s"\Tӑ't`kmc1u&&c-D};5e]ҺѲd_yF S)jlgr}MA@Ԕ"^W׊6n5zarWaՉpauF.$.UT5UOz| U&fŅhΠKoTT8$PF2QJO3mJ!՞8B` .!#4_-36SRSNB_YxuI Fihe[L]IIn|Ykfn%F3d!҅vNlClc0jw%'qJN9eQշDr!C(tt1ы|";J"݌11} wxE~ {s5:|d?4yx7.=94!K֎>69#{I12!!rЧ:WVvP_1ac+0 SF$̕e'[STՆzI[Fiз7! wc\meBY & h;3bM xVr4c٠R@Oɷf9[E+cs IAo Ld_6L7[#Ks4j 9U]=0x=E㍇"~#FӹkDCi2 S /Ƌ?Z?s[m+H+~(qkļ:%+3[]sH1FU6ks{ȥ"t'1Js 凂Y RXZև #J)S r&\,95MKRH؜Ss-Ak[Y_4۶2BzT]lF"Z@ 'n_mv5bi_;&+A|иGt?ѓ vrWQp`}/b6nݳ\\X d9aʣ,)?&28=Eu0dq,e0' ߧ @amZ|7f5A^Z ڦ֥Jn_X}gu0)fkS!{wW0Mf/Ƹ5>69]:-8N$(]>NWV`hUؾ$2c塸qu;rHhYX{݇إ-"7 ՘*Y1 nk 0ɻ;gsY4%uY؏QTXyt^Kzl$PioEV͞[+a_"ݯG]Hw3ֶZ" OVȏ.lfQǜ}I9kgQ;} *ȡk ݦw @N O(S&&݁N;u>wĿ؝F' 'C:p:CWHAZO&c(kX0&tፘ[2[Jz J_70ّ%`RpUsHJu#ie[\YsXb&my 4h$ʺv1} mx^")Һb Uӊƶ@A[F 0B7@,V~YO! wƱʷʊ>)9;NO_;b39c!Es\}.4$WY_;IeS?#u]f1@t%M3s嫸3*νO֞֟:#ܝ7hpJHOU[(/ewV!M@A6$(1JL81aw C[磾TTtǏ8yTyYD(\N )3gR;θG߻F S.ڪO-%J<l^6kSȒO)VlEn,n&݃ Tv8$rUKoBVe@JL ^|#|V#f1#j}8?k҇]3W6RlYI)6sVUƫ bǧgd$q^+J姫3C6y;b9zj</F vrP9Z\` vڼDĄ4Q4}ÓHY4זxG۰={*0I2 . c~g3f;Ɠ#c,:)= .2cJ VEްPKFH} @z%LDTo2N:ܦDUM_6PI`u )*"?F10\FoB_WpO('R:ǡl_euӆ"K,/W8 owj5UGU=4ޗfc1 M+"rي%E5}(o{G` Y`r!)__AtÜjjaLoyq&-3?h5ƪ J1o+?bYEQ\랍rM|z-4kr k:#s@SPOJOFF#*]: [׀>ye|g%+:Fdz<Jҁ G}Gue }&UbeH*̰#Z BnUֆUS\Uf[=Xhv&F8t6E`:AYopKxĐQaW[~EaBL&Q-Mt9=P>uAB3ǁڣ>?)QMؓnG+k3ڤT#岛kP`<\LOOC4W2eIRE,=,4]\ܱR3[7]e[ r 'XWmۉV;iWnOCV24nPp;tHl0Yipŵy5u4"V^P#}3E"mYT.pυ2E]CpڍŁI[ҎCzZ[:F#i[5C}1ubؿ jUdG"Ay9%19q UC`ާ08Gֹq[=,8='vQ6O h؍Te D*I k0vc H{´.7DE2޹ecAaxg\Vam;rc wo]VCϫdڇom'Wb /=2rU _'ې8 8l+6Z膋W\~}z^nFN RJ63ݡc?hxNWzY'+لHͣF(&ck:nߜ2S*y6Pt/Yج〖tuX [b֓alr~yFú 2 pZ)K%lW7?ߩ[P'V%2;i?]yLkmy"&#h xē}!)v^AY-)݁'dGW%(.!pCCt/Or`GP<ߞ.$xd,oFijQE!~`ҮaI@gt~DnmfwJPf|[DP,PZUU+2 xA-GA9r7o:-^:CldhPיq-A[:'%1k2L츼>~\[/[_R3LӢtvyoa{/ >ۊΨECI #aGI txOـ5?9Ԉvy2gq\OmK`|(Qj4dǿS60Mh2 ));<Ǧ#ofܤ\ϛ{ ʼnД_t=)0JA0В? ;.- svjhpahd=aw%gq0ʲCJϛ<\ 6e&s ~adńBΒZ ~+xMG#/R2VMl[%D '!R^ŝ_~ b#B;{Q`C,jd:c Q!H?K~bt_ܠuZf"f5وw b5n7=yA%\刂z@?+Q̄%c}71P;sa$ -%֍;U}VMx{vũ~rT͆W?ZW;w!F|hWxAnaleиiuڣOBbP]1&9 BueԘ<$eO@i|'=BM"sEԀ\:U `M95kHSV9y  zJR7I^8O99a ;Bc=c!emB=%9IVcڑN" \e>NoK=/`ɚ7DuKA藤fFܾV?6VEa7Rv!]ljNNCnuU=1{K_+JH֋8`bcq*dPb YKuB4CK X 5 13U#ݭFȝ `Ĕb]=.I0i[4֐3KU\@2B J`~fr"k&ÅNbEpy7$zdBњjRulJLNg|cDquA<_0ѝJ &p4eebǐ-q:pݺӀXB $B*Er\<V } O!AW&ɭ(m#r죐$殝Wp^j/hu:<64n؁xA%_[R$#ony.w$`sW6al!T;^HN^cN < K|4猨Ε̠<1RVj @Ũ! q^عEA Z>0_=^saІ i8Acy+4S~yoj[o R{!\Xmتx,S C&iAG&\ GbpzS= TOQ>.ՊܡQOuBW6*?o\A$F TӀ@ )* KIcaw 8C+l)ly\`a h,8 2 ms،sn+޼KjA}XEo|;rނ90&m{/=XK/a䱆<ޓnPoW%dAn $cpw( /KYeP'3a/+mpJ8@QL0(Kn0Ha+˱ysixg'dׇp*3{Ҹ:djsJӼd4~S1 FqCʆ,̈hBDK{ϙ9څ|ulj#1q9eT'/D̤X  vk(FB$K1LBX.f0{4V$9DZ& -U[A& v0Fʵy.rK ;{vyXj=V68^#A2B޸iVD5j80;Y9Ormka|Z(Y-`pFQ?bbyTgr=_T(Gs6z%vk<5ax4BTī7]FYLS$)3IRz\bT%>9&]~щVi}eUɹ;YegBIs ;BqOY;`` sA|Ņ#6E p0/͑0;1dJzQB<t蘢6=1&Ve_;3k#m׉ 4%fR-.DC/Q?!uŘ' z9oWԇ UGޚ@M瘑[=V7sbU*_щV ~{V5 vTHAta8*8C%6RvRVdˠy@@ص~8Ctf;Q11 U\GՏ}a1~ u}6 :#gn_kJŬQ𶇩]ڌGF| 7k0*U&/}p0 lm`+b27̂6$o'Lw2QvZf?|IϐXTS{ 5^b^ą8xykXVS:€V`DP]/]t^T胂3]cBI)$qnSF6Жǡ|/H_n5bܷ89e&("b߽"h2x95 +snnP87W6]jd`f,`aIm} {T_',i\ʘڪEe䋿V[- Ij^Lo#&ܮM1DE}.mw׆ ;9*~k1Q*="eJ C<֏8o #( }%0\ޭ8M1.*=.l,b2H2Q悻+4uAGHb ޾VA7 wr4Xac 8~=!|{y?1$rrpQМIі_8gйROH5A6|"@X\ # CE(z6e$ELE>&G6EL'd>v`)_H'1H3c(UZPՋgYT@fd?{CpM $qla8[Ӣ/zxAusWOC'oOncv5+ :~N-:`q!ޓڠ}yCTW`3Em-Zv=tYxO6;J߾ ҆ pFقRge-d .]1)w%]u\7ReQAinClu󇵝"Ÿ8+v!݃:Q%4< nai`@6Aחxs󯛢(2)9EzkgR{OĂ1_GW˺IU. v/R](u=<^pnTe,M`SX?RaTKsO?^:OGe#|Z7Q61 nneب輓4=%SS/ӕ8E mZM2C)2 75Û\cƹL&"-|ǏDj4dXWpJ. z+]7p&!)#qhz`5xD8ƃ Qms>YFo%e\]&vdNW_R-{[ E^Urqz7x JET%rJt*`+X2yIm]/k=u;EG ߉+wC{>w>O(/ C*!t!.z4=ík-9R̫w֙뙥pm_-joRI6h窼ꦭ5R]eV\~<n| <5 J^) 8ë3 An8DNt,ЖyiO%/l;5mF Y^GRBHvgyj0'-1s@9Zgݿ}{#OVR)HwzܑݪP6y552)i2w zNF,WH/bihq ,%/4j{0[?/f/=Hb@`֧r6˅hWm`1&Hw2~BC[dluCv!907SB9oS,XK#J?}R[rP%8?-vdÄ2v;cY5`s)}]y"U͕鮖_sY$ΐlks{#sgnQ'"Fm]N${>c{0_^&#l,j2jB+' ro꟬n)c^Wx$Wb e?qM 1~85 iz+eG$9ZPӡO6GLRd@^1of+P]$ӲyN e xY}B;Iq4!@!Ie+8& .$"%CgR(;U5275AޅCu S.}zEg!m$`(tޤjTo= mJ_$yHHL&5P Do[OtŠL67/)s2z8X8%o$U Dc{"0&8:4PSLMlM`8yok)\\рܖ19ZntV'̉ ZwڜF<5 %l1 רe<[ݟ }ԭmXtΛ9YC7/T^:mi]yȒ7UJeP^ cv{"B,mT`&HVwخU|3fqag)9mf6-(_>/NG%*PڱyS^W@V1@9]@ͩ $:J{2LRp2VAҼ%`%YV\.OU#݃KFEs:5h%lҬOE@[VpDFQ4~cd5F[a%INRsotv "\'>SjG/:2GcD[,wP 6^v*LK S&+Ins闽s(uQ\jhqBK@*r `S8[dr|!t9ѻ#;[71D^ j򬗴Lm:Jfu,>(ߵÑN$u(QQ &&j2.B]PIWdWxt(vmؘ*SDT"t憲@x~vq1zurTh=l3a\, )EQ(:@?6hRq #$A. b9jv5+ D(m=u#z_z*1څa H(xAyCUZ%uWꮁɐSїUMH:hta&dHQ Ъ! Sc!)I)4Q*igУ_he>ka*er \x*6ꎲC1} Z%E",e T3zxzb$=[L0-hČ.QcoV?|"B.sQE. M>6dcd!{~KLL|b,O$G⽿y4C\gRCa IhYeOQEtuih aXmV!<y-KQ_lqTyz?PgwY;G0E*|[P4އ,^/knWEEp򋎾ui.#Vgn>|6[MX*vP]7>>fd/g23| 1 hgO!wFCr9 |NJR^ ~[J-܃G =Ki#TMik+8]HǺv"K:бBޒL9a4׼/5B$3ɞnb)сg VPG\6΀;|MVXa% KRA!&ϒ{t%C۝{m>X~"&A0ձw61* :ֻ a\C(n Sʮh)esyOثԺk2+h ^d4(BjR \j\Rb?\$_gݼSomJ V][0TG@xJ@( }5+X_NRu7ްibgG;NIXuIxbxFPޒH{+@rob P820]¥E"=sWk۳i'CnSXsk"% z'w.ӛg2X@>M,-A x)wu\(G' ɝBr"Sh:/\"V6dM._CJhrO7QnǦ > ! ~؏i#9vN Efd Y&pxa|@PR9D!.$:N'm. b =|V/2껌1J07+P(?" l*6e+k9*z8uz̚&Mo]:/{\f3'yOFv'kQ%ß7l/Coa7)׶}y~_&MqMj=~ }Z .'^qz %#F':.~B+_&3yy._Q(y+J]\Ofk+T2[%3U\"^s`U#xO꿁|j+V ":2Pnbuaxpd=LIu7֘<䫳AK֩Run?!+0i g"+0\ aRFgۮk4yVbA(N#-z :"3]?Z>Ip.FN[{8Kb EsbnLV+j{ۖWPflwCW#bCqXCڹs]$x`$ o8pbM^m0;q| {}J >UC9x[ڽR/gad&vlDټo._Q5ReLkϣ]0+ȇ!ˆ6U%<p6;wFSֶM++du b#B\Tڒ-E`{HGykՅGTJvS//7*8-KT%z䡐(y3ZUִ*"+ vx!A ,&7K m+q%QIxki,MfDޗئ.rT)0j~u>|=1c:b Qnau]7%m@,]E_ '3xqQJ4N*DbBZ4eUµ. ʪ.]OF -&\Mb #ċS"ZO $/:cD7y%f =p9-VLmy$k˚XN<:FB{-VJxm~#˘70G.&XV74K+4/$~;Nv vLҜO\L*RF~:S>iم ec&?&#z-e; u9p:6h;m}AuغלC?ne+2,7F 2\܍*wjK;jk 7]\j1o,dv]XG~3\OǒNcjIR4Ba,i+Z AR\/%h!kњ*ٶBZt4wD i%IYPDZJ A„,b:ք|Zq_ֿw\[J@nkyåZ:>?F@[l GƉjȆU kfyM۾2s0 +UƷyYդU֫Ga}Ew; CIU׫ [pՓ_*R=ETU; 8] 9+4訫LQ@v>LrH]H.bzspFS6l"_cOƸ{^wqm~TzН@ @ Ŗ|=<:_FU97;;eجyIAt'@ pi (4+EoO t guU"M4l#)څ QWh򎫈J u%00ӓ5D1كXƛ`p(Gz QǨ2 391ܩzWjYXtǭd[Fioe:Y݆PU$].s,e o5L?(M}9(RYݲW-D}k2<Ӗ#8\]Fѣax0>{Ca:!:.6u%kf\ d!f/*|!RcIZaB#JYb 2H&{ Ǜ9Ob=)guOu޹ZZluTby<'‡ʟ?|*#\2t?P ˽UxEն7a+X8 O!+W}7ߨ|ދ/`hХ6i`$ONvʆ} fk{@&?O0XQ//a AhP[QC:r }Js@ x4j/h8^f޲+`?di5'ئ{dvIOiU :\Et⯸W:M)ޛ[² pOma {m } s`h ubb?"|X$[hZ_Jw<(:h#t%yziMBg%β P]:Kz/-sVpm/|F6}?#:D>&@uq;`Li2sa7h5Duhՙs#ߣ@Zcc-:{) ʵ 8RE_fn3օHA&p2 6 s#WUk`zI6KO [qAl>9-M}ag?.JiIw(Z'(1>/Ah^f*#QˮxUY.ԗQD&hA3'+BdW %_-kTxW=.@dƀR_ZVRaw;ՊWSՒppG:H҆s4A-qGE['H>q>9x2`ڳ:I Ԃ O-7Ɋ\B¢]4ND<\i@H"kWfxr]+1p?φ"E 8ǥfK1PR0uc- zpL."n  QT*ӥ0aQdfNKwZ`J]6)3dn'W=*`N sҼ;,Aذiz/tȠgÓ_U|'43C٢ 7\wBA޺&u;Vl#uV֎@r(m Ƽ8s;-I-8Y.ɪJf#1AzX{ASu0PTRSE9QFU)ˊљ8zㇿy{ g(Q=#ȶPK[fSD哟3|%q%V?дr~ÍÛVj5&nn .&X\8Z܀q<>F>:py/vu?U}||B'8s#aꏂ8AcKʄnU.h,E;)2` k_uaН1vaKƛj;+=s $^Lg vx)+ _}I/ȚM),?|ՀAV#m7ԏ Xi@yQ΂ZhvzHr !l3gg,)1K7Cf2LnojH1j2``fQx)QDf,5 \ճЭ9_ZL_^a)Av7B#M\ɗ QJEFP@Ϫ: \DExIEFn5dS0! :p*ݝUktB#TOD4\ֳU"s Ǵ cxBKvBdNWv<=nf*V)ۣr{"' 슣 FkW̴9dpC/S3 ׅ&8GP!-]DkP4`eko#u8Ov:x!N@٤}䷯7Б,mm9)X>BZӅh KL.-ZM)0$6eIfpI;%pcNZ 5yѡ_.2(Ry~Ĩ)u1zL)HyaD#*@|A rܴT,zsV"{QPl}:{69} Pm"U 0džoV}`įtfl07F[!ܚoE#5$3nflu &/1۷{$ON/-}Rߎ3߳,Lg%h(N&ajXGı~Z J9HB; 8t~] =fJ&w[Gxx n}7o J9ˣ P.Dj:귂kp ;z,CLyu bT= ؟D9:lPa_w^W"}#T8%DvEl%Q^TS+#w5hJ Ų=fahrWv잊%HD^gKcL$<3[7[ N81GiTIq`HۇY\# Z$Fp0MFn>o@$),}۾!q2gnn?Yś{B?&>1?oc'^^ğIpࠃ{I+d!o" P">?p*;N>%d= l ]éy^O$҆ L-ɬoa0?]A(W&nӊrt?X3˚+dž@rتC~V8\s̆$Id+/f$E} qw)d?!+~*&"k!|Y;Bj$0$xu̮=EgnbKw=jl7#Xxm*Xep** ]2:a+[^qe)9FU>2N"x[fVym@H'``:G.\6} yFjdh#)'Pݑ4|ߠ#u˒F`{IPuSUP'zM'vp95ޜќI+~{z&Ӕq"G*@x rtN\,p2nVEb88f>y-1v_eU M0ȩ *ʁ3Y6]*9P3zߌ? r9%im]㻈hO +B{tb԰+ZӓpMY#^ i35wdYwsXkcK-udFE>+.j T]#?jAe݈⏹Z |Gk*"b(g"#Fg*%i84 \پο (}/{..[SK/H1&+1Uy]:aPNnY3A6xSiQ{2t8kTlK%‹VLvlb hNS6]:n;"18o+xd"Kԉ{y,L-.P˚&B&-}>J x,awm (7?g 5?j,uka6ĶBءgc?MI)ngDr4I('T7"6qt^N ұ':(q6 in+Npo'lH*Tu($~؎Qpo:YB7/+kҮgFaCli }7 3kC%3E߰Ko,Xuƹ~h< $əԸz֞&LtӋS~' raMI\G4CnW]2g6+=Ns4G[JKsod${'Oa;{[Kv ͝F,,x{ [\f7,tR% 8<tYRf_CsIɒIEp&K,<@rxP5FGN+@jԊ?Έ)۷gCb]bsF"a&W2 j$>ߞR5Y 9 01J |A$;L'2Ywi $>ˉPsdȩXA+ #@ 0ZME,^LcInQ$PrSDk^kKes!0;G5]~L @_A4fz  `(zzW#_fW#p ZpS4PM%hУ0?v8(Y>9h/}*#~eVUg ֘Wqlvf}_ۯrP6i|UX`gցطl 30l 6/r@Jn OqH28tW7|wC}s܎A X;8.h)Y`_0y!Z7]7?_Án(B) ;;Kk8=( f½d.͌%9tM))0#.M>5g} j "]p\L=  Eq,+ٔAn@ 34dL3jWY~v?E 73Bz$)]cn;gjx>8mjPDo&tбVFR.1NN~نlb-_[~@\D7 *[>&%Yot"#ym,7V 6uBk GMyL.l V(x0 S*||,tư>|C!Q:҂hQT$1#?v3nǜXJ~Ez12MK/݈Ut&[T^z}If2&{=b6 5hYRQ[E> oWJ/%HRZ!*n[FjRbFYGYbOsmc$}'}CxqmY9*(@ J4~F"L]^qPw+TzJC5w7u/"{Tq`iwhYd~|ڬ`!qDAfOfFS*'z| k6(̢GZ)!sQ[o)="KhA|n)T 5(pK{C/m| o!__OD92QξNzV fxL=Md_h63{:S],k7Fh;3!1I@#uOh R&POMWmItotD[d(]ˉ}7ƅ6I3ΗOHr5=A|Tط_yۢO*a}臂 ԚҎ Zn9ǥggnC14MнEy1 6Sބ؃*AECSIoqCPkqi.ϩʃUYcװ7[) Б` 8|BBU!()F.TcFJV2wAFxR-GPɵ<\XiT/4Z[;?)RRxnr$t.?cg@om\o͕k0a梃uG{*EU Y uv#uj,u\*6FlLҞ9{^[:f1O:*-(}#쀟BGĀ +K:7B9fb20jkjSϲqSy<|dq\G! 7Q̓Sڣ%=XB1J& : '7* 00a+*I1|Pcȿ@[;+cb06ڛ*h+31.or4\yl؁b9E ]kmA6`&5QF6Ln1?~ ܥBeoU?ՅxSQJg(r$B~VV_)Ȉ )6~XƟ_k{DxA?ɂl{ԳH@Beqү~bAw'>w{Jtl >VoE(fqou{W 謹۱laᗮ_uۄ'/AZg?Dm$yU}?@p^2ץ)KQ]bb> eYrC1&*>;Z.H[̒opU~_o,#>+H(+T# @zjqے[I7?D̴ǟZQbn@J}V(<. l5F3mE31n@q˻4 SWsiѻ֮p~"h6F)%)wx zPMW-('l>%Y$ڻtc\P  n,nopA뒨) )Eу^3pAZq{͢\Eoc0/=/Jbt)HvH(J32Qn 1t$0Zצ ~8;%u'[Ԩ ^yĆuvIP^v|Dk!V *[RӻHK#f\l:- `2Z eQ;d''b6|Nd_ӹ`( bB~ȸǑ碋X~k؇"2fMF H {d@\?ElWz~ c*Lt׽f]뵇 ϶х-~2,dmaMi*N4twFl` n.cʷ夳!qeejEx_O>a[3$n0\_esYИxNlwp._G{^ ]v< *p8D  ]* *iӐ}ݏ9R72?kgs {hiXMe96 O-n'yoɺ o`:wq:`{Z/O==WHBT٠Pt`Np"?YT}iI$Plo m@AG[jxI{ `bPE1wpuMZ>'/>n>f*fA ,nD9wcuhʟxxJm"Z|8ہϩ+iFh&Wduq!U_lT6H=c*p#pN]Pn󪦸i=4d8pڻ!kIBA{GB AHA7PAߺN%haX8p bF]ohv0B`E<=EJs  D11>, f[o@jg!ŹSߴ)+MΙ$rl 8}J;(=xwhpis_m3HC/,'AG4gI0DZq=ުѭk -[H:SqO "ݱJ]""V5<)*~/GEeE,Unnt Uqb!E%+q BoU0< n4J9!iNdDHE"Ġ֣zkE?[l^XG5 -hT:paRO!nL̐a|P+PRnA(>/+[s@n~ߕk\( t?;0D\/\o~]Yn,-Z.tRPӖ߇{[o?Ȥ )ݣ9'ݡ83*Om4YA3di=L-^ӷ4'aF6N;b.>`spo+g}" Zlu*;[fWr:!⸚PluO*@`01> Wh( xZx2IH㨙,Ǩ|#G[7ic~n'䯇S%l1.qʰv}cpG 429;dn_Pd{u8 EA#k"{(s/OMww=L|=MU[+#8 .l[_t"$[=Ԇ//:i؍g\D:-.&ac?)dNm~tq I_)z7頃} 7`Kkp;<׍kDy5.:h @q+&8H)XP})-Jb@G VHPރo eOKtLiI{K #r5m%VV$#+*f`$򓑕3f*H*sMMYݯůP籇904Z d ̅'KKԍ3#T"V7/xt?jAi)bD 稡c^C!ۍ CѺlJ3y'NE 34 oSpگ?~IbDF0 XJ艅tlC^G\zɨv ы ɱK1Fу7G~y2hPL2.- xb7k$iN Ԯ^5TMwIg-VUHS%렁L@IiVCBwnO|D1x3i' S88@V^&D1$fLG䒀GMBOS\%HYjYp:v5cj>Ma`Jlܟu-mx{,Gэ\$gR \Xa8ls0vh2Iw/#]Cz>[j ҷx4Y߸ϘrM/%A8fTÇ%TD잀 GN-1 #B 1$aRNCEͫ9c- PU:rTO`IF!,|"fbGeۛ4⏗"@Bꭜ6TFl'VUm'I$* q#nݮ WnEQS8&(w«7솊08s2.)yA#S!ŷB(7/:Zf^q!|նgd\)mv9آH#!{x䤊{;_Þ!b1$ubۻ:tzkMy 4v U*cqvuŧST3\%;x/ ͭx/iYsw%= $:P% 2/WS&^!Ej|Q;MNwtLTy~;1 J! I8bfC-5 :X/)_qԐ0yϖTa?k<+"-߹ R{^kȡ:&&P?uvoQ+|"?٪^AǤo=7ik}rpj7>\U+\.x|vF]}E-[BF펖=2ywNc++-Y tí4f;J`i m(d gڣbI[W> a>y @W> G<( >?ɯOE5gPՓc]V0xXޢ5Yq'n{KѠޯJo8u#NkھUTNJRXԍM<<L 3.>V/ǛI9 _H›maX2!x᧳Cx&d/Կ6M9<9iټЪNu]I#Jѿ~\:$SU w>Ҳib&):9NdO6{hm` MG3@$.gi`iv$ !yJշ=>FD@ @J]^u932',O9[0gv\6Z alsZdeCΫW74v#|}[ch)cܦ"D;`"Yz+$hZ$b32~ P 3@K\d./!a3LEiMcw#ŋ#XEucӘ0]lWA5Jk8__4 q*K.3+.pK9]`/`?i™$7Bnza)9z十]!]n lpC '&йg.gm툖ls[UÊ3bc,OӮv{%27Ϫ{г;%} #m83e.Z qvJc@?NE?D7w'7Oʽ[E:Tԭ#t M7)rM/\k5+iNޒ zd8Gg.Rͥ`ƫ7SD'D} X=z;[Ux([àYH5ݖ]^Z}$1BU˳. ٗ' ͚i5~[ ^1yJ&n qxV+ޮjI{Y>=A,Lۦ?; cلYοOG~21=(\˳7})!+v: yڮɑtkIS0 ? jC~삋TIFI;[ZkDI%Ms Јz{1z GK(R+mse%_ƅ&zt~Hr|=']O U;bJI{P79RTx)ca4WU#qy%;2F %d5Mj~  l5a֠^HWP"q/F3ޮZO<b7!)O"2gp^ Pb?N]UF7w)6MG]MzFR G JY.f"U>>7 [Y%FEH^Q[d v⒑.<8NJQG7<J?U6.[B lZ煫΄whzowXdͨVs0!Ah )Ȼ3 x NBؤ8YboZ Њ!jRϱ@ETE;_X?;ER*],h8$WFP\Yh/Lvº7Ufz` ecpP:EIkQ:jP$ab^ָș1~S^Ƕr^BRi#W;_c1`3p-,SGHAjX/6SDeZvzyV ڎ 6C`pڣR \ycHL@J  }'ѹZh?3gEL9M~UӘ}6̅ 5=̹Ζ ܀aQ¬e'V+kCX U1-la+L)AH+xт0BҾ(,0h*TD}kP<[ީK_ش]&oC-%ZpGe7bP jLaBՂ\R>zD`Hi\ 0|ӵ  GΩU,v\*7$)RPfOP}x3r=&,@d&f8$.o\IUa:twGO^#4)υhN#)oTV!~dc6i[H4x\bCј$"#?㏆j櫹VגU aH!ƿ n}@(^XװP}ewmr 4&+*Phu\uNʄ?bA dʰ=~L<NC.s#SN6T M%XA-ؾ+]l~'[{K(!ޝgB1%8!K~Bb4Xtp8v>8:6j| /EB9A0F(Z,A Y- CfEFTb)q9p&;shlC,i`<:p7)ŝFbisPFܗB\ZocrT@g/fꮹBH#k#O/X.\'%Vlpr@_;e7MR*=U,|86u[,_B37?J΋9eNjZ= 3$κ6S}؝{"joR;=J1]l]'<>Y8̭_/j#, fdPȇw7q-LGb ECG# poo۷8y &1nwyZb/SJ(kR*Nʩ 9 cq#8Ofkm!w'S2u!?O.釻>.F!U[ιT_t\VZ4VkBNKhJ)"-nnO|@fUIw^ʛ4oɕPYaiN<@(K +1`̫aӹ2H]R$oOpp1dslҶsY7p yN|/e-t7 l6Z|cڬv\ѷt][%1b2yM+j RI&)KUVLĆ [q )^a9[UxNZks ga=OJU=ᾂlпժcRi[Ve+$ϗc\z0Qm۹jQq(_=ypW'A<)!0-8xyЊ3yo}w/v#zv>~GEKw7#R0)l|#YK5I#tgA H>IF.a0ga8YO8Im,0~JՊpq׎GI\e$[rײmzdže pRI Fu&*q?6DE?!g:RpCl+^_(|A$DӞ9'p$A݄|$g0/5[W84H{MBJE3'7?OczI9c/nj`')eBWx^>uF\9=iY!ܥ V7YTu51L&$I87 ]>:7qt{#GۯeͽML zT,P>S,#o!5C4DG2 m{p*(hF%7ZU5^{ `wp(_V>90 U۩*5 r=(N'1ʑ~  f^&>hca9D CxP/!<0P㰨bʶ>)g2 ”$? 8R`T|Zp25)0~4ET-K [&fـSlV1,ɫb` dhl;rUTf6w#rk&Q Z@?D^zz5Au~JZ. !W6|` TefKyb-Q)z9Sl0cqaY?ކu dBX&ilZ2¼WZvM _`mƸzKc/5Tb-nX7S ])bd}d՘zhwv&j*m1`O3r"$M%S;6&zq3 |/v"Xлt>|}U$g {B[ WFʃ-Q4l2-Y[$epQB=%<1u+,bHpT8vtcHDuf92)Sbv4~qDf s rfE8n1]@OĻA2B2eڶǐd&g} L'Lv( 9p ij 7;OEO+VsA+<IfsAWֈk[){Jm+ 6W);Σ'(,2s-jmmV lW>؉ DpɊ9ֻs~J7^I 140`6Ҹ'죀^:`lmSz-2rRY#G`VݔcЎ+H o<9^L(o|=s^V4jcT%=¦o)؄(#*H۠Tpx ^|a_9%JͥB PLub۞CF53E]ذ-Rn춌 g%,ͨ&4-r#Ź@#Oԑ:V7Ȁ'6e EQ+6bKbv vT3VOqz8w[Ki*BXtUnDi $vϒ^&+ߛM1(0 J2k bFёb&4LUt`D>'ܼ?1|;B$LZ.`G%G N w>ƛǓ+sY< -Uޝ|^3FzlpϷcTNsW,^TPG2!~uml~d(o> :E&jVHrs k4JqI`9϶%ybG`Kn76ڂDB aĚ2g P`K9\bk<]e>=XXp5¹O`d7T xE=Tu|(bق_B@`2r/IGFg(ZGM`堑3y_L Pƒ ֫Z 7>u9RፋPZ i~GΩfGLNǽgVɒLӂK*?h'Έ&gaM&/j͆8\ǵ=Ը 2B6sցg&TλL <xsJN#SomtqtT4;s#lLVЍ8k0  s)GB.I y!6 ůUX!۩\u+/E1 w0F/jgȸ0`)0ٓp4:?^gF=v݁(IiO:ݺ $S:g7$VRxh!wx?DapgRi4Lh?…7mۧ|rJ}퐙U4d~}4 y4e47d͛1,; tf'>#+^=$n+{5%W!yܳk\!Nk3>=3Q2IK4ƏՀiK g!#eċ-%sy{3!0]8)YKE=4z6>-vh|0.6zc@}-|6%hgQ ʶ| 5!N%0&$S |VdV…XmvXcKzkA*x"p96Ƨ(,F䉸Ԝy)L6& 'v˖&ҰV>N ^6w3_UEV3F. !{7a&v֐ -Zf&Dg7ϡE:qWX'(W=[Fz 3.خTJv^yU>Ŋܿ8Y/d۰9pJ*ݲza=1ȫ6Զ;<zp'R)/`;mkR?Qz1䓷˼F\xf+/ 㡞}mi+ "={)`$ƬOJ2Uk9~hR{So)l"hhv-@eH2kث!4SNu<IGI?u]tiM 3ר092ɚ  e9j$JrC1Q@*$9V gr賅k&,Grdq IDgP8gQǁe6|$#+~5 $ӣs;e=e!baQ8AlfVfݾYWJt2]##nW{Ϯ({+Զ0]g+eŐju 1ަv8H%-.tIW)L;8Ô.5?{e[o  pg7rk~/"%AϘpS9VUFq5S3v B+[xET q1aQ !o[*'f-ml6%W|O/HekvE>pgŖ3ptǩՙ%I5s:L78EJUԽZ,Fd/ N,py_v-$DB$^ޕ~U i_UV ^OA\hL%M N)0h'_tj_w՝(.-%XpĦc a${Y 6A잕_1i$佯r18 `/bPDϣBh2 %M>gu+'# p]sq5 vGxh~#'~03 'Y}ZlaBEH^vy jSP"9Ɠg˰P ެhBh,õMc[*"4ԔSps;ך{Vz^9tHGZ<5qZ#.$ cL =(8DFΞ%GJ )@"kš(BCS0~';JR#gk?@9DN]cV>z9~OexE(y,Փ:[iE޻ :n-'9*^"M 3{tkK-ԶE).k )\q\}`kA&2(w> GF$DxmrYxǚ5޺ ~raYWaR}E'*T6R:[K:ȮM`4򺼬ձ%fܣEYbֽJGɶzV|6fou'7>rn0"E6AHu,>~~WRr>kbFԸ?0+K}DK̂h3g:/Q;>f!E{K䮜oԞ:9[駰5q@7HgqXnɅus56W(#WxǢ58JdE-DRG8X|8&Z80`y&yѩN`Nj3q k퉵KVbHgrjύz'pnSdּ?M&@J`E'2E-#iM%݊y.)VMG#?_UixȘHG_B`ٺ@nؕ`\o .,@0ԊHB)f7qDB&o"i 8&D4q8\\5IIމa.@ODNj[ zCN9wۖ$6U[s`aӺX.)c48/KEzf `. n.yM-smDxO pЍYᡍ+5懅.<ƣp( &Wg ;>h :EIfvL9лˍ**kC"9kMI$TnBɠ?_mb3GW^Zẖ_R4xe{Zlծ[l$}͈a#&Q㟴v4#vnߠp>_OO aMb V@\F 󬮩fGp9_TW'_j.pY$=!y Yej4jY`7q$`ioeXjT$|ҭ _( B6^\ĔR}b/Pfjcjrގp8W$KfсyVAW袝1gΡ}np~4쭹RExskc";8F4ï~QO%=hTorh%J 2L8߻;䳍3]xnf@>+W>2;E DZpڨ$l8 !,8P}3]?7[c\r/<'aiĖQ^s't6b;B]Ss=Ip#xA9ge>5(bw%1 A!MWbBN v)#UKT*tGǚi2!U7A SvK3㎔ځ I5 +s֛x؅A[=\t A[rd/ׯ[᾿8^OFav~-MM^H6˅_%=_Ar?VGkp;tR1eUYےb $'~E1ƥr{s `/N'4ݹƂl_@(Ӿ &g7Vo`U7-r}H!+}oC 0h.8Hk 8hE?`.Rρkf9).D2C/"/)ܑ2ZIA$T:S: lむme97fؘVqaOiz;\NߛN?'YI5siqT Zw8XtTp8BiCVcw"ShTxsr4Bl@0zޞk̃ <FU q!hR"jҘ_-(k1oeWUMQϋ F'oG|lUo=5]7אBt>-$ѿJt(my#쭔iDG`m¥-NxGG#H܇jTF & 9&gOx掝j); (z+C3/kPLo1^/%~Ve +f>CrY/d-ܷ"ZU:3m1= eMM\VlEYZHZ{\;;5#T#Syv ϲq5 QD8c _qfuY\gF́oǶ Pbuv (wWyLMVv)ZlS[~?Rx۩*:H O읿 Yւw;j׾AmQ͕rCS6ՐkPQ2ęfI~O !*ԷtπQ°JÌ,ktUgbeYRc+?\=#dNNfC$]YQ,% Kgф$ qUxI}Wʁ0S빀M>$zd0jī}^< !+0dx> lC|+px](M c9o^j$kKM&XDpya#Njp)mrs5,1-l]L'Ū7L{bOt>Ol,d*JF S +<#bVغ<ddG q:Îuf!$ەjA =cS<3|ݥ}iߌ^~W\'_0^ոhc^)E؆~wDX]q:\A]$zTqVRqM`Zg2O(s<ܛDCb`=Ʀ b9~ȑ'w=w8:2֥ϴ;{Hh5M۟ PO2!)sw/q刢 V0 I:,ߓc*.)`nj1;,yTGyQ-M<R@@D{$8mֺ( {\%e)ۚ|$HZSCYfݡTAU&ؿqLTq }Ѳ&0MdE1RdhiU3)d-Ǵxv;z&[1)&=Ikx:Ty$F_8sOTK5Lΐ]?6 6? _$hʞ#_P(sW-}vEup.S F0:k(0ysxД533FKʄq5t{oQe wݲݼbHL@9$Ǎ8n]>n- DsxQzw (mqwGVN$xZ펃B87Mm&v31yOHhn&1n\MH3 7C3lCNùLOW-h^҈? Λwh[35&+dXRV#BPwو" s /\ i)vx^;/@JILiLr/5ϸgGOF1g0/rIL =ePބk&[ؖ@UUxuxb:@y f0-/ I="X-dLru]82dt]6͋k/bA~;q y_rz^btv Ծau'!͍Bn!W]**/60h)G?oWT E 6PeUt1zӹ];6)AOs w96srYҕskg?.vh(v9BsJ1n4l>3@M\s1驎bԑ|o^h:I)Si߼_xRƔ# u¨v9,qsȻCPIe[0&qr'ey+O)5koNd+[{}X u1w[FFaQ+:ԭgd8}|L`I#Yia&eG$xX2w|Ϗͯ}9\emn K..r;Fyo85 c`\3)?ky]-Z1"4^x7XYlqNVL!f$Z1ȄXn3t٪ G(5KkMkx64eϣ_g'4{G\)dp6Tb xƙ^7$e 0L`@?Yϗ_Aph ]cLE4ޒs 2=gfۇsaBaӢp}1~l `{`fw>fE.aBຣͧ: x5P^c!Y_afNL, x H=DI`V6+_&\ح(9uӜdv~gyǯ5ߥ x0"q#sz֧ԡ8_uruA˽C&:Ev*"s_z! ¾g&Ǹ#.:E d mU"cFևns9~^Y jIpMg_3l~u5&`1>JX/ԙm)&nez,;N\#_&5#=ՂWwsĭ%7Uu*P"UY"q Hf[$K9=iƻ7XDr{/6wvE?mqd CF#7bmm%4*LP'27_`|-L@}. z7Rk(;fHm&dk`ygLu~)= k:u#;!3l{]J.7V'R(.~sT+w;_y% ,Dj2@A%tIn@H{bˁ5gdP~LnSn#s֕xn} l=2 q$xHW1cW,!N"6wq##-]> A3*~IWB2#a"L9y)3hύ$<9 okV@+f`7cGOfA0k(je lB|ǘU8hno)9ZD;4 Gd[B6đgZ:@"jH@ŷ-N!ۈԱw]{y'=YKD/p{u17%{c z9=\-$3xg0%*b](NJR7-ȶZ(1!7x9cL_cO-',,7 -f&.u]#lY\H 5~jOjl=Xκh:]]H'TCvQلi͸G$:!#{L9VJH387x;8{w q{4$^U m8 <+Eŋ)J܎A K GɯUX"MS_Ԁ}PZXP=^s01(M|'ٳy88b(bz=AWI #XS&X|J}m{đ+~2)܆`f~k5pa@g >`TFlLV[{3۫ү.lG)ThRK%|vai Pz0J:ʕNe[_GZtax V}`FV6[blAg2Y$^4QkW ;!"gEiII" aOu%'@x71¼T%(b,ԺmdMv>ĥ{[]i}ߞ"lFzҐrw?Ku>SA^PQ &NXԁ7e N Ge= EL*ɐ1^o?a:-&pk YRvέj1N5b+MH`t,8U -e"?MUĩ\ז*k2*UHPi3Hmr*َGZ&ŚQg4MeisE̩\@5(zo( N_vd&dsڸAbfβViSz$MSJv3Lz,yrZi]%+[.Gi/Ȣ (4+"l t8B3,SRa-PXZ΅Q^NYB^'* ]JIx/$?x*?{zZ-,!Bp5߾5B23t/KP&WZhJ&@(NSesK7phuá4-;6ABv݄Ci_mvf`b*ƍ&۲ړ(i0NZK0ԏS-ɿ:9,P)ۍȭcCDӣEm 3KձHs)-p^Cxn0)j't(^ʟiʥ}8_PЯC1VWyͰ-CC,OC e䕃^A8gieh|aAM_6,cҏ㈦ Ґ@v3UG7 j: nܩ{Z/(/} '8wvy&;iMT#krDSm?0peqA:ٱV^K5RMBZ@%MHYO=rtV hUh=9,y2~{+ݘvx>Hp{5KoM-#)2AW7xͤS'j:T)p_(_W7. vG8arS+|mFnm 3 W($!'k yahtmոfBBn.Y}jϩ9.WO( n6| C9QJN hvu᾽>6iy=8zm+5VWX_j,1黫̝*h+[RP'ޜבj;kقH# h7W: *G8#]>M:.GIZ ]yU|Q +#ZD'3 iqM ԖV8[bC^Wq>6=ʁpj_|H*z [f}=c]ktO_uU!jݎ ʚ-k`D>;n SCcΗ8&U[#ȵ?)+ڎ:5݌YNgYhQyUU7zv'7@eC?%)x, wE@`5+4 cmy*mP "f#3k0T SJfYKD׀ecDk:mWMek1^F hXBX' vQpEwL+H/aR )2>ÐV25"믒~cl˭ЩJbi Gk-l}8M5L8ĠqC*GFQwX5 G@寚4h,CeE@^sp2+ޱC dw8u2&ڕ:+֝ v.xXw<7dSQJ++ଯ∯{Z?{7+J`/藄3 6H10݋@QBs(BPt#[[E tSn,ñyOXO|:#Z1<t-/lCXbH.M~tVBD BeT`FZ7p yҼq`X1Ѥ}5K; VxG:eZ 硐XV`pY|w3Cš1!fYu30eJ&(̖,Wxī1LA/YLbY(Qz-)I=M| |8s7Ai@uX@_W_ŠQ2~lmv oh 8Z:w;.wiBdQ*ExNNI3.nTDȇ}ê 0Є ik$Ӟli |#Aҝ(?R]n8OxfٶYtB!X[Ě]SnX&'ӐiHKࡇx\Wڝz)XmzbJ?DO?mx5!=+Jg[#q)^ S%ΑJ9jezCrc4Ӧڨ}cC% h\ڎ:\ l&cmʳAd8#֧RZUc/~`N5.#``kR2Y:ExI؊U [i^ 4\i*aʌ!tdh{w"4dnG~qQ a9lJcTO`5wl-!;[VDR7[~Щ6[Lk#-2gIX8yW\"`DU]ONlb'RvE"yIR9*~WsV.RوR=KM  6!REv, ık\y{&Ԩ%3|8<~#*ZڢL\f[zE 7|a)F ׅkP ]l2IMQ&j_IZ:G()1=yK`QX $ M'N6POH>˵z6I1!cyMjGɺzT'd ]V7 Nry6˭hܒJwN8M`B bm-f l\hRvEa}4:Ư߱!ڲEMRh#)`L[J+xycR+ 0wo`LWF~)vv/ڙr>EY4' G3prQ'<"cQ[VgB Ʉoݥ4\-K3/Zb$F8g^j/kW{C屄HCY`Z.D8B݁,PBMpLlv0V(LhO5^iB\ܫJQUAvC-/ &{FO2k&Z{X4>n7u 8D\^hѥ`3.0'~3zZrG/L|iBfB_C*#(V$tیxaYzS)JwOv=6%״n(Aw`{2LP\_yApD/#۹ܬ0ԑhݳuJ..D%]aJu. 0mZe`Ǹ'Q  SBAtUs(bTw}S@]{cʭtq2%09?0qTg5\ys W0?: W)|;cҏS1`\ 9) }@v…>_Z7 ~W80TAT` Tـؽ"ѣtc[gb,s\"mt~|VrܪĻZ>܃~ϜԌQZnr-$}~ +=K \zQ2 Y{ʀ&T9&-[lvHzۘB $@*y1{j;۹BWb6(9M/ >t@)gF g6z_6cwt= "1fMgG-H 0MEZ,$~^!8OH@I$̴y" YjQGΗ%,&ѥ "";,r~W/mxJ*I3i_V4L (oJ]3RCߪښ;~m~͔r/yg=wK뺋&1/#f|P&.fv %j:Bdа)s/x7TTp;fYUb(ښ.ňgKv-v>;nU]w%wy1A`j}:,G{-ᲆ&6a/C~JՃy~ 4^[[ߗY ~@ ʜ $# 9⁄p+d@ݲn7uf z5*wP(c3'c:`82!>n~j"Fk_sA'c׹gɧL'ɔ hpOxpzWk:<=R4%ܥ+ˠ5LW<A'*RWc0Rgq!fc._q9{81DIY@yS96u7I ̈́_A'+F畜ȑ=¼PЖYxiJpqZlnh@'hGDs#a'MjI0x{j~,gZT`噦/.lBP.}yeVCRXVs2?UKp7 \hcJ$܉ J%3% j\.ŚYΰdMwC;2sTd-ĉaA˫V3]tZps3#rAC9c$<`a@i HrWy>N丼$H+!g]D=|y/OX݋o'Ӛ u`D f,ŭvŧ[US ;wߏ!0Ә77o~|Gi(hTy8|;#"ͦ'ˇLR@^8(HUJ e"@og4[ɉdo: 5yohܐm |_vlrhS{C~ :dsgDH_E 'bK3$הͳUQgR$H5k; #]=ғ0F7l S'-9U{;=e̝ݔ?-x6 +\\`tP=xN ' _ ܊\;.߾k \;ʺdp *)ͱ1_$ c(6_A{lH;Nz[]FbDPO-m*:Y XME)#=WGXOS;grhzb|~m.X_ؙ0|-MY*LHXRb g0c/0r&-ۣQ-& ?x3diH ̶X67]4dp֗/kEȚ>ä;vvjXiʸ[TxS7|}&<5kt}d21b퀷) hˊ$e("rX ,tTZlGؽl ;)|st4]`@pL~1g4aFU.gK *l8F+-JmSLd*VN?-(#G%2c>B"apoj P0daTUϚD fhK0+kh4kꂍA%Gz@W l^ꓒ^8?\w?dIo^9F9x}z慖 Y8OxlAH,V:r#]UA7nS…>9)s)Yz: gK!@AC?խ+lШYyl8lH.S}=Ou<}H,P|H]tı R$EiaZj=>oً_ \skm la|}/ċIv5` n+80e П<"M__ޫ肕qƁo“ϸN+/ s&UTor0'ǯl6 &)'~*9;I +ǞDdWl lj&\I0yÑ,SL[֠S<{"RQKLKh ~zRZ>T:)-V7{82o W. ~V !]P͑I{!p+RGwb?Nz}Fcx~AG9($w2œ!T­kd B͌ 1'zS. ࡤ/Se: P:Y'y\ Wq|s?oP&k]hb~<e$7)ډ$Ǎ^,'DwDr@ƪݱߟJgeFpæaTuE 88$uåGTQS>+2X[d]Q7+/XeOx< 0|-n+  Д( TnkXΕK,Y e`&X¼ Ca {Yo,01Bx܁©IME'a =SϴkG]^5^\hЊ65F 3ʽ}!W-}=bL}>+ڈJ*s`)WVb-JOS-/}3*RJ|rZ)w( Ut+߇x9Ob9Wdxfa9YYfz}Q9>4X< '>DA U^ϐ){a'`\`%οGP5 <'X0\wqTʕ4x (ʏ]n'o+~Ji} ):q}|O UcL$ud5vҨ-%AWȣteS'{70xp+3zXtp[VRx*UŽm ukNc;*ABY'R"Vx8/[20/<)@uBSFc`A[fef/O2]眞33CEP\3l4stc^S >\: ` )A@q *\Cpj#ΊJҵ8=C7Re0'زQ$Սr¬]_M> 4LP~臒C!=j:&ۚ]ѬEi:prVn,rbX($<.WϾCw1AhFs:1o::PlVߵ®ܦ3 6>o|%|nw0 ^)k*mX]^Ez@g\nNs1grP:qLk=q`wrrŎ+gjOX& 8$CH},M04 afwk h"h!eI1j3^7޾Y>YZ>}(upRl`yIfH+Obp,]ǞMbQXb05UIODHmN} *|(2[B.ya, E4on]OOv^Y'%)Ձ"n+)#,{]d2d3 wV'$B Vvvk A8_4HFqj.4.Q?0m^R'=7=M8=O$sit# 7wű NILV/%.EEq -PkZ[Y\E =8 )m9 x2 ?69;d@ kDS֍s4 sv z OZ2fǸ¢G,VZj-N?i'@kg˼ŭV18mRam\]O{\bH8q͘0mZꖇ8l؜59* 3 qK-Q `esF(~Hb۪?0A7lQeWpޮM5.F4fe:(. 4~zyH-lq-9l$fA„'^CYBA"u9&t اn9;~!hm/ŨFK׫[U n]ǝ)ܗ Sͱ`F}.H]flAt+Y}O&f*ZAfX!Ꙍz&8jaQZ ^; }`(ۃ "(7bU4BcgNN,n"Q^#>*Tjt} F>mL.+bS;jlZao| % ~ˎw%b7E87cO3́o yX5G5XBSUDq#>A,[t˶,=Pd(]!EaW52iH/R!dwh1T5:1lƀsF\z|Fh}Z^m\F='hWğCbFWb*ّ@C%)'; %6:PQH_~kJĞ*\)o笘mF:m*Gxuu;F* b,==flܴƯl$ӞfYMp@'tZ5aGs ӧ"nէ9 ed"\P;L?܀KY+vvb HwgXMi*YYn 35jW0MQBc/6n\l#dBuRf! ktO2 w?IHu?t¿OlKe (H9U^$}Vz];Ҙj2:Mc!<(0q |Bp7Kut~ۖ. \jXN+at UKCHj LSE ؖ`AU3jz}A6l[{n?О=P@ .Bi`dK` ʊx"D+ V0x iIdyA%rJxvA"8\Yg4 IG.yt5+^}w^} 5iG\n!@$ؒ?l(/k "Y?2PkOp_BgOh7% D[걘1~ @rcoD([*~h CtI1Jk3H箵232*R=R@ gǎ\$r80]i֋MtQ{E;_r7|N6/7̘Z:Y)o5o ӹFX^Iy 3.AMHggL<4{R\YZ< %!>D6{/ -o-~H74\i5U)Ny^lElܙ+""~(ԼIm̻`580Yz~P9٭[ݚIifE J+5 o k"$#tX+pO A 25IT)!M5.ޟ^ ~H"|팛~ePWUn2sɩVj!1d#T*p!1ɚ˰ɵeo( P H@V=h<[Vm9| ݝeP˽,JAޔobpm$d\S6Phd֧2 [Nȴo (9Edz_b9ZHQm[5+lNRs_}Bp->=ׂb!V&"̂vD^Z0钛7%M0`oYtռ.hop 6TPdA2=XkU(_C1c89$5J@@v%&a>]DuAr }wϊjyޢ||ZlhKl%>M,#ZcDk৪boʗA  #Yz̛}Jm,>V|\L-/<_vg#J0r\ BbٞSgcfwDsoJ陸o,G]ϫ ;\ACkYk ld$9Bȝ "T~z @"{r ]ĮU8xB {DzWqzo E5qwK J m$9}IԨ/ǵ! 4xKkkZL}ǗH};wi\;,`P[8FREq5nNEԌ+qAnsM"aJo)`#LUxܘ!8K޲ePYٳ:w\f6wh'HPbxx|N~T{S>a c oZ錛L=吟ȷIނT@-Cj˿W ]./.EJӠF+#ӣxؠ(%;8ItUrjWuɟv6,Wj ֿ|%J 8n3JFފ=‡h9oe,1p8$ߙI̼vQhؖq-?slxKY(4 t'ТpG\Tlr_u]5O_MrZaUhT]*xPKE3c#  #㳼  ˪ﴋ-M [IKɽkP."sXL/p f8:}hS 9WR&O1dP҇; #=|<*ťdyǽ1n*po/+>Ajp Gr%>'ϐGJEOfQP1"<돯7P?}a^^+?,܉7N RY)M~Z [jfy^Ae ά T9GS>;4&N3 ;J}9H1"L($xeAYf8\ ޱl1\EY͑lȋ0mdU9z]='H/>c8əQ½U(4 .6ʌ⢼Oe"ɓ~NB^RO<jjUtjɠ("$@{dr>H]pNq- RG 68Ul 0IR]S"0nV.Å}]Xy2|=T\ְ9QZ'4–\6 1eTOWif^#ǿRӾz#:;{*lVʨDP(ɎFUOgr$neZ-qI>^ x˸7N)-`<ᢝ< zÑgB:_axxgA.JӠV2!d #@ŰGCyﻕȄ^:BDΟd<~K8_ܹeGo%qC05HA/fs=Tc_e`X4 |+b;~d^GcW ΂WƏ|1iin\(l@@#tɑ}we\YNb|X89Kk~J:.~&i̦+U mfׁzJX5/i0tz`@zhrj5GGlnhHxQ(eo.wnw|h4J+aL*qW7vH@۷ZZVbk`z3KNsՁ5<8/$#ၪOK#<a](؅2ġl?20Zd63$Sav)0pG4Mt\Gs:,/ ~OHH#Iu,s}1Ai hs&k{4}3 p?5qE^VI=De2VP0?w'7M b9*{JZfp4H4D\p{=mC􁛼0b%fn_v[3(֌/(]G2*eYy sGb%P1ݚ'qu؝%R4J} ĭ5gV0Cyr8nۥC1ƾxSRM,3$VmWNRiwΠ*?XOu0U*A,DCКhNrl`Ӑt(Qý,(6mD?tܺu1Al?()8vb#Gh9_#q-ZzeP(XRAK' /6wЪOPREC1G| z^MD# IF5V`qP= DUG)7I d>A'ȯO]@X561JW>Փd~Lw5sgvYax9uzl,ecXFKCOFڀU/J>3;ZlcK*>qS4H>ϬcNN}X|U9gW,x4Z 3`~פ{Ä?ñ$ r;[wr{72~f@+N|5:c]ףJV$i9wCzSN A#~dH} eRbx{E~o,{5kqVB#D73i"@![沅(c8dJ=)r}0-Ոz"TFdohߤGaAb7Xo|$GΥKnqL~4fLDg@tRbkZG{AYAlsw GT~HJ3L7hB8iTw>R}hxk)8o*ډ@0&wgziuimh03ƺEQqCu 8 f &t H uU &VSq8 Lq+ ^9de&}ZF0i/ ^ Zo;aSYL\,Oh{\Fhno UUan#̅x$slqYy-,{7+$4wWUдm[>ŠbC+h+]A [ƆƸg=+QMzn8* }4TH7=ԕ,E6еnlf4Ӱl۵ceL'$F-ƪ):3q Fl(N8Hjvw!Q81`-9>?ҒPxpLezΧ{UrM jJci&Dp.xr|}*Vѯdc:%ORh[`Ժ"ѹh"9ܱ=sO^t\l {SvBꜿL:F`O{Vc50mX>~Ky۔(a 9-pFDEF qd$G"8n3|ǶW.G3MՎvN=Ċ9<.Pfe |N ;=_t&{joi<_}gkS% R^vw+^T:W~ pOY$ɏ 1YXB*g0o6I/ʰP ͆\GJ"5g$m_઀56On&˾ivB`иv +; 6Qj)FmC2@ӧXװ~#z";\\tP&'96y$gMPm({?.P@+-pؼݴV7#]y58p]9B@i{<( vЂb(샗d%p|] | H 4{W0dK5c~E'l'dfgdSjsab?}'8y4kJyFAޣge,=2l\>PX=lba|u=ݤR:$R.\Sv{wbNaض2lAցp"˳Y I |kqT5O-7˼RxX,ߎ2a뎫TgM)B1T;y: [E3)K=jGeF/6gAyBL8 QZ!h@y/>T7MY Oz,$^ЩD{h+@!2t4mwTd;{p)DƔq]&;J;I+=;U;X>2Um  i9rbaw~:Xͪ^$8{jYyR˛V2s k5̓A JɞM a#lq *;|_(m>j6##ɍzt{'Qck|cՅ#"k #;8a(ZRa%Nqښ,혇F{~z,{@,\RΥ2T*fbR.Zޠ^l8vc׈R !)STHz6DPx.ݕ:BLZUԅ(Z3\J6%{_x3!=lY 7)%|b$ '"b>'!Un%,֜)p c؄ #;kwN ܉=C+/7}X$_GE 6¾oA,8lԫ ٯEe?na:*Klu*߱# RZh5^UJ媜8IU nk"D9@|z\̦3jQlWۋ0_RM-7HԑEfccfaܗzDN5p3q 5,Y"m ==ev"pQl+c?5I⯹=F{ >t\ VªوDo3# !pDƒklja{ rٟhM&bw J`9ةЯ^)测o+V9?L2u$` D$LbaYt zzE2 6`|Lry[[Ꭱߗz .D_xY{ꮝvd㟾jr@Q)InД~E. X[.&GRȥs[:!bh1#bͻ+z2'ç+eB4wSft[<; ŝMC)\irTd2b﹵J ~f߅&@>XjB۫w+h+`4<v~>HF?_ @p2Mu#> 20峩XR瓏~<3F-ETyBe7mN_xCZmoc13R0B$~hJDXAHUBlcf(ո=.V0*wf(YjXxz"n_!U1 -d˂+lLJH>w!-dt5;C_3¤omRg`SS&&H UdN=y58}?|d,0LDY$g# 9qA@G54rן;7j1ߛ+A|Zcµ@=\VS;Xu$MCT ')<ǫ\$6fe˵-pIR_} xI9G*F/gJUٴ !Yg1GmVS`kQ'OrAe^aJ/V,BJm>B p®̠q>PPH_@J{7f耕%]=Im[.g H$XaS-nX +Y8CIJ ,Aw}\QPR7[\|AW^ dZBh'[z 3'0M Xsb'p2GM=a65 ~hge*hR!кDMaI}#Wb"V8?pS yBm ϙv{=fkY`;W?϶ 1Fsh )Rr`R H _A8GGSSh}N+Hmq|3VU=}>A+^\TPX IEk'`^#tP/k(yL ZkNY2%|"`ZĠGf꡶0,<*$6 Ccc^l]҃bSU ikA vpX\ֻ=8TX'[P,lmuv[3nȦ g&v~nIfr eƸyQB1M5uJqN Qq_VZn0|z2gs{N!{}ͿWTPP?5Q>/5F a`ANXd .';bmtÝd}0PwM`q,oȁ1ɢjU j>x*t/g<&WRYT@%a*zºy>#Odu,~&>Lv-P #uT[NMu8Ll Y@~-սH; NwrW zQ05[keB VP3ZC'9{.L4ɝxhh1ќD\ɏqI.ˣ5XMiδ󄄬1фF!3GduT/Rvӳ(6SaQa6g5Ǐ 5JQ€//2xnuK_۫$xw ce`NRx%WrH#<݇1vH4=D!-gV*Sޯ 'Ϸ}e"B|ߌp+-ƪ8g>Ćz1}w+ Kp'@MNf=o?Jr;Z=}NR-?9+"v&7Z?2ksƻd9\ӘJ(Ԝrް=+_(Q ,M`vz+F2G1hy.Ӓۑڍ0`8E;gMqYl /aBÌYaot/$WrM;#¬! EUfE9a1#IX[̖ YLp΁{7rɼ.k(<,6$ې# #2s|0D1m~<2$@OJdW5-˨ƪA8=%B%y8 {68>nse[;T~>[Zݶ_)>U٤xo}L[wܞA ?g |2li. :Kcw=ul}<;VDj8+3msI͕dE}&!UJ7B(rE\ٚQk0}5yh܋sfWs}#^m\д?jjmrR0%ejö(DkStl'+<q 𯶌^b9pӱHGR̐ nvT%z*DϠ<[,D ]aEAzSQwڍÖ6GFh.tRNָVr_l+IO@ !+mĴiT[6Dd[˿dCm ۪mGE"%bEzƇOuQѥC(uOe R!oq0Ld"]\Mdrah`0.yl9/F]&ꀥ-MlMH ΠjA|QQוF%">;$E{&&|Ϭ\ S2 -ؔdld"WйCiqUf:9zu2/5b)V m'>4ҭG"/* !Fd-ƃ61 9`6a=:P3AsdR LiNۏ7C> .CmЏB17|觱t7x 'Z%lp= e\noydDxOQ=oU{ ,e PH]Esd3WEUdJT =P~$; a{)(1ɖ  Pbqg]mLh!oKԬ򧩟 5QZv*]Pk,|& X3,&(0!~%%n_ ,'Po..~-A50d |1Pz/%Kg#Rak?wZ< ƃ*T_ZCC0R[LĺjbuB8q9v$˿%n}/ѽ2uG9^{rnLS&vo.2z挢)2OCr)j{P\<Ǥ׫ء |*ZWX>2qa0 H̉@CK>3,5m,s7Md"\ultD,<•񞞰Wzl\&_4h(yfbsI3Խ"oxe`2%n^unc.Uk䜒!\hEa# #~ްEƆ74BA '9JΜmY~G.Gh\3mnONd~YBs7S rKT)VqZq*ZRtRo9 sXVa(g~b( htn[y*(4ZL!=g(a2FoeLf8xEe+aA{h9oB4Q\ ۼLK`HbO0P՘:F?{}ឃ)9զ9 s>ͭTre$/SRQі@z&wcebsӷ_S?Uc_8 ć'h)\gvԂtrq JvԹ#,~Y;pbB^m(h3ȉS1">p 0ED?!ITxmQŅ 5EenzΡqN;+l;-G]RUc׍1*Bp@7K#Tb{f6AJatC)K M4e0c \!U}ziX V삅^q$$H~;Ȅ\>^C; 1wBJK0fƅ[ۮYf>}(\&"mڶ`JNIJ~4ٚ9HfRo@G y &o!nsym/ E8E GsOp C,4(ypD_|C@!4;eUپ4Q=(J*O[H=[bk͝ K8}hѰJFPW6N_Zę.UQ:PEfdڥ⌂NCYXV5ȵKPUQ 7 0acحB |dqrŠ%*W QkɔԿOw_& mG9߬2g`TyZԁB:i)4c_Xp\+#;dp^105Qd+u6RM+bU)'J2YA2i?w$dd~B,G/N4dwfi:`HR]C>*9P]Ud3z胣9O#׼5")m~ڙKℐ|-Ÿu-:d <כT0kBK"/8=K:{ [oJJ,d4bƐYJs!PdLޕRQ{vT'K7{F8A xulȸeiY_`'L}VƣXJ1GC3)D毩mQJ1ae)~!t{ޟe8袠u l:GRg.9~~DV? |qḟ,Tx;bJ&fj呰~(4Q0WB2&5d:Ly;_Ɩ3vl9@b2*3ό؂q_b:7@0) {o= ya>7\Ogi:nG2G&xOkbpٔݶM`K)5s/ydZ&,»:_'K0 DUz2W>ʃ-C F}*_.;JRrKr"jn']#0H5aT1Ux9Z0Ub -򝲸V6_ ,hv!NɎHjC) X㕍F;Jn(ifEF} m(Q'ѸSІr=*$J}=\ˍb{sf3²FElG[_ĢmOKi(o ˲R(+xA/<&>|z^:@+٩>ps*S4iF v`qiHsbAuAV,@BYAnZH{c`2:Yn'+0bH^5y@'Nbn~6(IniqFhoCQxW5SO){{ h*`QNMy|3ЄatR:9*UkؗyNN{SQbƀ%yfE̥Fz5T!KAm3uҒ,%*t8  Byh 0sb>$b$86̚+QԖ_l滷 5\*q3EL4-(Y1\yި}1qj6v0%z?oL uÀtE] ~`\5YH5v6ɵ-gb2_LɁ"GOeZ!E[ S~ȟkg#pH/+j8B9y oԽg繬)wC9e:V${A!>!9jBL]'Ղ*۸ZJR[ݛq#Y;-V㤱-F[ wT#''i!PfMȧp?O='S۱CՒؾPd Xa`R)r)*'c.Cjk6lG%0t+`ޫE(#1l{+1T4 -Nu@>6+] h#zY_䭇اD &RaU'M?ʞzЬ7GIʲ@GݗlͺL.._CzCh$WA rh\:wmJoa'xl?ąDh6-93dS,FSFc_"hdk*c ~*a'zAE%ʨتKϐ!D̀ ⴹf I_o=RXj' fR5;1d.lv)|Kp[7288__#Lp80hqPHgcC" ef] 1t;ѝ]0`O@KĀpQGТJm ԽDSfnENgR&:sekqbP ;T}֗M|gmVS:3ox eȔ7 %n̒/~R޵_ѡd}N;MS [[ _N1{ 7μjuW*Fp(5ƶJÄǏ%~DXDI-BVA_0 3'&dbWsjsdJ1x-9Ao~{кah̀ȦOCZ*ȷORopҢBu?5S:À,ۛGNH p2 ;.8wAYIŀm{MuvA_B)RS(ު,ʿrJhGM2_ݟoaN6Qmv [~JVիV_NAs_\rdE1eˊ+=cʉi02 8"@Bn JdWі뒚> d[t c\6 Ÿ"S$\įAm !1"6~jOKЮT,54٘`ˑKuĨ'lsh,ieȯf!tW } !F:c0quֱj㮠Ak"3Yg'cё~  uj A`l(UB5c?*cR׭B&Zc*%v.w8?Ҡ[q *+ !H3YDƘ /(;-^EۃWQj%߰M%-:cJQqd'`J=GSZd KAy Ck?~ǯ[wT-J:O5kV&o.ka|A-=ذo^cw<}a*0ڐP T #l`xe族k~d7w inKiL](F;Mޓ/gqm~kj%R=9,gͮbpU~VUUa|gi 81NǃV+rm{7`V UD3;kp%ը;)9A~^+ >@ǎkNтQhL}ɣ#Iwv@Lm64;Ou5Q{Y)f 0’ ؽl:H/ߎdLD:*[r"7m E[lU / /#>tQeRᙏd;֊켟\fGZv\0"k2ɬy& j^MUjܒ%Eu'jL0%a+QxKs'-N!E8*Cr*6^=sQt^ .. 0};isQŗ+6z؃v#M:z4lu8{¯ D>yn~,)3P7"D4<}m~P3t i rVZ~n٘js6KNbq f؆"yI'V,)13$D&/GG^NrRkN ޤ rY-l"0ǜJkq5Vs5'7]ҟ{1'5:V\#Hӭŏ'NҐ .*m׺/a$])vUF}熓aH^=`C)Zr Ztf)&W{(L"2FP6Tz!6s=l[ntc"D >QDxw_DHe-$a6cbN>N$] *j#ƭFǀpKc&SD ?,5Zߕp 􊟭DSPR`Cչc9 n2CZvb9{Dd 2kA;bsoQ"}i-(!w},[IH2F& ҉zO HZY(&6oV4 sk񲻱QGQMUQbk{(V Hi=㣦#x}5ra"7]DE+/@`D}6n ]\;4HLw:"pewyzo7s$A"VKAt^>Zj"C .e`g^%$3Mq3(J0(nA\>[o2>kA`(C,H&Y ڎyAELVg[Fq6^>[ևSNC[ܙ8|#Gjͥ2.vH|!C(-኿Gh٫C#ێ> J[28C#Sv<9U{dTʨEh@!ey Jo>|'.eQtc?y59 0ҶEk:}%m[#[LgΌ%␏cvD/.J):O0\bwq۽#?/nVJʔV;'{t)vn L{Ə ^^=k;R[Eň^dy}htxܒ(PѷsWPC~#?Sw~=BTT¤P9mVkk߯uWّ]mz%wnV2Ub~N#yeSRQVtjz/Ё(j>Z2fbwE);;ÿnF#-8& Da~gdQ?F.7q Cx~[ʴ)YN'"#R3#oJJ*GZzsUJ#ɻT7@E?%sB'Yʞir@JOL)kA/nX)ҺD̯#^|VuX@9ͱԣ LjAIpWS"eX \^Q?:W,̝[ujzoΆqFc{"bäZ=:҅4(,jXlÖS5]P @uOçNQIĩc[PfFpxVf{4zܘ GrQHyCưo/.?y".c=2jT򓓫sHE̖5{J3PKTXA17\.^MSZl DI{8E^%Mh33ɡlߞNDY2׻4P{ )a KM݌|S*\ˀtoc{e`*D)8‘u"\ zgK a+7)k5Oܺh7d_5('LJ):=|µWn{ =LH*0c&h*ƞh}X8]c U .{%I+`e?:iQ}b^MCbHT"`Z&Iۮ^,oӊF67 сj+|4B"Ec!%'Wo*!dh~3[ jG!el-[^=X|ĽTi5t"N_aas:SPQWnjE1eUǨ ހqzac_^MCHck;Q@^/vgU }{4%Fƚh S"+=/Mspvu5э+194Sa68 ˵ozg(c\0[EqϺĬ q2=;q `Hhj+f0:E\o]jUzbo./86E@~M bxzE5u2$F" Y# aً8\lʄI5Q\Y 7ԡQ !H )l%0V.Mdp~a{<RS?#%h4PY=+eL-Bw`)S7blD 6=ǚ$*:xG 1iܖ89+Un%5U("U;78+iwIFmu]rdKP`TF|h(7yLM~kͧۏW PI#eDJ+o|>n9TZ 1VBf#xaF @^q֑@̸౫lZ"Ew;c9}]3*r5XO116J/ʾGe6{y)w.҉yd'~51; +Q;~}IU@s3Trvc qHJPjpF G}犀QPfs*B]& 0`Kva:;]ry q1* }Z7NR}Ԧ$aS?9zX+1fG9^aMD]d1|r@EcX$<ѢgSdmo+VC^J{lRQfzJy\ 72yOG[K[F;[) OQ) D!̷# &:7 1Vz)#?7+6W͹A~v$!|f霜B/>ů$܁d:Q̫2D\e]@gd j[C~޾mbk;1yί51fe.B3,lbGJO`0첓$9^5qNvÒ?Y[k^9E }Ω>_ Ag1\"ĕo;C!Hr8QS>ɕ^2Mý`" okJ#eadCcP)^Hxwω5 ,i _|q+e/!m 'MWcHeJdu tpE;KhjN{a{>idur矖 ?b> #1\ѐehӀkD a`P_Z/iCt!δĹ;$0s8:SW+6it -Hq5::n78oq Im;bO.c39ʜirif LW ƞx(NlހAgu -ԃZM߷$i Ghh31]x뉣Jy e0&/DĘ?\湵#.f6V/B.aՀ LnY{59Yar'=AI/rJѐ_&^sx2wQ`ж_dJ"EUfl]ϒ ;+-GhaT3J*Q2n'&a 2*R5A=קJ^D!GJ5c[dK}ʦ|M\[A~@Wg8bd(*+daýEvtA 0Vq5 [tnES˃Kmý砷$?,)* {g'}E<2YB){~db~DC56geR5VӮ[D5H_m?Hbp3 7`1JT:wG>yRy , j5Hf0Z&=t0B6Lğ-H2>S^Tb $q-d̖/qS?o!1B^i ?UM6xZ&N0h}>cT$kS>RrDWm#^%t>N7t3b.&d㳳cA9f<>0&K`'T^FmT5Fum|{2cJդGJ6'N{*y*9܆T!ar}M| - *I57?8C(o$]w؅xFL%DSB@Dr[gSLdqRU:C\$QC{ա0CwJ2d[1eaKKE8 adaM1GFol;SpEc`z (ᘽytׁO0mRZ;.Guj*3eȗuy-c*=g^|H늕U fm5fH)ތT,[?2H _5H3z#@Q:&̫ێt %3bz02^GcQsUS%RR߁!( pT Dufr@|Mc$\in:RN .(̚eMs߮L[=X^^ ? ^rջzMGi|z[4ad4mTs=3}|?,۳f[FXlj;8^J +4cQ07 s̮i} ICe` 04!z%C44JEz6-ۦy0[6sO6I]> O<[߫ uxO$᛭;otێF]~a^򃩈- Aٌ5Ԭ&EMzpyۘ #ǔxH1BkDFLREV L@@E 2fضc/WQ”e~RCzH͕[2_%EEK (o!6uĪll:`"cL"o{oэhOzG"'˅/( cY}y$+ BaWfh"#ǜa4%Z]6&a#=Xƙ-:|ˁU~?Kmr`E&nm(Me=u׏ћH 94T@*mJ}+P``8\,ê,U «(tdjt) b>0zHBE y6rE4,FSC< >T@3˝Qx?q|Ξ~&kD7 nG8m]u[;gg$*~Le]f[eD[+i!5}!>CDݸQ jaY!C.Z} M3>5Ԍ O>FB90<άxT$035:J6:%NA(/${aMv7\zQf\,|?NV\ _\]>PiD?IT {TuMbGtxx_q_lW甝 =);юS"yPXS~ddwM;qghbtAo!ARx|6lRg`0^ƴzO@nqKPTʺS9Zy'ȹ{TfM"0wAWWD 349'B@11YϿs$ӛc8Ovew/ԁPD Esյ;Y?%Ƃ_ta2^,4U/i$ݕEod,L/q rWT DI~[ZʇD@Qf9a+_*joyEkw[ P%M!ũCwbĎz[_88s_ል pJ |`1ގe*Vg+͗O4'0W$Խ%ܹrcޙo{)OGk:JZza0>[ŽВۈ/rUGoמgxgP$7X K<II1ϒm ;_^ޑz%d^3!`0~zGJu|x7NEIQ]1}2Xi u2&DWK"^` .wc4UXV(+} A&SSkd8 $2R\dpX"W؄*c[BbpF)kNgE'{oK.YdS"Kk|eO!8AQoBmLĥG BhZGS[UrBbpij W1ѝQ.Ld-C~`t-2U9e-gXlbޕP$D#RA1s oPw`kl[3^hT4| U¬=wHwG^qüfC{„݂A~~wg~XcFˈ+™O8C[Or~ rԑ :(ϛ(t}avW5[(sY::0Az66z F>?#wԅ:9E &RZB**r /°k\}n"8ȵƬS?N|zcڢems񉊐&R>BQJ[ztT˙a#o@{"PlҎ-7ܻNyb^=dq<-r?n1qqJ0^M/A'C@Ms4|W՘lcNvP=vJj "݄ v_0U@W1** 9~+`jYMЅ})xӍ *w{%]gjuCz*yY x7K"U=imkSa]3:V)rU5xz'5bPz3˒[˧'RԪbYV> ΅A@JKԗ, XuJ[ۉ_COr$Vּ1Zsl wh:׿`JЃfS+h;\r繇aхymNm^9+~ȧżn[-dDf>}v4EbCJ#(/ k%އu)Qdjm-@O3Z}DSr|(oKk>,E+G=_)_<A661[z|6}䯈呚'܃&t_KrˑsYQ Qꋓ^tk;^~F]kpQyiR9E>_T]eކBDպ]ª/AOhsXjw &aYi񅗳eUUflwu3ߦ"!mD5|~"JSmwT}8JFZ ]LV?Q|-m7Է~*0qу!c!exiŽ9a]i?cdՠFkQr\\nӡf/c6e>v9iupY f}aĉahJ(51 eAF0Ex'__MU ʓeri︂xܿ?RY`nLDF rc@KKڝ2kdCbeʋ !'e}qXK`P)ϡЉ.|Y=C,*wmWf?Qe`%UcLl 0ӣČ]PFw=k3%BpA ןiI-{RQMt,q1:##T\ꝹIpx";$N[߈OfN7EuGG^<mQb8ޢy؅VzDVCT 6{MGutE:AOjT||Zރ0BtLBj83s-T(Bp+$Noj+FшgΆI{=~H)ifm4>-sqaztv9vbano#.oWJ&5.=È?+PsZ9_X hr(<>IK #6 D0 sZ8PZ5<}A3IuxAu´.@%3-xBzd??DBlf?7Oƒ1(&d3oPE|7OO̟V;qc``,M]dЏ2dq. aa蝥| n7%hfP?xEFbNZ-#&2h<j̒fN n::3 MY*xEDoC;al(u4jȬ_6 >=n5:(1:&<رƇ s=Aچhw.%1˨"Y3FEvkL݆ԒIwBgU ep}Uj?~Y"#![KFDXw&rD z@&'p?aɞc—/a:k*EMv^;1YT]|f^sWЀxSj!c Y<>SNW$pKI mG%=";?}[ t!: أnM̟KQN'ϵH&ć'EkLWǤWHD7ݬdgT#$B#YC=_6;@O[g1D)ɋ<\Ig<h~9PyMqfIf >˸tw]on p_㱟!g.nJ.% 6~p =8OhHr&GǛ.`@V/J;(asUCp 9B'p<i0C8- 9υ@ LӠ%wDˍ3![IFV|M;)Kokϫ(ip$lY,k)*ɹA'\=o ~Ci$B’b;{G0@h8C?L!vN9T/p%yh $ݨٔw}䖶La5m[\[/K"+{p܇5WŇֶLuPp|TK.``lن?Ah(O~]}bB61'E,<Imi:ԫ`2/o3?P/Pkn8&@݊:$%K4e^9A*LIu.˯{3^h٠ t7aǪC K_$yNCu rf@D_z7g6mW`"*nwn/HDSsU]GgbdTv_m%+ؕpv(n[1s0gKPod$/ֺSL). wщ"# H3A&pNk@?tZ]Ϙ[S" w55 ͏:5 p鈨ZxHhT ?Q/ 653t;J՞&ٔ\t?RN-$=,yRZs40w_Ib{ P/j[>MIŢCF1@6i؟C&YuXݕL%Jd>zD.5j/5#!p.Vpity֊vSLK]<']ܱ w#5x_%d\n A[4N+03`иld倫pKյ޽ue۰Ҷ+iax9tU0뾳]^sW/xv1~C=p?6[:}̅C=Ë 6go+>]+'Qczaʛ4SHlUla;DuVH=Ŀ;زvl@?5K\[}E`HYc7>H7C)Y-rH>[o7qb|+$X["S\3TũWƋ HL1X.Bd4v$)ɤdf@K \D4]ڸTn< 3d^R/NMD;dbɜ+%P%`(Wt؉Mgҍp #"NqEVR*9р4#ӇE>{ j%i] u7Z͎f/:YHf (FN~4|>PN`ZyZ:RSoe}=(oYͪEhK_5s.+^q֌q(%X5 @^m%.UHKPpseO!*ĘC@[^1,]aU]8v/&94\g#)dn9Tbs $P_{Nf{$.N/o`jl̵ѿܦ"ayl|RBZ} ;ʫ+\^:M&=jc!M3?G svbr,#5b7z֣ӑI5j6*`gI|#CS1&P` Qj?u 2lW+rO244̕3?: v剝Oԍ\XNVYHM׻sQkS?/Ge=.-n5Z7F&QvpmL2#}^S`:ͼ* :͢.:Jg&ft^.M-ASRO_hf]Wzk+.T뮩@qȳ +f/Տ\<|>Ȟa¯7>$on-10Y2U؛a̢YKD&@HZ9K(ԓTgBW>txaD)^$l9o\%4X<ҩuKC== 8aʼ0AFcqBpl)^SCǂGm-#.a& X tHa䡘$eX @kJyIbWa|eW,V6Ť]`M`Jk֏?,|[1#kxv_e]G.m[c`amq)@&b T-'_"DLj ;39y;%#ge߈AoHk3h׶Bd03@ORfCeer)6m|:[󡪽 Wcr$|Z ݤ&{qƵ̹<B-1v>i>>5?W<<셙$R=k%a Ʋ8wN2Qdb;eؔ^mO3=y' pTHNBhUid#xZHӖ0-"T="1Q׋]jqjQ!^M̢ tFO N,PE6@ _|jܦutg+fIG0Mɠ]\MԆM8]b&\ʽ A[r1&Tqq9{@SZIףj|jKʫ8"w5!*߼* N.{uœ"NK _vf@Xt-3M%)xvD.vݤ)ҘSh1>MD2K*Qޘ=]o Q[X PƢ%5x*90jW "bA_@.KT @?:!5b8mz_ )08 9̿?ɓ}OcqzE$惻i3fz"Eu/\Q XK$ko֕(SJCֈ{9_;o݂b )nNr(PWI߀,Ou8(dn#TEU{qX7oJj+?,td&m-clÀҼ!(#:$ɞH!14?Ӕѷr.>6f+>n ܧyfd7C7uڼb W / PPg8C  dcg+8MW4wO %\. B wT$ QV;ȃA<%>L٠=f ^[#QGg=]Jz {}S}ytE\ w*vkk2T!yh:ױia1GFuF}8d8Ƴ.Jjty=dX6b=ܑ+(3Y's)s,3/QY[o>[ *. Chɲ& !%Z#*Lbx2u8VU@#2slr*שgЌ3`_;;F1BKUCԖX.~%f& ޜY{t.ԒE]2.VK,:V^)+US3̀q kGR1JK"j6f\S,~@*4U=1$pc\ hPbҴh"OGxb#6eNcwpq2F[G SpakQ<{T*9&]"wl5 YE+}ĺ{x;D@4v3js2sMPЦeOshpGE myS!u91؞"d q=5h@#+C=Ir F: {L@ktO uV9uY*Aud'x9"4Z~<ƒT&z(EWdǭl1[+ɖb *]e[sڷ֎ \Э/>ڗ ~"ۛ\i',Zi.`u[*G?I׼J֖|/7fABQ44mk(SLV4ޑ@($ᔋN}*!@,[g"볐'P$1&H8lH8ߜϛx@iqJl]cǒq_ƹC0>#Ogqd;+mw- 8jJ%˚kqpu@ŅgĒ_TSp8SjqNoB/G=`ӯv m`^e/ e >43v F_xHv}'4TгGMbq} mɸsCD_@܇{_+;8Aц}Lq.f*WvI]:'> a.|xR$J@\5&lO!9+{L/֯C;֡KMM%qűKjJvXn4yZ*Bb rykb PfFrq'/DQn-ke.re P uc U'ܹ_Hˡ eׂO'>e5Ւng[Ck0u/Uiudy^Fx^d_%(k`v"4;iFҪV k3NWT|AhJakeüq0,C/yi/`T ;LT|qvyXNej|먞j:iVhO#q|Μ 1~k]JKO NyArݏŭwfSek_Y~|ұ@7im3l].@_l=3ɵ^ȺW{ gWb1pgfmrj> ( &]^ 3*) ʙgi;p& =IxPQg ۩EAh]4Q)V>D@e4rziƥm {ʏ_Ǿ‡+]鈼Z ߝ2FrI0΅ C>V,\lF$ vW hpXP"ZԔ3'baVp5H7Jia~ ^D LwH.}u](&$Ds~%~dOnBU +IV568xEaֲ: Aig 1H\zpu4 4>mpzQ!Fl \ETwG!zP5h92Vwխ8a8YUzSϤa]rauXdvlZ.\'FpJߎ?_K}sKclUqU[B.̄m?j0Ox 9z@KUFOE U?HAuxa\ ]4;^x5= (,S7yAIT"Q"JZnH3wA=Y`\\l0& [dyOI3r!S1|ʩBط_b[W3']}}ka.uZ0D2$u?yr R|Fjp)LCT' T@Ad:Y3q@A2ӱO;ުvx7f鱭L'Q z2rl$F=t!_ؚd]]T)4Ǵ@KqWׄWmE_BCcnyj9 kbMH"g~ v"A@0ڪQ٤i#-?ta '=/ ?s WHP0'-[.*>)>{1x,?{ amfnrBGfLc5C[úB$͙YC :>ݜH#0ڍH/}`^J.04.<úFЧra:G[.z!:VjBqYaMKk RŶ!|:1nƼI/EᦛYQ k܋;?O~APy°b)gL\@4pI='j54λv֢S%%)F5Y @f@2.6Wo LvEG(3@s7,ף'O7-2 TRh 3xh$6V [%;c@fؚ`.Q`ԡya8;z˴ʊ(+|G̨]{rМA& Ss4w1I>2SvGvH [ OIF#qѺ! `&ӌg H΋3`uN[?ي#-QLR{;(O6~Ӹ*qz|3z[.t-S ߼Kn12BkF3XS! ֮lDm!d+CTwCSgC g]j;Mk/;Cl<"@OӝQZXMXG!/a_ݯbo=HOhj0v}>dQ"w ^}省e# 0]r ty^TlkQqxصQTN!(5|(z Z+Id!I3>" v@fl M)M [ܐQMb,9X`I)")0[bG?[PBl>eC?zy}b\I0^[4z$QIN5ey|3!dX׫2Eܘ9_h:ELJݸ⩫W bΉ'+n\.s uS Vģ -}"6IQÆ_nGlod;-qN;b;? AwKl7~\=KΉeeO)H} HK2Z7=JH~6]ݬMqrNNV0@i_ JoAo#}A%>+Ÿ׿ Tʪtz)hkʿh 4$N_v[|& ]]@_DX+L*bl̽ɟ83!t0!ڷg xbEtHwϧ1&Snd IѮrhBT蝬kUۓ\w|C.0"1VJt*xyY+v>Pv}n6%yAz,ǍYI-:H{Qe6{y C9&J7Pg+' 'k`T ٗޏbFr5&B_T Q۪\htRaY2*s[6˪TUCZ̯G`ʔ.l#<1vOb`x"z"U {eAVly В 9|AKUU`=9-T#b^_0wjwe7a~&9E#Rx|y2 8so"j5?^3>CW:HgO]։ HJ eet?[a_8].p'XM lu d!^d?)5t /%O l`OYWJb%+19aw:B+~-cH~bG*<WHp2oh@}GF9:$oH$5&Nٛ:Y"N .4,aXpPH:US V*KR4YO.:[W*([lyyD*kֹV4c_t{lDl|׾/UbP/(x7MWd:IXŗ6YG|%ĘEm\xKT-O[-tH^uI=E_zο/[Ԉ`_n_7nXPw(}Usd|Dnmmp_iZ=y{!z=saw0,0BͲ*KƦq Wa)=-10/ Ҥ ;Ous# ev]~Fᚓ''j֝zKrû^WVU \M58@"(Oa9T˃;R&_o\*]:`Vۣ=a%)L4Y\=_Qi]?XeѿW79jd*y)!fuAu(7~:t9e[#STR ˛S~ۍ;S@]Z@^wFlxV.Z%#QNJmG8YU1䥶zLnŒR@ƌu TxA3eJC50"9I 5 ?c Xqm}UWY[TC]*hgn~H L}]4/ #+NOfL>!ƧLW-,`Lɛ]xmVI^OVx ҋіn-/mI4*ї@[#-8׋*K !/^wNɆ8 J-LY-A-8|\^ *m~ar/f3oc_8+08;߂3_b5$b }pE#|D9PFo"٦ɉP"h-9:Iʴ;wxW> Z7IAݻ$)-goQ^ v AOpykz!w,yl}?d!M5k\XDVzPjƭ̧QZM]S`c˜ZSyaQjZ y,+|ո&ݯ*7h!"N=>n]Ro.>Hx]{ ⣤ Q}쓨o[x_/9F^Hm3ǑT3 =W J',jX`H\6#s+妸R.4[)@[NUq ۹]pxC-cudBQ<KJDʆ 'W/y<Y:eN&xhɡ/cGdFZk-1k V0GQVN84pȼz*F@Y{T62 vl*r,V :Lt襞 xqf ?'29}1b AMk[NǷgIU&ց"K 0e>4#NWOh?"28' ̛VDh{sǐaؽlW,C D 6ӫ@PJ,WBMQ2:<4ͬhhG8OՂ[߻fG&X#k(K=.vYYth[;>&X&_;Fݛ-yk~ǓX7_לC )Oץ7[7P=i33I:uQ\(,T)/=  8J H5{m)~w@?lENpٗ^`6%-h _zQA]̋4M7S'F>jwPh>(rV^ϙ #7uR:oY:H/狽5{eܵ[7w_\hS aS/-CE[RZ1񱤱vwHqW 7#@Pc3a.Gd26J?Հ,,|z X-Fa`%-O"b١R 'i0:M 2N̡y'0Mk }p)#KmbMR#F=,{礔"ώJ!IJұ[` 7P8laDRށh+Yn )74EToIW*.lh.[Q)3SOT7FE)0OLSORk)LGwYu@{S&]Qⁿ"wmLO1S_295~ereXC{g53g6T 5"b8eqS5bٔ7X:hɇ3m LGy\(x&) ch{<œ`5G(@d.CEK[>'OY1"%(wo$5$wh{ϞSG zR|O<-QE \:!zrT7b eSQ:"=a<&Y'tg_}e#y| }Y]ZY{7Xgv}' -t>9 GqQ]91ۤZf(_msQ< R򴇖E:*O8Q6 Nv"\+enH<{ }0iawL71|v5%{N'~Pb02P^g*Zj yC-HƮ9M~2>tCqGoX"Nug&(a7eFM.Qe)n>IXdӎv;qkLO5bƹ]OJCn*2_ڒlL>1$k;@T ~)dyH"R7X7,YvizW83/ve Ht7zɎ`XQ7&_7,1K5ds"/_K9̳qtԫf4Z%BxׯC6&3dG,nPݷ6h[$h [[*DbOJL$l('}Wx0_5g.Ry1|""q/a49VHhټ"l)8oOݼ,bͮO`Kci]R_61VI;|e\+1ʣY(r2J7|E^&`CPI8C'RyH~T^ SM3BO0#(#JA9`ɱC?`*ZUo%%U uG{;47e 9le F663ȍQ,ل`@H%[{gXEY d|@%X6ϯ}EMNoE)fKfRCJM$F |JM".C:`YWMᄽ鮶j!''6&Rgu$_`?e2z㔡 +izu>:I|$=?'7FTA A=&$L#Մ* ߴvZPP j5O 䎱SH1B܏۠kU+\Q}y<:hS]ne_8?>z8b9m=(j˳"VXH/5`BeKSRkO!x-X1 (QoCns]~NGσĤ{zWq0.}sƑ~b}CKPpke57U S z)<4KAo*cY"M=mAg/ b?\7"f| aq9I 57y,Rsh T @ .f}&(4J0C1`Z V'R{dˁGmZ*DZɓӗ!Ս&qsr=)h*Cxé}ֶ CXS; S%B*SΪB A(YMxeM&6VWwH hN qWGGY 9[0tPj6~OB8jDƙ)?09hMj"xl=}?3o 0`bI}E o`[)dJ.؝Ol IM%'R6/ױ1E;iY#i49ڪpֲKr5W3e"dJUu4Z8O`&϶%9ڊa^8Cp݅Um#>.m+Xj5Xa2GDIµ4E4v`h(YfMvD=Fa0m\Ac!! 87 b#rKOd7%ݝw ySӌ@OG[4 T%Q"bNf奄QEqt@~:XzdnʊhE‘eYog$>zrJvm|(~:|{vu&ݪ&G.^sB* EhƆoq7l!u2f]t*jI\tQKqy^@ 5Zt!:lc0 y/[/-E\23 CpXR}vcDr#R<9ݚOxdsOwB B eBoNН5훪q0)S G3I%MqA+xd1ӳmwt?"!`,՞|pq6e֟epŷ=/:[;#sU?O7cԙYl꭮r(N[Kg# B͙!!&$h0:Gl_ lgrTH.C^d#2UDg n'r@wz2KG6QQ}-I+ϴ&L6Co^/V4=4vj;fPRrKh/=7AE0 nڍ-|D%n̮S,-M/pTw}6YZa ѲVO&2m!nH`Fd 6,gIJ0WUH1O)*_)gI$`73ϲAnbUl v?[cJdVH@QbEϖ1LH@Ǟ\mEOijbq%ԙsbӏN;KʗD^ϫ[/5o%Zz]HuL LP&1v[wPG2>0]B= P MhؘJ5XkQ(g%}#9ʦorOi{Uy5[)W(3'c"AfS](pl*LnpG/pLl-^s\A$:?R`E nwbG'FdД濥D>Y܋MY̒?3>s 2ɑ3 "Gj•Vhl:g4Qy> H0QMTLBqX1^E:ی%d*Eo ]|Ѩr eѢT(}, V d11#)>93 ~7 / L4W 1/R@ [bD2O H@ȱMi Rg4[Y@b ϓuSjS\qx`I~LoTp @y u-~X[ :'p54w"|C%G!;}5'gWDN a6 N㶜Tkqx77W3y'>0 z}/5 ƫ;Kn%rܐA>R 3,5q:49|0S[:kꂾ7ʰܮ#{Ȏz< +kIQhƻ9l}j~=  0sSnT=6%`5)TN NxI: j+SwkB(7h)p"@l7zFCs}2UgBz2J@IX/-A#&'a9.B:Cuk_ά}&*LCdaV۝;j 0~0GS$4ڞ͌;49o^FCs_7ץV.w<7]S]jFnfAcL~~kVܒ"qlqF-4ӆpA9ᆜ~`uY2 !uz53y>UY0Wȓz8. /Z!XTvd+z^5΍ g/OZo)3i}!d6φ@yUܧb[}?TVv]㶝Bh{i`)rVʭu~Gˢ^mRC{8SA8Ń$䊤_Qe;鹎L6ӷsuaN Hv=TČ%O eNܫhB]SwC`׳$$ v 0hZfL'9W6zNu5 p4M]-stRىIcAhORA&t-,9g ˁnqCge1V2B9a.F '&APևjã8GYthnOPW&t'jW*#꧔ HDlq³YڸSoAbs`flmctxF i4?T\~6"tE[Cea (o?g2v%՞=!Wl 4u@bnId~13Pl)I;PpG{ %;J烸R8F;eTBP[?pC 2Sj*bxHMNH On sxLD v;V ^:'.g}0CxH+_@-\pF*Pìm{!1JG8o2;A'YQ~l<ց6R`% (20>:<gYLM' @\~6FTՒ"dr1ǒLNu1`Bw@phJ ] +K6Qa)<^, uN+:7}1\9T꽹D12ctNY[BF/efYt)B^"4XܹYXi [a+VgGO~][v] UoңglwPZ1;u/KmOE^~14D7qSa4nN5S,x2~(SIMRjTTQL|cw"Y`{Af/-]g3BBִ._&WG pMF$=aRfVCʭ/|NUUC *+>{?=Ʉrga~aW~QMI;NfGۈRVtV$[@ShXk%S1O e(8\$ VW/ܞ(#]MZ%9S: ,:ƨCʩ_j@o`NHwA8 0z&9*Q{nZdDaNP\Zf0N qtsPR~uL(_*]3TxB,dFf;MX Qo׍R6¿ۣ^4'";3~=x%<4o uTjAÏa톕QG4fTٕ(~hl¥9&D]T坡@aF+#T'f"G?=TfhCe4IOǀIAѕ&tiSje} <4F!li@vQSb.^4Ȉ@"$K&V`ˆ;>p?}D0Y"zɢoV94_|D wۛq|Ȅ]VXzSwr#gM+s)q'EFTFێ޼mkR2CofʉPDID(CISg2*(ҁ:ۏT?ğ0*!Q]w3Y2޹46I%W2g\_j'""{m3mqǍ0Y M ~vUG:$B2 ;(6έb{ %L_(Y:OKM<;ZD)E4;Ö0.A`<| V3Pʜ!&ڝj%aI^ c~I0wg^ILʆRLè_@j)PZw'~V[>d'hƭI1^RjWj$cBgTf2eTӡ,:}tͪ}ϞVhl'1*c`wt=+w (:6w! zao,BϪɂ]M?YX&= ג*ʎVUk-lj[a3zv$@u,Vѯ=fvfHߚ5sZ`#hˊʣևH zM2O1BvMSvr6Sm5/1;~v8wb*,+#PxQF)w7J3 e^jӋ':lL]—fphx#)-*:H8x Hf=I 7fE!u쌾]guCj,}iӍ.gd@9gf NzIwlz!C;i~`7|DQx/.[~% :Da;kτsϱ@L[z'$6ϰrRPx;~M!8|+tJ 9 ]eaJD*Wɭ`l,[/^\,hjŅZN%~& `0ƶwE Da=6dб OاخRGҟ_ʟ(%`C.25-FUQЗõ N;jsdoY4E9(S] 8'9603Xk>16D_iaW/NYxNs(gFH/f&AE/d^z2PD>ɀg1pi+M0/$@K8-!P&b$=lC #I_n&˽hC,1W>Aޥ[PICIC|Q{LkCRc!F-TS0"D6Y)CLY]Swyt*l<"S-މCHwgnɂn\OTLR3norŶGJwhc6Zh0ӏiS*2c$SRǜcDG Nia,1 q:`9p?^GG 5oِ6Y#U;Wx:,2Ơ IC.C$HEb%+6H{ϻ[Ab5W( ϯqMFyhgp٨p&ޙyZE i;4}vwxOuHH*Y`U b *xA5HN4*i aDRJ}#PY 96w!O2bA8}hZh_D B auduhĬ- d.%\<&DkSDkqŃp%(T-=[_VIF+zb$lZ78}K]$-~1qe PwΘ״eH(bwSsz$ Y؃a`{gw06<kGeIH=ߋ|Vi|h fyW>j%$Pmvvz_, iQd8d@}IsW*sUB/C|%N  7r$fӧnϓhA hiІ)=b c$ C> 0"ܐOR(Ikј'=qѻ>#7hMm=*_ Eo&~z0i:ݔk"W-uBwGtPoy}2.O~r2k0 NIq苋@Yn+Iz}54Յ9V6YsBa(2j-6:}Lg̠` j#?G;4 .õ*%0,N.\ ~&3fGBsjJ\Iy?={v6mU* 8i _%$k` . qs Fe,X_{`(.oo]v4 7%jb`RP"X"OM)ڲ8{*`MzrL/h,p\IP&Ƙ}^~_!ӂUYn;OpZ+ :?GS3׺ˆ&U]nRWim tBA#6:ubO@a TGaDI~y ֤i;yPIe&,C ǞHp}@=9˫dWb^;H^+/`Hau P¡@݋'mNn{2g{Ůe]Va)xr939[Ri"MV3Bun_|fl1!aaN+:C僢&%;ڀ+ 6W{wڅPBz^?0@vEee*Iug,oMUpF/(dJ0[SE>MRTd>;&Q㐜LYxf}Rs"&Eʫ S@+k#U%}]3H:a~#)$m ,H?Y-Ƙb@*1YごBGp1 ]Ctz2{`|08ޡ,wތ *:tN+C2-T:ckIѨ,6|@$T2B f;GHI^SEwKl 845Q;X.n&is0x k9>4V"8a0 +o+>jΉ.ݭZk\[5F>O{)H$gӞ7j11,(GL69nH/[1CJ9 ̈o6-i`XG׸i + 8kA=ͳ ~cq;:p%DɁDݼ}b2/"zͰk^_*y0  Aq')/ٺֵi# elP"ήn.|(+q)&tTFPBPC瓁^ĔwnpJuzt!S dIFb/5ט4sgVl[R&L}@,]7MF$݉(+^s *46uBh5 o$3>Lmu6věI`*eEZ&>V\2B.I&K)2<0Yh萧;B G!iªpKs!"9 L(Q#4J:5 Ӌ'G&;bς6C\W\!.ZHGQ(ZRh%&5xkAc+6sɈ7nWK f8 q})~i)Ѡ$V|_KaJ@fYpv4F9A*jml Zz&=\DojW|+{2 F b32 p.?𻑧Lr)gV_Ggν5x!s&λi_MUf_{20h-tB-$2MV_w_)Ih蝖_Fx ZzF+>_-;G؍`IJ%F.Gs.&Ey&%wy4j2kii:EV ML'Ǽ":"/ nUo,S'9$v;^ِl4"_w#8o XC`:BC%92FRDuHbz^@P~s>|K֑{}} '//ͺ",IJWXyM)ӛHq׾wiAHۃEǿ ^M?ǘ'e{)Ih7\!XmaGN;jYghOenWL SU&w6]mDXn49qpq/@"Ŗii+Vaѻ w&.<07̫+ZS5J3uy). MDZh-5@v(+d!3Cv!)*-?jmUhFUXf_!WEZH.[l*H_F"W1A?!dWV<ә˸qt5MXɤ=$"hzaI/mXoGC˨" 2yM0l8QE d>h.@:9zXR7_L a1=Sp0hnJdYFPEF'Qh Sx:Jӗၚ`G"V1B=>jĒ6VEV4c[2V7h.Ii[Ia uG|-m]g s OR~9YcgDMe=R4)뚿 &g r_bn P f>턠668 Bz5BVX*#pOeVXa˂9)Zv|OĽVb] JPJxk:bڍ|ǜPl+uQǹŎiuto3\4 MiyF/bu@I8 [$mPi!ht*RBN{PXF8 KۻytX\B?-.pnm- !3h5}r]s 㾾c@,ѧ'&mxE^#a!}NԀ [?pvt8'G "T [w[|k%#BoN$NO" |o+6FsHaj(WZP]N@eNԟM26\TٹٝLNjA!Q̯̀@w^}?#[u'r^BjR(шY^~un^5Sܸ hPS%4Epu?1P-G(zYW&yA7Duy,~o!ݜ"t٤KҙD-̤󷷘L[NTpnK64VRվkxՏeïh놲4ޔx.?&4ܲOT3Kw3/n/Ty^A$wS=[e>g 泃E5ǵյVpK-"; ǵ) lwu?h6X"x\ˁn(m0e:3 ^=X PY>N l|O~ Ǒj6 D&oM;biۿ2Sck,0Qm1;Ζ#;<[sL?OG2s}k C%FĩD!4UH Iͺ{ghЙY=JF>*"reXx luLiޜzql4Ȧ2,bkX:X޴#!)Xs+J@Q;#>c[Z/)@jN7 -,޺6FCQJHR4,jE.wh@g~V?#L^ߴBNnLCÿü`0+'D%Iц]H*?[֡xPWtVӻFSY6\bW@ck- /HV PetS4Է;!|!)!J4*[asyRd0u&% 2=u%?|bЗ-c"1ӺO$M/q3hBB?=? ?&uLHY4h3K]:XH0;άV;`83SIXޘHZ; ݮ;xdCEYK#WJdK5uIY}nme Pk2p'YS&Oˎ~Bcxa2 5NWsr!{ 8X7 ~{I>)V[ܚ?gx'զo5S;yh";H{*eIb6xp{AWՐ -SU!RI x( R \i]@1!p0/(d<UDSvnr=Y)x^C (Cƅ=(4^A, h_8"f?r"%̦XGB]H!M1J{sy>_9'XjgP 0|P͎mt1PhCfD& SZU&$^3-Zm\SsZNz1h~iwr=D.2JZuR WV}1,-\H`3C*_N;҅0KLw6T m'RZNQU\ت3]_z=:'̥OڲkQpN!+ neZyG$jK`nA|1 &'")"F>c@lCnsF|p4YG&×˳ KLFjWWWEʛҊ&!). L`[mS}:j' l}ی S/ S:0`rɛBinDz6"Gtp9ې+7HIQuxiC5N.e4%~awBp*-.-%u.}Fvq֥յJYxzρCP⚚um)5鼚ўpX#<:axo,n(b?$ۊvfj?YV33prѐAdAej4>$sg&o[jJZr##!<>Eɿ=59G-'tClpX@CSٓۯLiXgzXHD`>riWZf߄ɐZQjc@D lѓP59,m*7Mڔ$*\ZIgLS? EO Y4Gr; o_kW8rDJ4wZY2[)?o D=΀8ŷ>i!vPpr ]Tw uN\L !18@5/|k֮e@{>B'T^pc;צ{YuK144C  ʀ|4 Q[MV~XVRիJ9kvHrNt *sg) B- 2^u Hө6Gs**'S@;pXʋpuA1{>2@hV(﹈Qu*]VEdjgNn4o}*ݏ+)JV*@ ]QBp*HxB'$z/TӾYE$ǁS Ú*jsR'i"BN-{܅?t[>8_9{T**Z_P<,PRqu5]o"+0E y 2o@fQgњ3~Ja ,>:jPjOy5w]JQ%r'T1vl41fP@VL0Ơ_Ihp粿WJÒle"-RJ7z{GZ:21*&Ae{$}e&% k"H P2_J/=9`x&7UAϤB:טG+ԑ={%`b?&,qFØkhI4րU.T+'Ii6xi@L7@r떵(VDR] tJ Ef|ա% 0d|]X)qHB {>@!&aYyP;)_5!DUg~"o%`R&;#\M` B}LTic1FOmM^f(H 30r<̎Gz,<MqФ[ڠsmw:^SX9Ϻd>؁IJe dի} ~'xUάm;qMI؃Ien6!k;a胩13o) J\R|Ae/M={hz8h0LwQa,W͛+(ow{=h1tr zL$њD}p>sje8u%Dfj4Fg& H;skȰ >ڧ H;8x_LKb*1WLb/v6+;pq$WG~KmM9tkQ dp'aXRKrհ<-[gw})6e!X䑾VDg 7ȔH_Y zE_)ҀĠrD^6B5գxT3MyKtӭ`-W@LU 'ؓ*dJ_V/Ov'@*-;:M`Fx=*n-yqh{Ry}BËCvlL'js SFs{!uw]6qOۦ;,ccpԁXK{ljP$Y>s 73C<x o uMŤcsC&4}I0{"֠)U/.$Z'cIC5i%Os˕4:i f5fF{N:Ij)@ARDnW%W 8.ț ^ƞQ]9bZ̏Ň^HIcKև璍sz8]G??=0ƧfA;jy>%ފąW)]t7}%0ȳi(v:j`2hj@& fKE}e7 gu]àLH&֬KZQ*viivPtQU:&]ew*m nՁC#aoS-]jE6=?k} =wĘ)Cs]s%G0'XS^"Qs},LfNsEܼ?&]tO*%=ʉBce $!J>XaVZI⃃jW]uM[EQѫ17qH1LȬJY5@'YH,ڦk>B \yѳʸ ]FbLgZ ^nmSax ACEi~`6$:`kuNFChJqz1mxv #RW|Xc[q3LR8kt$`PBEًi=VFhG35 dRk_m9598K09kGY&!',ʗ<]ZQ?7-^ak_],]ԺKUF tFtaVOkX. Ќ#*Sۀm8w*D0|յoVR11augMXPj zЋj(fO^V}ʯ T$Lz{k/ud= MJn^t+(Vև)VBkQPz8"^in-τC˭ѐu}Q2,X'Ae[6ʻ -cZz0~]d0⧞b2X+Z#țӞK*J-o=)Ya;@_ O9 rĆ{?Z]Eu) Eʲ%} p<*31 n:Ő4*%h?.:#A_$z ~VM<ȡJ]ph^ u` 1NP:us3AXMV{r6Qq$ښM*n?;[y.h',]Ƕһsؽ AumcS ZK@Uƥ6av;8EB;pЬ9mX4)%LU yӤn0Y_3/6ip!@5\ L.m̯*ڗ41١5a)Î?I3nFl/L)^Mv 7=s?o(%*6rt-+=˖ޮtvY\X^\ 8bW /ؓGڧ杠r6wKw EyEbi,@ܴu hq-ԯؽOF2A/9yxě{#IS}OQkLdvK9Eam`Oe,U Qm{yC"䑦BѶHɯ0ț= >336B{Q)kC*Fpe21qD1iV*v 5;QE#꼔וrJ27\x34U4N$/ׁٮmIrInr^D^`M.zSࢧYwI$Lk0X@2 $7<uZn;J`ӷyvbM;{ߩ.)RIqkKͳz`| Z@)ƕ6y4G5-fX$re@0[ +gzK1(jwme)MeS3bRXSAtWȨŸ*3@h9lVIqkO_R bˏ<EOa )鷫,b_iFpm~#5mnJzk~~? MeGv 'Stq1\QWh ^~}5Dwss(MK^ėۗ,U5OrJQa)8c j %vq` RN'^qH$քp.;ZޢF\AexrNۺӀu)WWS /39Ռy2K0%/$4X݊rey 3Q,](PL$mt(snM<v[0M EU~AI6hE 0T1M+q7Ќ"˩haW'B9^% ;B܈wWx:ˎė)ĘƮ WFJ4.oKnDqA,@r5nAN~OKBs)4DVR' $bOJJJM)9f3?|$}Uq}VW=fnjRh`75g kÄ1kIr^w^{M3gZ50 yX _5*ZʭC~HoWh*p u=HcC&X.܅9vW{w" q?ZDx J3_a76,ifn;qng5%j"N'xyc*qzH_}69e :Θ,ե| Ui<4+TX6q]M!C}Qf M6u/y{+Cyp{GѕTw*bex3!@X@jEp:-B-|N# )hUن *0wC>qcht%ub;o81z;uC 2Bjō>lWQJl3_7b%{J,֪1 #VU}id6psF;$$Gҥ< \u'lzh\Fv⟀&Joai!!RU Jcr% 9 p$p9)5 W-?)H=&K;4ڗrLh!C/8íey# b"~TsgaVK[|um˥: Y{K)T' W.t8P?FQv k$3{0AYᖒq6(19'Eh'2KD9sc/˹hKe<ӖgӞ19zBpsFJ 7MЄ4eѶvR^g¼XkN7ѓAf3]Ab0`mn!>)SUBFצ=M=^30rcݪiyozc<;DCu[ G(6]c Г5):#}޻_+ F}:K!+r0těuN'9Y%B1Za 8'>9{F齋 s <0LUw`'%lM)8-CiԊQ&԰U/.7m],%H0NhlO#s3[wq'r^=< [> f./Wu @E+ 1W7&Dp*cH4>@C5ڝH^@є`oPl;7%4j*`4L6:C=y h}{nvW0m;#l~N>,ml:DcQ,!6rKQb| qю4, QU%Z>U[I웁.Sט^:6UMQ3Wy+vH=>0 eKkqK~}.sr_R"WҭyL߁KW9-?wlr(X[:%^x' N#ړQCÖo bL/ 2Kknk<,:[3yZ:8؆(vV u,p̑:Wu;"ušh> ʆ)x1 n,DXj~A~~DOéH$(!O\Y& CG)+JԶ7d/a5.8@~گ`hz&k*T $Q]"@=MSGM/kdCch6wuwplME#0' B+,ѱ]Ѹ Tag{7e2FIQz쟮@?Y+cFDvAY;\M:/HJrha>szp2ʃxT³#u8 5w)BLM'qӔ]Y_Mlj6e:^4' IE*KoH9Rm3*lXϞLeYxK<μ=@.$0ȉӞrpo_{tiw[xcU}ilU`%4/~Yq wk:"@srj.X@]k4[qlbT}+F6/!|uNFPbSݬ\-0h<`FgZ\ W6l6/ SM:38yDž# -{-v9C%cnE 0KgyT<^+̰f'zH>"G蔧9?V]2M߈/J?{5EU_NYtAA@vaҥ6&^ icN!n9$}E Vf4UUۧr/ +جK!5^Fc@~Hq9!T3~9Ê:-ӎ PCEPK#Ee79e#@&HR$&Ď?vm^-0V;0DEOX+%)DHtvTڅ˘fŻ+#Szs*F4}-%CTnWD| aŖĔ^REQ Be5DRn3N-΋1F IȦuC>Z\V J {k"Q4 Dq1`ťJCnz_n2֧"8ռc^#?m>8ۭ>/L!ZZJ:2;rEǟ >ŋOᎺ t+}J)a`pf$RG@WJ łLnY9i/ v)eݡJnͥu "ی@|ExKWP+\:Uz%7rGkm*&$72n;DH%,zbr@뎢s}Q~[3n*v͊\Ys-$g{ʹsȍXǐ~ᥨNK/!$΅ m-7UE&1&Q{/Q?O ?jbo] i.PF'g-vu}@VPǔ\a=8 d9s&Fnbf%.!%4ֲ>_!>$#@ h C W݇%U$gL=u[j]AR9 `GiD1⭊8#^SXk wCSWLv4M[@$0Me*[K$ 0s2dFPK6|)L@{jhPJ-%.VVf=A_>1@NV)_ G2׶?bt֡YǪ˔WdٛA!TsFrf葺27n |xy18MD Ys]eWB>agFϓ,[^xa;f+UQ?fTRnsKncs~u?0_<Ĭ< HF$ecăʺ٣862 0k!!Sv|ݸLFK 0YSP02g7 V+ЛcI_RrOq蝯+)Ʉ!OA_G[?We7_|?t >.^GXlY!rP3۠Cs9h9PL+(W֜m؍aG^M@*s DcIq}wA^ZWd aSg5S2.|2LzX$%fGOxm/Zl'&:1s%xrTH#SbY0m!Po' jƲDEx_z˲ ?>d>aծaTj!y$jm;ױjjw!/NE}UG@Oψ͉\YLGN(f u$;Jy]+-Wa]EO^U*-v7b?ې< Fya(I"?Dc$0!rۣwbfC7 l'[0^lV+LMh8}'-IB΂.L},@`5~mXPʥ8l\frөuQl5kbWjXz_ڤjËْJߴcIK[}ҏONqXT.#wQ}OFO2w"{ӖH NCۺLjT_?14 y>P`^h9!:hZF4xFwt]5&AlRUc ;SҎ0t.D%CL&Ԓ(E}3Ak  FydaA7:jEma CV.w/WWBe[B%gz w9^shy!Epc.k7܄hcvĒYE>\=9Pld[qNdhɘR`2~y$'_=)1R)VgpIf+8jM&.x:r@9.yy)bڣxNmٗ\:+Qv`)Pl( 1u.5'8߶ɛ 2"~"t09~ԷNsA%uTܡkM>edwӯmC@3fB9W>?Ͻ#DGxI\ H_1/'F}fJ83 LG *& ;o-0{73`R.Rz4Spsn_uF][ f˓m(vn{F(qz Av"<Iqu2ƶÅٜh]r1f&ߍ!%: tN),PS9'dqK.CZD$a,֯b5ތJiA4=ĎDQ#n(oWSCPҗA YA9ba}Vb6%ȩҍ^_z@0O' 5ׄpjАL7>F#h#~Y 1e%_% :lֿNJ12K)B@FymZ[k<$řX^_' Kmeg N~W>i<¥n3$#i<=s~2i[$j.eӵ[MXr^]5K=&1.CubFIs L`8z32h6nI3u%-wX'sH̑-V^81*E*diq QyA9+Q]v@id4d 뾏~o͂ZҔ̽}&T&Ǫu9#C=Y{Y0mdePcK gxD6ggڔQmk7ZhvS特#\μ Uvz^obzcU4P}8'ee29[V.wp]ԕ\S+hюw ?8o+ gSpX|Zcʄ6Z#N' ^A~o(.7.Ys^߰V>=IΝl*+;U^,,!pBttzXv⎲,*3*NÁ9(qXtTgƒE:J+q`w_(R\v j3l&mmi)#G~A]<](pG+l#ZB,;?:R?m6iTEg%l~>Hl+2Hs~D rv _VS$j XYUVhKVwR``Jnyһƀ%xya)ճ q@$Dۍwsi"OܒZؼ'YQx"CZ/3}ו}Uz>+Qpn4 '*-S2gW9`v#cv"iHjI a!1tZ7d%lJ Q8fZ:v\--zz_[x;J:*k)'&?|"Vga=4 c|[ݹGƉ帔 q|Qߋ!zXѾIY)pGCW4.;c:zzGt}V 'VutZ'U1|nhD~! _[fm]GKnIZV)nAѐ{$ (Z3R67sz ܈0gqPwVBƟԆ/qCYCb(  g85j zHJ[> ΢m}>i)MҰX G^zT]!*cwuMݟLVkwu vr ,OYmz { մ_J-O 9}h5L`3liSտY!.#Ɵ T }oYrbay0X➴Kr/efZ.6|y|*A1vQV(VMw>0F@ֻM!E 9ljKJb 3xo0l*D@8/,C nүZl_W``,QuQwgyWZ =җ5V$(d_\~o_ zP2/cKFJRg0e}M'S"oy|QhҞEE ^TT9 ώ0@ɡG6lK1ֱ;x m <ؗsM"BqydچyN3Q4g&9,vUy&؄J204W Laђ|d~CNZG= n!x4  [8AI6Iv0R.ռ#ВZP,QL\!Tә=Qa|^Ԏc$ebR—^{DۆKtWV"JI񍻞hbYo YWTmAoz-n@QtY[C*%Nlz⩉pt_Y-qʌ "Fm]#e[SjR.yauJxH UeVdJ0tMx{ b,H 2m6O Ks6{N5<{aF Y5))h:zr`zLf'oe٣dOKtbOS$NF@AO41=s{d%VC?҃Gsul+O* HXbzW]Ǎ ~AFXh;139I? R6;YZgv@:4sM7)==}+YNZ]dG2n3\S $p΂W_gxח oi:xwWB&A73JmV7KP\1 ~$~I:UH7z 8hȞ_3k΍}}8±K_Kθ]xIK]Bsf$a2͛q ^#d[@>F)ͶTnjUA, _Ë F_Pw8GnC21.475L‘ch} ,.㪟Ԙ-ИhQ10II)'7iKW\QGr CCEmP]Տ6 -%$fnNmd1+V߰.kQT>8pJOTׇ<1nN$[9VF:I[2XkgD)lz})އ_|BׅרۑweJIf3n[D엸Oy΁ǡ>mLjR0s\&>L8vV 5Y+Q 2rU4d<ja%Et"p&dEaI{4gQc0\V,թހCfN op#X0Tg>}PĒsrZ\cNp)oq hFizq݌\xN".Ey(da6X^wwC%/} p0V?mz.I@߻cN6\pcAHDz/R.;$݇-oQ`,Z6{愊8Fe6e3ˈi<1+$Ũ 2VѬO-C M|nQh&˱Fl9L8T D,^0w2 Ӄ"2^cꥎszu]K4le6hQpBKI꨸֢%{5h xn^xSmnM);%.43,ol'E@\9``H<8Yo$ݴ %D <†4sɎb,&FTAsM/#xJP_ ,j_L*)Fʸ;B~A-8et83zvJh-uSXpaBO(LyVa\5 ]"+Ui<BMj\לUmb?h9]e½)"oh^ -|`P%p^3wͣmoxE8d=Nk*uKbS™XeC&O1xQ]C00fJ#EySA;jKw:ZYIFMf-hGwwse O=7Oނ!L6ҵiұ';yHFmH#hUCצ*Ԏljo]_̥}%Lsx( \_)^x/r:-i5R9zgeγp0,vax|Bº:-&7xm#p1(apDO(_fJ0nN@"z歽#UEDap_l`9[G7;bc\gdXIlu`7:T|(zd:Q;ֳ=oZ vbǿV*h%vRу3ԁ#{u aPnM?kB]Ҳu-̃Tkc9}BpARF$ʅDO wnAjS޲x X3÷S4gEΐM0)xK"R )严2hB5c"e=^Hq.ɔO9XXa]ЈָyWR/$Є@uUiVhR{)#5O msBǴ$c.* ]-6ƯoubOYg#r̗džҖ$\y J<33'Lv^:lY3T i1z.O/:)࿀EۦPqr`1Qug5os2rCICtм SPQSa +)Oif}q(0B2>yInktkn$2|E̋rK3m5I>H }4(,#.n٥GwɈV6ps~]Ofӛ?gn( -](7x3E7}ָD&9갠)t퇟'F1 ><#P؀g}H55s e՛bۄe_& b=ca7e<+$e{?I-\ ' >mN怉F?R yv;G_Tk;[.a@.VbD__oˬ`(s43rmxʋ5酈 HCg*(Xf~h0I`)Q؅ޕEy'?߮}by|ј= N烥E v=3c3z2a ͩ1x$ѩ0$mjŇ }sI_b-]n~R$LJ{TĂ" 5(o%,t͜E}G-h05n}L|ϝwTuF+BW6 9ThC O'Sѵ}XLq.'xJiK˨l0h8k ݸXgudhgKtu\߿<$>m+{Qx_M{gr$h8C%Z0YȪބ>mn:0&c[ZD% VuQ# j@2L,3~Xd;E?m$8rj8>vzp4IL |lW䑍Kq zEɏ?_微ҞS $~Jخ }=]UPK6z]`=yFl O-.Lc-{˩/ҭQS(Ae"}D؆fdCw@W[ujT$aI暢iyŘ4=w~܍g!v,_=u6K@Й.$}s-lɱV-P8쯦f)DhS0f6XOHU&6"[yA29aϳg%E݅4\N( ,2[jYgHhKP!_zB"8"]*^. irLQ,zrfF:Os$-B:MdqPFc~ᙖ3ѢXM]狞= I$W]D3dP~Ǩ7;5-tjr77੕/2 |Ȳ٨NM$iS)yt \N/,Dr*;w 1{g݅s }dލP: _gCB*veRᖅ'#p:z6_kn[gjiӭ wɖ@ |#CjD'HfrR1pEmnJ )9\{TK5=eE`4ĕ6{Y|[S9sJ O_T/]X:zy,=Z:?=PWۛ~My zQ`W\ŜXQ d]aǙ-nMV4Փ ]:e-e*竂s9LNa}[W}q[?:jr-rs5gC6()r]ADoNk2X'Nlke^״dI3AԦOcPKzɔ 1'ߌίw7rpN@~+TSxC0/m4R@ 0NL/q6Hx!Z-;ViyhS{WyGFm1͹r `4 k/dzuAya3"ms >źrJP%H>fPU+|gа.mj,p>d"'Ux'1 žygm}CͻrAP;Gp<ѓFy"Fa[U_Go{hM'`p ÄT7+oB{SڭR:G}eaڂB>&Ƌm}W\23O`>"bI:UKϱmg3-f|y _TۄpwJ (3/mOkhglyV46 HˎGm8&OX;[-} b؄f,b_LƼ mOȄFeAC,Q,(l-M`ʽn. @FZ4,, ًԼ/#8YԐ aܣ vI֕ \*힏y-MoT9N=,V_EHf[V]=*RFO*C3azoѭ47 +q n'#ܿ^ C-3J%QɕTVeA!h s<*%]>uzSYѤ*w9F"Y+|.}6vْlp+UNdPuM,k ŕAb>r3Zܨx촳]ȿ+Laδ+T.B#"Q*8;I:c(u;#'>7I5(Dd6wӉ׳ydžm'k l%z(ܧLۗH&WMA\Gru{ioR SʳH=Z[f2P(Kj XV0Mc5+v@vR>\!YFιs+ :| "+9Au}ѫ- m&^E,TޛM9d;)A+ŜOzڎf4ZS=jrX$*~:f,brVn=f`qLAjz@KfSS5#a?Yѭ %ubl.I82Y̵si7+dFzNu#{˟Lj:' Ysl{Ũra#${/;tO"0덷q\Lw=ڮNou',}|v8֟rk>FZKXlK*!aƟT-t.C&\Մ2Vv(PZ⢼sR4um1(b'&P贃KoUPYbpd<ؗO9H1]i5@{OV:^A֙ʂDXto/LiV~n.m)``V`BnF݉#(`rxt>hU 1M"} {+ׁ pVBrېQlfـ}#hMݞx>tb|:Re0}r#?qzeA5f.ֽru]}>FrojƼINuz3d&hd~ǹ1,ZXe9 \lvpeC7:<4U@5.X{`vp.UN`-X>i>bá}rS ^(j4o9xVq8ٵ~qBE&N}< V\z/8EׯgsvYahCX+d_F){$ Z8ȬQoV`~yCjV=7<\sYtFo*~= dWq~rl#C;nw5Ȅ1{ן< Jn hj}dIL#o"D?%ufz1u `;Oqec[M枎 |?O`n'qNlQ h& GzqEO:~y5y1>g"[hWwfӌq41rG=‚uVwi0v %~k'C`ʸJ9&ڔRz ]_cô0aM;}h;<2>:R$nN5UlIDriʚ$ |&a쑌u# Aϻt5hsH+)ԑ{˾Y ߠ%/Rxv+Rx /3Diw1(q0pN" rŇ%$,PN v*q8ˎ>ڃs%;5GUkhGX32UPl$*{Cd/ QtW MP`u= J@Pȭ7P5jZ,\Ė߇(BI frio%{8e-r-hMGqK9k j;w>`7lʉ'~TRha%9GKkPZ.BL:~@$8OKF%sADldrnQ|RP T'+=_U=){lc4F/)m"dkR1g2_O>1eSD[}o`|%PW86u-KX"1[JZ P+*kJ"HL3o/~߭FG iGUH]:8h.x_?j9az"D4ٕ$\ùz;*5c=kY"L@/Œ$NRQzv(3R#S1T+;$UDMʢSV.GB/T^%ObL 4+_P5ԏϐkJ]qҔz$7CfQ:'td,頋tX :@_'ELXudDve`@@@:&U7ôm݇{ȗ g'\Y`=i޷eP`KdWҜ{iKL۽C-5y ?ڍc0zߴ%HPeXj ̼{qP%SFDRdj32FTz dhAw/x2̂m=q|6,?% PPWHGYBD}z#kڠ>=k>T?!soDF4!>ү šm HwAJKy4X;jy\'6A{ ;Po`FR8?\Ce`[)= Чmwkͥ`QVL/}ڦ1xY»M`/S}/>ݨV)'}͡m]R$ݶ$MR*T C7b`fBc.@x'P(ʌ]j*P^Gme? +B^R!"߲m!E@_,ũLSrȭ`eB dI+KФˌ/pD [O^fYQ6KY2ҁ1nȱp+.lxݻIH{/={rg|Γ V~_l4l$w {*czZͮD $Bp]$p%>/͒|n#-AW&·}okX}ldA ɟ ^j w1Y )*h!ӑ[y8j6nCx-͑ $Lǹ?1"^WfL{]EH]$]Vӥ*}+n7`e[q0v[Ci._)67uR&0Nm|񃂺h<<:AYba @kxߌ27 EKFN/)D̸iIWZCjꁟYVC~mb"ڬugu79WXJ0 ?Gh~*TyLn]Zp,@Ldf028ך?fD1<{ul#L{E7O$=dґHǽR1"i?T"X]{rrrOc(Y2º^+Mh}`cE;<Dp[3V`;x: Im!5>#X7NOPh ?-RYqQWMɴUhF;9Z ZX9Ѯ7.< a]M8QƶStF`L۲?B<3N=@$R-;~^ xu t L,h3(?Y9-g= ອJ0mz`-19_F…NijlՀN,?qկCEfZ'mǒ+y@,aGq:< ضݩnYǒMUg˓94j&s|gW,ߩb)sq3SBu:s0 NPn*`2J'75oo yRۑ> $Wj.:Ywu;,),@Kf:6DfiqZkDNJq  V75,w47`5 r&msmEboxmݿa@hU:hJ:Ӏܸ -Y!HJ:ie9W15¢f})ZJX1S[@H^CyqiJY s%I%V" r4Nm{E)v ș#8`9;sQK_T?"5ANf-8CkҖҙ6,[$ʗ4ŶDbguoTtKc(#Tٯ8 OX`~gQf+[M@!ewr;_fbFԣ,{/ IWr 7k&2'_˲;x-0H8\8<ВK{։W퇅KMΑy8V g-2 .m=ކuxM$èjϔ3V-O%r~@3%nw)*J Zq>$w-$mVt\@L7Mtfp nJlϻD 7 v@MƞӴӓ/$`OATQzs աx_3rA @ϸ%K$ v wLu5ʪ&cF ;ȼ7NQOF&"q#D>]]0颎$ӷ: 6$0k<0OKx'vΠy =miNQ7Pƞ{K:~mĄ1bH+cyF%~<|K2ުo 6W)_3l'FfQm(Y`@%u<0_c5ns}BE#MljݔύEɍRXo'ĪAt1 ;*N)©>bFbu+[;BZa:2(urpҰfm;ҏjy|.˕%,y80oiwq/1MtH΂-SE*rla\.GU` 5uuQ YaT :Ű:I.jt%$~`Ge15S$A[{;!'ܵO4`]/")f_j cYwa^}xi  !vmȻ.ʓPS@:4w'&?*V"l^7 L:sETMGpoEJ>jѽ(;1O}r/z Xj~ݚj`E/9F=븵hD۟q.tje T&ע@+KQS),RlÚtOP*hT0̠00)JǍv)RzE#ɸ 218G$"ֺ!| *0f8[vl|$:ٔ I#w1%_TN k36=$_)LEd>/(ZS"}vv|)8˫c.0G;6c^iEv˷rS sB" Y eR&H֟`!?g7Fc+wj>UP5%D񏭾6 6 o:o% W[C*FY°y΍&Z*`YyvbϤS7r}%!]-2Uy f(,"!T)S{BRᭌ p๾4mK& }^;x И59O6DUF/eh :4椷slv o>zڵ kѝ5fK1. U\oA~NJ,͙CN/8 YfȈOȔ,eLn:A&=w6th]SAXdhmF¤$%) 5RGQ k;=Iw4-'n`۴p1 )"nCڄ;zb_KGAKr<`ح+br,tO_hE@Kp}}̸@MWy@hlTg#DeYL|␶̵E5;̆^9@]0zT2. tZtmg^+xzg:bo3DBw38CUGDt/VQ!GVo&Q#@l |GUcj7&g˯>.X Jxf rYZg!B' K1?Aچ4[a>\{PB*˟Wˆs NVjNov\EXA ˍAfdQ0#[XP*U蛪1~!d \ЖH<F.}]WkCn "" qt)B MɷsYN/N熖&k;c74$_vY>^q;;N[?vHSQjBCic5:(ݨVܨshtCE9fV/D941ODVWb>9{&Rd"öք$8Ž7ڡoqaXT(46_tDn0CHEw-j07M_ pzX1s94tW@Y·/k1X]Jll`NfԼ$W'55YX=}0ӻ̯_@)=^rV޻'-AUiQri&_:{bL0".6'egO[J/aa 6v|I)‡AaSRʭ:KVU(zxE%mѝT9B_.(Tc5HFwv~aV5px%IleIշX,V'Pks9򦼳gSu';MDQ0pHu5Ƅ Q7ֲ NRzGX97 YfU:Ü m85˂or`RɃYOWDˢ6-L^4UH@q^?bTg/h#EJ[Ϟm";7~K%`Nί_#=gO%@(2x[z[EWx'Q[EU%롣^dуCG\6=4@JUX ozT_<м''Kި2Ĥ@ѵbkB0*i-1EjjLLPzjC5Ł/Y`>tMvV˨apt9mku L SeE9LG7V Buŏ D(v$%3D9v!5W P/l^Q v9Xa✆k/TjDlfE -pr6|}O׎V8O} r-Y*j ǎu'.5)d3^Ew8Qz7\uK@poKbFƧza0Dva~D|k-DPT1pa"ng  KzODZ<62 T7xaj^+[<gu1)J M-~ַ_Bq[IxMwiAtGGIފd-@K~uqiu,,xb8%=3 )WxRuTj U!UyDzK D_PLмʔl~1DO4/IC b&[j$ /J!Y9rĽJA_Q26dw1eX4܋e=wp @x5uh6I {Fs0K:,zۓh O2NI 2+Of,9{ÓZ4n:zW+#sH{/K|f],0dLbrXGZbAm }>' N0x)'(%yڭo 2*Ф< ufTJ (F  bq9+8nƩOwE]$@38Ch3`` 2wj=J+Hi@joڢ Ezcxǥ>x.e::gg԰*Z;PW gN봸Xbк<$rkm$q˹20 H'սҪa,HK[o4٢E|sM;i6Ez8Pwh4f`>:fXP>Zq T3'!ZA?Fr:i9 8?\(.u Ɗ"O1tJona/CL|k7%($g%+1LpѩH^OEan,-v$JzZRI!x RnTimH-#M5ty)hBp8m0q)%He:we0!#ML7 [Hec9G`Àٸe7D GR~R❾k3 794RACA@As{*u:e'+Mĝ66g啽k1V:-27.˖)&qԎ,X|Ij#h_=8mQ8H8{ľ R!}y& rçf>['^%$a"MxXQBϤ9XFCmKь^%q8/n@%ptw{(fq>]9)j,Xy@ rG"J/'ۧ)Qmh*vW[.0vNP![r ;b*i+.zf$H VhbT?*7C:D^wɱ#/g b-LnD"BZLI{OoM cm=gPnBUb$t.鮨+faY=TQr/Ab.ON؎!b6xlh-8Ufo[X&eI>%pR\ piu_ɐL(r*/*#dswgC cκco#2ɷ* cgjz eAo?N6Q!^/kwELU=77u?2/ڐE& oyZ4等yaz/ J"d,Ը-P=)eSNĨ='ŬOm|X`C_.V8ѩj:ً3y}Ի6t~ebxc*213P.T)>C l,lDSR,븡\%bv$vE?1ޙ[~M1VEA[] *?H­pRNyX ajKb|b^&@)]+(Ro{xC՘՜9.=nr>m}lz2bFbbiάU 5 |eWnb7?)4BGKza3c \K=F޸ &LLr_Ӹl(07%CS.fm% \ Gk6`M[0bh@Vee2 ^̢OSMD5]Ե*M雕tH]#n(x,z+h+7p"#Ċ2P_ j 3"߁QvÐ9h̭Ou{sDy #,,QYFaBNgB ˃Y{.Rf B -/;oiyQ{ca0L\E/ GT;W{s)9 &ivg??SMOݭbrf8|d$}f1ded qf-m (a1S~?:Ğ<1i(oP'Juڷ O1zwL29B?/b8ĕ xVӄca"!)ץ/wo!SQlr;1FIzyze,(PЀz9@a=*I^RrY4Ht!zK8*Xwd]ŘТ"c'W$&˅x7M'T8"'B u Z63To c*yv @(Ϊ9@RݹC[YcbRÒ+7*RѶQu|6]!lPyD7YN4a}|L ~;Qr /'|!;Hx"391PD":n ^S^2&< Ԣ kf{V$!~r9 Ty͂ HdWI4iжBrkuaHpN8 ekݓbr̖kCO7*kQ~r\6pa2{s`r"šG޽`.,p46 0XOg#M@~6ԩ~麷&6c}1^]'w%ڻqR+DbAlu*QiiXWpkT1Ԛ̵&˚~Fk%[9*y>,i{aJNos7fe qܒ`ŒߩD7,6DlAN΋R&ָ/=J;5N7w:E>Z1x+SMI&n . !k{g16FP_ȱbnF1KVHtl#_IS4.uXEAh1#D_#MDv98GKįA Ed&+ӪK5h ggTEeWdͥQ9]|qxdfw$~a9Hņjz'T1Zk׷V]s;GגᚶgQmT]9xNNsgzI֩;{#і!0bjcA\&=VޝᕠI8H!r3DžKߑK"9eU@x##"r:Eua(A. O0ԈtftRN\f˖@<݊ˤ{¯.ر? * `^3O:(61bЅ̤q o{xq8yj6tB]c=6Q>vvXSN6k~8j1 %g 3fu!{" !򘏂z+< RC1}x:F|A|kh$]xuhGj#\c%ېHq{2 He1~45sTx{u*daD QbJ\gHSt UO>hWEJ8wzrO:G3apsj2?Kgb$Hl7KeF̯?HXSH5ÉhF2ǿaΨ"d}+.wN' ]'>yO)AajPJOl mvޑV<7 Hly`ž? Y)Iҍna%یNT^DJlnsV'I!M =Gp|hA>R:AJF7TJLl:;czE>~R|AZwqڌ8 ʟ tt<"\)*L ;S$8r<PABB5 !Br76=GR7P ʝ)V·@:5wx2Vgb |sDN ڂ*C!oh<]hRT/ ^TK!I#P;;!P_e ]VǤ)SӮsɏez4s"w n{ # Ô_f͸Gu`_i[0|#I*N^%'r XxL<+O#4^06 SX؋sP nZ2i^dm#5{D/lU)"1%gXlcq~%3#?hJmY=_ӽ@?P3Xˈ0&#<