
GNOME Developers Website Documentation

Table of Contents
................ 1Architecture and Design
.................... 2GTK+
................. 3Documentation
................... 3GLib
.................. 3Reference
.................. 4Tutorial
................... 4GDK
.................. 4Reference
................ 4GTK+ Object System
........ 5Reference (GTK+ Reference Documentation Project)
................ 5Language Bindings
................... 5Links
................. 5Drag and Drop
.................. 5Articles
........ 5Reference (GTK+ Reference Documentation Project)
................... 6Themes
........ 6Reference (GTK+ Reference Documentation Project)
................... 6Links
................. 6GNOME Widgets
............. 7GnomeApp and GnomeApp-helper
.................. 7Reference
.................. 7gnome-mdi
.................. 7Reference
................. 8GNOME Dialogs
.................. 8Reference
................. 8Property Boxes
................. 8GNOME Druids
.................. 9Tutorial
................ 9ZVT Term Widget
................... 9Features
.................. 10Reference
............. 10GNOME Miscellaneous Features
.............. 10GNOME Game Score System
................. 11gnome-config
............... 11The popt argument parser
............... 11GNOME Display Manager
................... 12XML
............... 12GNOME Sound Support
.............. 13GNOME Desktop Components
................... 13Applets
................... 14Capplets
............. 14Desktop Icons and File Manager
................. 14Window Manager
................... 15Panel
................. 16Internationalization
................. 16Documentation

i

.................. 16Localization

............ 16Unicode and Complex Text Processing

................... 17Links

................. 17Input Methods

.............. 17GNOME Filesystem Architecture

................... 18Metadata

................ 18Virtual File System

.................. 18MIME types

................ 19Session Management

............. 19Session Management Extensions

................... 20GdkRGB

................... 20Imlib

................... 20Libart

................ 21The GNOME Canvas

........... 21Draft proposal for Gnome printing architecture

................... 22Overview

............... 22First cut at the printing API

.................. 22Initialization

............ 23API calls for rendering vector graphics

.................. 24Font support

................. 25Matrix operations

................. 25The state stack

................... 25Clipping

................... 26Images

............... 26Just print the damned page

................. 26Text formatting API

.............. 27A digression on virtual fonts

.......... 28Incremental vs. static rendering, or, the Caanvas

.................. 29Extension paths

.................. 29Transparency

.............. 29A sorted display list file format

................. 29ICC transforms

................... 29Prepress

................ 30Internationalization

............. 30Document Structuring Convention

............... 30Encapsulated PostScript

................. 30Performance issues

................. 30PostScript output

.............. 30Direct rendering to a buffer

............... 31Rendering to the Caanvas

........... 31Rendering to non-PostScript laser printers

.............. 31A concept: image callbacks

............... 32Printing to color inkjets

................... 32Bonobo

............... 33Document Object Model

............. 33The GNOME CORBA Framework

................... 34ORBit

.................. 34Development

.................... 34Glade

.................. 35Reference

ii

.................. 35Build Tools

................. 35Language Support

................ 35External Components

.................. 36Palm Pilot

.................. 36GNOME DB

................. 36GNOME Mailer

iii

Architecture and Design
GNOME provides an excellent framework for building applications by providing a set of core
libraries. These include libraries to create graphical user interfaces, high-level components for creating
applications with a uniform look and feel, a fast and thin CORBA ORB, and miscellaneous functions
for handling configuration files. GNOME also provides libraries for handling XML data and HTTP
connections. More importantly, GNOME provides functionality that free software systems have
lacked for a long time, like a component architecture and a printing and font framework.

The following sections are devoted to overviews of the GNOME architecture, with examples and
notes from the authors themselves. For the most part, these sections are technical in topic, and are
aimed at the developer. However, they are presented in a non-technical manner, and people just
interested in seeing what the GNOME development environment has to offer should feel at home.

GTK+
GTK+ is the base widget toolkit GNOME uses. It is an offshoot of the GIMP project, and is
licensed under the LGPL. It is written primarily in C, although a large number of language
bindings are available. Much of the code in GNOME is inspired by the GTK+ project.

GNOME Widgets
GNOME provides a number of higher level widgets that are not in GTK+. These widgets
provide a level of consistency between applications, and ease the development of GNOME
applications. They also provide a lot of the policy that goes into designing a consistent
desktop.

GNOME Miscellaneous
GNOME also provides a number of other services & utility modules for application
developers. These are a somewhat eclectic in nature and are lumped together here for
convenience.

GNOME Desktop
The desktop component of GNOME is closer to what is traditionally thought of as GNOME.
It includes the panel, control-center, and the desktop.

Internationalization Issues
GNOME has some support for Internationalization (I18N) and Localization (L10N), and
more is on the way. This provides a transparent way for translators to customize applications
in GNOME without the application author doing much work.

File System
This section discusses how GNOME interacts with the rest of the File System. It will cover
VFS, Mime types, Metadata, and other file related operations.

Session Management
Session Management is the way GNOME handles logging in and logging out. It saves and
restores the states of programs, and provides a mechanism for the user to take "snapshots" of
their desktop.

Imaging
As befitting its roots in the GIMP project, GNOME has a highly sophisticated imaging
subsystem.

1

http://www.gimp.org/
http://www.gimp.org/

Component Model
GNOME’s distributed object framework is CORBA based, but adds advanced capabilities
such as components, document objects, and scriptability.

Development
GNOME has a fairly complex development environment.

Language Bindings
Information in writing GNOME programs in various languages can be found here.

External Interfaces
GNOME has some interfaces to other hardware and software. They are implemented in a
way that allows other GNOME applications to take advantage of them.

GTK+
The GTK+ and GLib libraries provide the foundation for the user interface of GNOME. The GTK+
user interface toolkit was originally developed as part of the GIMP (GNU Image Manipulation
Program) project and has become widely used because of its attractive appearance, flexible and
convenient programming interface and unrestrictive licensing under the GNU LGPL.

GLib
The GLib library provides functionality which makes C more pleasant and convenient to
use. It is used throughout the libraries of GTK+ and GNOME as well as in GNOME
programs.

GDK
Instead of directly building on top of the X Window System, GTK+ introduces an
intermediate layer, GDK, which isolates GTK+ from the details of the windowing system.
This simplifies things for the programmer and increases portability.

GTK+ Object System
Although GTK+ is written in C, a language without explicit support for object-oriented
programs, the design of GTK+ is heavily object-oriented. The basis of this is a layer known
as the GTK+ Object System. In addition to such traditional features as inheritance,
polymorphism and reference counting, the GTK+ Object System also adds a number of
features particularly adapted for a widget toolkit, including a signal system for notification
and an object attribute system.

Language Bindings
The straightforward object-oriented design of GTK+ and the fact that it is written in plain C
make it highly suitable for access from other languages. Bindings exist for a large number of
languages including Python, Perl, C++, Objective C and guile.

Drag and Drop
Moving information via Drag and Drop (DND) is a capability supported in most modern
user interfaces. GTK+ provides a set of interfaces for supporting drag and drop that are both
easy to use and highly customizable. By writing to these interfaces, the appliciation can
interoperate with programs supporting either the Motif or Xdnd Drag and Drop protocols.

2

Themes
GTK+ provides support for user-interface customization via themes. Without recompiling
either GTK+ or the application, a user can choose a new look for their applications by
installing a new theme. A theme can either be simply a set of colors and pixmaps used by
the existing drawing code or it can be a complete replacement of the functions used to draw
widgets.

Documentation

The GTK+ Reference Documentation Project’s goal is to provide comprehensive API
reference documenation on GLib and GTK+.
The GTK+ Tutorial provides a gentle introduction to using GTK+.

GLib

The GLib library provides functionality which makes C more pleasant and convenient to use. It is
used throughout the libraries of GTK+ and GNOME as well as in GNOME programs. The
functionality provided by GNOME can basically be divided into four categories, portability,
convenience functions, generic data structures, and the GLib main loop.

For portability, GLib provides portable equivalents for a number of functions that are available in
some, but not all C libraries. For instance, GLib provides functions g_strcasecmp() and
g_memmove() as portable equivalents for strcasecmp() and memmove(). On platforms
where the standard functionality exists, the GLib functions will just wrap these functions, on
other platforms, a portable implementation will be used.

GLib also provides a number of unique functions to make using C more convenient. For instance,
it provides functions to break strings into words, to do computations with dates, and to log
warning messages and error messages in a flexible fashion.

The generic data structures that GLib provides, such as linked lists, hash tables, balanced trees,
and variable-length arrays, allow programmers to take advantage of sophisticated data structures
and improve the efficiency of their programs without having to reimplement the data structures
from scratch. For example, the GHashTable type allows a programmer to create a hash table for
arbitrary objects by simply providing two functions, a function to compute hash values for the
objects in the table and a function to compare two values.

The last major category of functionality that GLib provides is the GLib main loop. This is a
generic and extensible implementation of an event loop. Standard event sources that GLib
provides include timers, IO callbacks, and idle functions, but it is also possible to add completely
new types of event sources into the GLib main loop. GDK uses this functionality to add an event
source for X events. By not tying the main loop directly into the toolkit as is frequently done,
GLib allows both graphical and non-graphical event-driven programs (an example of the latter
would be a CORBA server) to use the same event loop.

Reference

GLib from the GTK+/GLib Reference Documentation Project.

3

http://www.gtk.org/rdp/glib/book1.html
http://www.gtk.org/tutorial/
http://www.gtk.org/rdp/
http://www.gtk.org/rdp/

Tutorial

GLib from the GTK+ Tutorial

GDK

The GDK library provides a layer of abstraction that sits between GTK+ widgets and applications
and the underlying windowing system. Instead of making calls directly to the X window system,
applications call GDK when they need to draw to the screen or handle events.

This extra layer of abstraction provides several advantages. First, it increase portability. Porting
GTK+ (and hence, to a large part, GNOME) to another windowing system reduces to porting the
GDK layer. A port to Microsoft Windows has already been done. Also, it allows GTK+ programs
to transparently use a number of X extensions that may or may not be present. If they are not
present, GDK provides substitute functionality in terms of standard X calls. Finally, in many
cases, the GDK calls are simpler than the corresponding X calls. Some rarely used parameters are
omitted and the correct values for other parameters are determined automatically.

Reference

GDK from the GTK+/GLib Reference Documentation Project.

GTK+ Object System

Although GTK+ is written in C, a language without explicit support for object-oriented program,
the design of GTK+ is heavily object oriented. The basis of this is a layer known as the GTK+
Object System. In addition to such traditional features as inheritance, polymorphism and
reference counting, the GTK+ Object System also adds a number of features particularly adapted
for a widget toolkit, including a signal system for notification and an object attribute system.

Inheritance in the GTK+ Object System is achieved by nesting structures within each other. For
instance, the GtkButton class inherits from GtkWidget, so the first part of a GtkButton structure
is a GtkWidget structure. This means that a pointer to a GtkButton can be cast into a pointer to a
GtkWidget. Each class also has an associated class structure, which is essentially a table of
pointers to the class’s implementation of functions that it overrides from the parent class. (For
example, the GtkWidgetClass structure includes a pointer to a draw() function; GtkButtonClass
provides an implementation that draws buttons.)

Each GTK+ object class can have an associated set of signals. Each signal represents a certain
type of event or other occurence that an application would want to attach a callback to. For
instance, the GtkButton class provides the "clicked" signal that is emitted when the user
clicks the button widget. Any number of callbacks can be connected to a signal and when the
signal is emitted all callback will be called in order. Signals can also be used to change the
behavior of widgets - for instance, by connecting to the "insert_text" signal for a GtkEntry
widget, an application can filter the text that the user enters into the Entry to allow only numbers.

Each class also has an associated set of arguments; each argument represents some characteristic
of the widget that can be queried or set. For instance, the GtkLabel widget provides a "label"
argument to allow setting the text of the label and a "justify" argument to allow setting the
justification of the label. The powerful feature of the argument system is that the set of arguments
for a class can be dynamically queried at run time. This allows a graphical builder application to
provide interfaces for setting the arguments of widgets it didn’t know about in advance.

4

http://www.gtk.org/rdp/gdk/book1.html
http://www.gtk.org/tutorial/gtk_tut-20.html

Reference (GTK+ Reference Documentation Project)

GtkObject
Signals
gtk-object-properties.html

Language Bindings

The straightforward object-oriented design of GTK+ and the fact that it is written in plain C make
it highly suitable for access from other languages. Bindings exist for a large number of languages
including Python, Perl, C++, Objective C and guile.

Links

C++
Gtk--

Drag and Drop

Moving information via Drag and Drop (DND) is a capability supported in most modern
user interfaces. The user clicks on a source with the mouse, then drags to a destination. An
icon is displayed to give feedback to the user. GTK+ provides a set of interfaces for
supporting drag and drop that are both easy to use and highly customizable. By writing to
these interfaces, the appliciation can interoperate with programs supporting either the Motif
or Xdnd Drag and Drop protocols.

The GTK+ interfaces are separated into two parts, on both the source and destination sides.
There is a low-level interface that allows for detailed customization of the drag-and-drop
behavior, and then a high-level, simple interface that allows the most common types of drag
and drop to be accomplished with very little code.

Internally, GTK+ supports both the new Xdnd drag and drop protocol, which is rapidly
gaining support, and the Motif drag and drop protocol. This is mostly transparent to the
application programmer - so without special effort, they gain interoperability with both
toolkits and thereby with applications now supporting Xdnd, such as Qt and Star Office, and
with the large installed base of Motif applications.

The Xdnd protocol specifies that the data types for transferred data are negotiated as MIME
types. This convention has been adopted throughout GNOME.

Articles

Drag-and-Drop in GTK+ and GNOME. A whitepaper which gives an overview of drag
and drop in GTK+ and GNOME.

Reference (GTK+ Reference Documentation Project)

Drag and drop in GTK+
Information abou the low-level interfaces in GDK. Not generally useful for application
programmers.

5

http://www.gtk.org/rdp/gdk/gdk-drag-and-drop.html
http://www.gtk.org/rdp/gdk/gdk-drag-and-drop.html
http://www.gtk.org/rdp/gtk/gtk-drag-and-drop.html
http://lazy.ton.tut.fi/terop/iki/gtk/gtk--.html
http://www.gtk.org/rdp/gtk/gtkobject.html
http://www.gtk.org/rdp/gtk/gtk-signals.html
http://www.gtk.org/rdp/gtk/gtkobject.html

Themes

GTK+ provides support for user-interface customization via themes. Without recompiling
either GTK+ or the application, a user can choose a new look for their applications by
installing a new theme. A theme can either be simply a set of colors and pixmaps used by
the existing drawing code or it can be a complete replacement of the functions used to draw
widgets.

There are several concepts important in understanding how themes work in GTK+. A style
is a set of information about how to draw a particular widget. It includes information about
the colors, background pixmaps and fonts for the widget. A style also includes a pointer to a
theme engine is a shared library with code for drawing the basic components of widgets.
(Shadowed boxes, frames, arrows, check-button indicators, etc.).

The colors, fonts, and theme engine to use for the widgets of an application are configured
in a resource file. The resource file may also contain theme-engine specific data. Finally, a
theme is the combination of a resource file with any other files it needs, such as image files.

GNOME defines a standard file format for distributing unified themes; a theme file is a
tarball containing a single subdirectory named for the theme. Inside this directory there is a
README.html file and an icon in PNG format called ICON.png , and then subdirectories
for each type of theme information. GTK+ theme information should be in a subdirectory
called gtk, which should contain a resource file called gtkrc .

Reference (GTK+ Reference Documentation Project)

Resource Files.
Styles.
Theme Engines.

Links

gtk.themes.org. A web site devoted to GTK+ themes, including a repository of themes
and some information about developing themes.

GNOME Widgets
GNOME provides a rich set of widgets for applications to use in addition to those provided
by GTK+. These widgets provides a higher level of user interaction then the GTK+ ones,
and enforce a bit more policy then

GnomeApp
This is the primary GNOME widget. This is the top-level widget that most
GNOME apps use. It handles creating the title bar, menus, toolbars and statusbars.

GnomeMDI
The MDI architecture allows a user to manage multiple documents in a easy
fashion. It is different from the classic MDI style that embeds a window in a
window, but rather allows the user to "rip out" notebook tabs.

6

http://gtk.themes.org/
http://www.gtk.org/rdp/gtk/gtk-themes.html
http://www.gtk.org/rdp/gtk/gtk-styles.html
http://www.gtk.org/rdp/gtk/gtk-resource-files.html

Dialog Boxes
GNOME provides functions to generate all types of dialog boxes.

Property Dialogs
The Property Dialog is used in applications to set its settings. It handles the signals
and presentation in a convenient manner.

Druids
Druids provide a consistent way to walk users through several stages of a
configuration process. It fulfills a role "Wizards" play in the windows world.

zvt term
A complete terminal emulator in a widget.

GnomeApp and GnomeApp-helper

The gnome-app module of libgnomeui implements an object that eases one of the most
common tasks in application writing: the main window. The GnomeApp widget sets up a
main window, and allows easily adding the menu bar, tool bar, and content area to this
window. By using GnomeDock to hold the tool and menu bars, GnomeApp is able to allow
the user to rearrange the application layout to suit their needs.

The creation of menu bars and tool bars is further eased by the gnome-app-helper module.
Instead of writing code to manually create widgets for each menu item, the developer simply
fills in a structure that provides information on the menu/toolbar items to be created, and
then calls a function to have the menus and toolbars created. Issues such as stock item icons,
submenus, and dynamic help menus are all handled by gnome-app-helper.

Reference

GnomeApp - API Documentation
Supplemental Helper functions for GnomeApp - API Documentation

gnome-mdi

The GnomeMDI object offers a method of managing a number of documents, and
displaying their views in a consistent, configurable fashion. The developer can create
multiple documents, and multiple views for those documents, without worrying about
handling the user interface for those multiple documents and views. GnomeMDI can
automatically save and restore its state and the state of its children and layout, which is
particularly useful to simplify implementation of session managment.

Via the GNOME control center, the user can change which way they want to see multiple
views displayed. Currently available options are the notebook, separate window, and single
view.

Reference

GnomeMDI - API Documentation
GnomeMDIChild - API Documentation
GnomeMDIGenericChild - API Documentation

7

GNOME Dialogs

GNOME includes functionality for easily generating application dialog boxes. There are
three major types of dialog boxes, the message box, the about box, and the generic dialog
box.

The GnomeDialog is the basic dialog box. It consists of a row of stock buttons at the
bottom of the dialog, and an empty GtkVBox to pack your widgets in (see picture here).
Most GNOME dialogs inherit from this widget. GNOME provides an interface to allow
developers to easily run and get results from the dialog.

The GnomeMessageBox is the simplest of the GNOME Dialogs. It is a dialog with an
icon and a message (see picture here). When created, you can specify the type of dialog, and
the message. The types available are INFO, WARNING, ERROR, QUESTION and GENERIC.

The third type of dialog is a lot more specialized. It is the GnomeAbout found under the
"Help" menu option in most applications (see picture here). There isn’t a lot of
customization available for this dialog -- you simply pass in the title, the version, the
copyright, the author(s), a comment, and an (optional) logo.

Reference

GnomeDialog - API Documentation
GnomeMessageBox - API Documentation
Supplemental "pre-cooked dialogs" - API Documentation

Property Boxes
This section hasn’t been written yet.

GNOME Druids

GNOME Druid is a set of widgets that provide a consistent way to walk users through
several stages of an initial configuration process. It fulfills the role "Wizards" play in the
windows world.

The main widget in the Druid is the GnomeDruid widget. It is a container widget that
holds the information pages inside. It handles all of the control flow during the setup. It will
go through all the pages in it in a linear fashion by default, and keeps track of which page is
currently shown. Every page in it is inherits from the GnomeDruidPage virtual widget.

There are actually three different GnomeDruidPage widgets currently available. They are
the GnomeDruidPageStart , the GnomeDruidPageStandard , and the
GnomeDruidPageFinish . These widgets are, quite obviously the beginning, middle and
end pages of a druid. The first and last are quite similar in look, and let you set a large
number of properties, such as color, title, text, and watermark and logo images. The
Standard page is a little less defined, has a GtkVBox that you can pack your own widgets
into. While these widgets are sufficient for most tasks, if you do need a custom widget, you
can inherit from GnomeDruidPage .

8

Every time the user changes pages, the current page will send out a "next" or "back" signal
to let the application know. It can select which page to show next based on how you handle
the signal. In addition, the page can change the sensitivity of the "Next" and "Back" buttons
to restrict the user from progressing until enough information has been entered.

Tutorial

Panel Applet tutoral
Panel Applet tutoral - Printable version
Panel Applet documentation (from the source code)

ZVT Term Widget
The ZvtTerm widget is part of the gnome-libs package. It provides a complete xterm
compatible cursor addressable, colour terminal emulator. It is used by gnome-terminal as the
heart of its display engine.

Features
All new, clean, and fast design

The widget consists of all new code designed from the ground up to be easy to maintain
and run fast. It also has a low memory footprint, and the source is approximatly 1/3 the
size of xterm, while still implementing most used terminal features.

(despite claims otherwise, "konsole" is not the only X11 terminal emulator to be written
in the last decade!)

Unicode support
Recently added support for UTF-8 display, select and paste. Currently supports
fixed-width, iso10646-encoded and wide fonts.

Background pixmaps
A very fast implementation of background pixmaps and pseudo-transparency means all
users can have beautiful desktops without heavily impacting their work.

Secure and portable
Only a small external program is required to interact directly with the operating system
and pseudo tty interface. This is easily ported to different Unix systems and auditable
for security.

Easy to use and feature rich
Through a simple api adding a complete terminal execution environment to any
application (including secure tty setup and utmp/wtmp logging) is next to trivial (3-4
function calls). It can also be used as a direct text display engine with colour/attributes
and cursor addressible display without the need for a separate sub-process.

Features include configurable colours, pixmaps/transparency, beeps, blinking cursor,
selecting by word characters, and more. Plus all the usual stuff like selection/pasting,
and scrollback buffer.

9

http://cvs.gnome.org/lxr/source/gnome-core/panel/APPLET_WRITING

xterm compatible
It aims towards being a terminal-compatible dropin for the xterm program. This is to
aid interoperability with foreign systems. The rarely used Tektronix graphics terminal
component has been dropped however.

Dingus Click
Allows auto highlighting of a set of text matching a regular expression. Used by the
gnome-terminal to launch a web-browser when the user shift-clicks on a URL.

Actively developed
Steadily improving feature set and stability.

Reference

There is a comprehensive api reference and programmers guide available.

There is currently no documentation available on the supported escape sequences, although
any reference on xterm or rxvt should suffice.

GNOME Miscellaneous Features

This section covers some GNOME programming features which did not fit into any other
categories.

gnome-score
Functions to create and manipulate score files for games.

gnome-config
Creation and manipulation of config data for GNOME programs.

popt
Command-line parsing library used by GNOME applications.

gdm
GNOME replacement for xdm login utility.

XML
The Extensible Markup Language.

Sound
GNOME Sound support.

GNOME Game Score System

The GNOME may enable distributed enterprise buzzword-compliant applications, but that
doesn’t mean you can’t have a little fun with the GNOME games. To keep track of the
results of these games, games track the outcome of a game level, and then provide the
GNOME game scoring subsystem with that information so it can maintain a "top ten" list of
scores and their owners. This list can be game-wide or per-level. In addition, a dialog box to
automatically display the all-time high scores is available to games. This is all done in a
secure fashion, so that users cannot record high scores without actually having achieved

10

them.

gnome-config

The core GNOME libraries provide a simple mechanism for storing program configuration
information. Applications can save numeric, boolean, or string values using a key/value
mechanism. Keys can be grouped into logical sections for organization.

Work is underway to allow for a more sophisticated configuration system that will allow
network server-based configuration, notification for applications when a global option
changes, and better interaction with session management.

By using the GNOME configuration system, applications get a standard place and
mechanism to store their configuration information. This eliminates the need for each
application to define its own configuration file format.

The popt argument parser

One of the tasks that almost every application must take care of is acting on the arguments
that are passed to it via the command line. To make this task easier, GNOME utilizes the
popt library.

The popt library exists essentially for parsing command-line options. It is found superior in
many ways when compared to parsing the argv array by hand or using the getopt functions
getopt() and getopt_long() [see getopt(3)]. Some specific advantages of popt are: it does not
utilize global variables, thus enabling multiple passes in parsing argv ; it can parse an
arbitrary array of argv-style elements, allowing parsing of command-line-strings from any
source; it provides a standard method of option aliasing (to be discussed at length below.); it
can exec external option filters; and, finally, it can automatically generate help and usage
messages for the application.

Like getopt_long(), the popt library supports short and long style options. Recall that a short
option consists of a - character followed by a single alphanumeric character. A long option,
common in GNU utilities, consists of two - characters followed by a string made up of
letters, numbers and hyphens. Long options are optionally allowed to begin with a single -,
primarily to allow command-line compatibility between popt applications and X toolkit
applications. Either type of option may be followed by an argument. A space separates a
short option from its arguments; either a space or an = separates a long option from an
argument.

GNOME applications can set up custom command line options, and retrieve command line
arguments, by using the gnome_init_with_popt_table() function in place of gnome_init().
More information on the use of ’options’, ’flags’, and ’return_ctx’ arguments to this
function can be found in the popt programming guide.

GNOME Display Manager

GDM is the GNOME Display Manager. It is an entirely new implementation of XDMCP
(the X Display Manager Control Protocol) and associated functionality. gdm consists of
three separate parts: A small daemon, a graphical login program and a host chooser. gdm 1.0
implements all significant features required for managing local and remote displays.

11

gdm daemon:
X Authentication
Default and per-display initialization scripts
Pre and post session scripts
Pluggable Authentication Modules
XDMCP
TCP Wrappers for access control

gdmgreeter:
Logo image (in any GdkImlib supported format)
A face browser like the one on NeXT/SGI
Tab-completion (no, doesn’t work on passwords)
Halt, reboot and laptop suspend
Iconified login window (i.e. for xfishtank)
Session selection support (Package manager friendly)
Language selection support

gdmchooser:
Visual host browser
Customizable icons

Most features can be turned on and off in the configuration file by the sysadmin.

XML

XML is a standard to build tag-based structured documents. As the XML FAQ notes,

"XML is not a single, predefined markup language: it’s a metalanguage -- a language
for describing other languages -- which lets you design your own markup. (A
predefined markup language like HTML defines a way to describe information in one
specific class of documents: XML lets you define your own customized markup
languages for different classes of document.) It can do this because it’s written in
SGML, the international standard metalanguage for markup."

gnome-xml, the XML implementation used by GNOME, was created by Daniel Veillard as
part of his work for the W3 Consortium. Coming from the originators of the XML
specification, it handles XML files in a fully spec-compliant manner, allowing GNOME
programs to take the fullest advantage of this technology.

Programs currently using gnome-xml include: gill, dia, gdome,
gnome-core/applets/newslashapp, gnome-db, gnome-dom, gnome-print, gnorpm, gnumeric,
granite, guppi, guppi2, gwp, libglade, and think. The use of gnome-xml is expected to
become even more widespread as new GNOME applications appear.

GNOME Sound Support

GNOME currently (1999-07-10) uses the Esound library to provide constant digital audio
access to all GNOME applications. This allows multiple applications to play back and
record digital audio streams simultaneously, as well as playing back precached audio
samples upon demand. The audiofile library is also used by GNOME to provide easy
manipulation of a wide range of digital audio file formats.

12

http://www.ucc.ie/xml/

In addition, GNOME applications can easily register events for which they want
user-configurable sounds to be played, and then trigger those events through the gnome
triggers system. The sound events are automatically listed in the control center’s sound
configuration screen, allowing the user to easily assign different sound files to specific
events.

GNOME Desktop Components
The following sections describe the different architectural components which compose the
GNOME user interface.

Applets
Small graphical applications which dock inside the GNOME panel

Capplets
Control applets - run inside the GNOME Control Center to allow configuration of
desktop (for example, desktop background color).

Desktop
The handling objects on the background of the desktop (eg. icons).

Window Manager Interaction
How GNOME interacts with window managers.

Panel
The GNOME panel

Applets

The GNOME panel allows the embedding of small programs, called panel "applets". These
applets provide quick access to frequently used information, and permit the user to get
common tasks done faster.

Panel applets distributed with the GNOME panel include a laptop battery monitor, an audio
CD player, system load monitors, an assortment of clocks, a volume control, a desktop
switcher (pager), and a fish called Wanda.

Developers who wish to turn their standalone gtk+ programs into panel applets will find that
the process is extremely simple. The panel comes with a library intended to make the task of
writing applets easy - all that is necessary is to create an applet widget, and add the contents
as with any other container.

The applets use The GNOME CORBA Framework for comunication with the panel. The
panel however provides a simple library, which is in fact a GTK+ widget, which completely
hides all the corba API, and makes writing applets, as easy as writing a normal GTK+
application.

It is sometimes desirable to have applets where one process serves several applet windows,
such as a clock applet where the user has two instances of the clock on say two different
panels. This can be done from one process, thus saving memory.

13

To make the applet’s life easier, the panel takes care of all the session management, position
saving, applet launching, and sends the applet signals to dynamically react to changes in the
enviroment (e.g. Changed orientationof the panel, size changes, etc...)

Capplets
The control-center is used by GNOME to customize the user’s desktop environment. It
consists of a window with a list of Control Applets, or "capplets" available to the user.
These capplets configure parts of the GNOME environment. As an example, configuring the
screen saver, background color, mime-type handling and mouse properties are all handled
there. GNOME comes with a number of default capplets, but has an easily extendable
system.

Generally, only things that are modified by the user for his environment are appropriate for
inclusion in the control-center. As an example, configuring a Joystick would be good
capplet, while configuring the system’s NFS export table is not. In addition, applications
should restrict their configuration options to a GNOME property box, instead of allowing
external configuration. Finally, if you are setting something up for the first time, a Druid
might be better used.

Writing a capplet is quite straightforward. You can substitute a CappletWidget for
GtkWindow as your top-level widget, and it will take care of embedding itself. All
interaction with the control-center is handled for you, as are any necessary invocations. The
control-center itself will prevent more then one capplet running simultaneously. The only
tricky part of writing a capplet is handling the try/revert code correctly.

Desktop Icons and File Manager

A very important part of a complete desktop environment is the interface to the user’s files.
This interface is offered by the GNOME Midnight Commander (gmc), which provides the
desktop icons and filesystem windows for GNOME. Using the right mouse button, common
operations such as Open/Delete/Copy/Move can be performed, the properties of the desktop
icons and files (such as permissions, icons, labels, and such) can be changed, and
file-specific tasks can be started. The filesystem windows offer a variety of views (tree,
icon, basic list, detailed list, and custom list) as well as file searching and selection. Drag
and drop is fully supported, providing the user with an intuitive method of file manipulation.

On a programming level, the developer is available to talk to the file manager via a CORBA
interface to ask it to create new windows for specific directories, and close these windows.

Window Manager
People frequently ask about the relationship between the GNOME Project and window
managers. GNOME does not specify a particular window manager. It is intended that any
window manager can be used. The reason for this decision is that many people are attached
to their particular window manager; forcing them to switch just to use GNOME would be
counterproductive.

However, to work well with Gnome, a window manager must provide certain features which
currently are not implemented in all window managers.

14

A GNOME-compliant window manager should implement the MWM extended window
manager hints. Some GNOME applications will use these hints to increase usability. Here is
a proposal showing how to implement these hints.

There is also another proposal, from several people on the gnome-list and gnome-devel-list
mailing groups, to create a new set of extended window manager hints. These hints are
intended to supplement, and not replace, the MWM hints.

Last, a GNOME window manager should also be a client of the session manager, following
the X Session Manager Protocol. This is a requirement for a window manager to be
considered even minimally Gnome-compliant.

It’s possible that these hints are insufficient or incorrect in some way. If you are a window
manager author and would like to join the discussion of the extensions and additions, please
join the wm-spec-list@gnome.org.

Panel

The panel is a generic term describing one particular control interface between the user and
the desktop environment. A standard scenario is to have a bar at the bottow of the screen,
with a menu from which users can launch applications (the launch menu) , a button bar
with buttons representing more launch targets, as well as running apps. Panel applets can be
also be written which dock on the panel, like a clock or an email notification program. There
is a region where regular GNOME apps can dock miniviews of themselves, like a small
volume slider, which when clicked on brings up the full blown mixer app.

Multiple panels are possible, so that the user can have a full-size panel across the bottom of
the screen, and a smaller panel running down the right side of the screen. Panels can have
drawers which are icons in which you can drop other icons. When you click on the drawer
icon it slides out like a drawer, exposing all the icons it contains. Panels can also be set to
auto-hide, or can be manually slid in and out of view with a button on each end.

The panel communicates with the Session Manager to indicate when the user is logging out
and shutting down GNOME. The Session Manager will then notify all session managed
applications to shut down.

The panel needs to react dynamically to changes. For example, if the user has changed the
launch menu with a menu editor, the panel needs to be notified and properly re-construct its
launch menu on-the-fly. You should not have to completely restart the panel to get the
changes in the launch menu, like you do with almost all window managers.

The launch menu will be represented as a hierarchical series of directories on the
filesystem. Each component of the menu is either another directory (leading to a subfolder),
or a text file (which should end with a ’.desktop’ extension) of the structure:

 [Desktop Entry]
 Exec=gnomine
 Icon=gnome-gnomine.xpm
 Info=Gnome Mines program
 Terminal=0
 Type=Application

15

ftp://ftp.xfree86.org/pub/XFree86/current/untarred/xc/doc/specs/SM/

In this example, which is for the Gnomines program, the file defines the executable name,
the name of the icon, a descriptive name of the program, whether or not to use a terminal to
run the program (for something like ’top’), and the type of the object. By default, these files
are stored in $(prefix)/share/gnome/apps/, but this can be configured at compile-time. The
user can also create a similar tree under $(HOME)/.desktop, to add or override entries in the
system-wide configuration. The gmenu menu editor is available to edit the menu hierarchy
graphically.

Internationalization
Internationalization (often abbreviated to i18n, with the 18 standing for the for the number
of letters between ’i’ and ’n’) is the process of making software suitable for use in different
countries with different languages.

Localization
GNOME presents a user interface in the user’s native language. To do this,
GNOME utilizes the gettext() interface.

Input Methods
For some languages, complicated processing and feedback are needed as the user
enters input. GTK+ uses the X Input Method Extension to communicate with
external input methods to do this processing.

Unicode and Complex Text Processing
In the future, GTK+ and GNOME will be adding further enhancements to
internationalization. Among these will be consistently using Unicode as an
internal encoding and supporting languages written in a right-to-left direction.

Documentation

A whitepaper on internationalization in GTK+ and GNOME.

Localization

To be useful, a program must present its messages in a language that the user can
understand. The process of modifying a program so that it can display its messages in
an appropriately translated form is known as localization.

For localization, GNOME uses the gettext() interface. gettext() works by
using the strings in the original language (usually English) as the keys by which the
translations are looked up. All the strings marked as needing translation are extracted
from the source code with a helper program. Human translators then translate the
strings into each target language.

Unicode and Complex Text Processing

Although the current versions of GTK+ and GNOME have the ability to handle
internationalization for most of the languages of Europe and East Asia, there are a
number of other languages that the current framework is not suitable for handling.
These include the languages of the Middle East, which are written in a right-to-left

16

direction, and the languages of South Asia, where the display process involves
complicated reordering and shaping of the displayed glyphs. Also, the current
internationalization schemes use a different encoding depending on the language,
which puts additional burdens on the application developer.

Currently, work is underway to address these problems. For one thing, GTK+ will be
converted to use Unicode consistently as an internal encoding. This addresses the
question of having multiple encodings, and also helps provide a consistent basis for
handling right-to-left and complex-text languages.

The actual information about how to render a particular language will reside in separate
dynamically loaded modules. Moving to a modular system will allow independent
work on the various languages by people expert in those languages, and will avoid
increasing the size of the core to the extent that would happen if all languages were
supported in the core libraries.

Links

GScript. Web page for the development of an API for bidirectional and
complex-text handling to be used for GTK+.

Input Methods

For some languages, complicated processing and feedback are needed as the user enters
input. For instance, for the Asian languages, the user typically enters the pronunciation
of the characters, then in a separate step, chooses the appropriate ideographic characters
out of various possibilities for that pronunciation.

The input process is handled by a system called a input method. A simple input method
within the X server is used to handle accent composition for European languages, but
generally, input methods are separate processes that display feedback to the user, then
send the finished input to the user.

The interaction with input methods is done using the X Input Method Extension, which
comes standard with X11R6. There are input methods available for a number of
languages, including Japanese, Chinese, and Korean.

GNOME Filesystem Architecture
GNOME provides several modules that add extra functionality to the filesystem
provided by the OS.

Metadata
Metadata allows storing arbitrary attributes for files.

MIME Types
MIME types uniquely identify the type and format of data stored in a file.

17

http://www.labs.redhat.com/~otaylor/gscript/

VFS
The VFS (Virtual File System) allows access to different types of file
systems in a consistent fashion.

Metadata

The normal Unix file system does not provide a way to store metadata for files, that is,
auxiliary information that is stored in resource forks in other operating systems. This is
information about the file itself, like the type of data it contains, the icon that should be
used to represent the file in a file manager, and other miscellaneous information.

GNOME provides a simple way to store metadata for files in a consistent fashion. Each
file can have an arbitrary number of key/value pairs associated to it. For example, a key
of icon-filename may point to a data value that specifies the filename of the icon
image to be used to represent that file in a file manager. A key of icon-position
may point to a data value that specifies the coordinates in which an icon for that file
resides in the desktop.

The GNOME metadata functions provide counterparts to common file system
operations like copying, moving, renaming, and deleting files. These functions are used
to notify the metadata database about changes in the file system structure.

Virtual File System

The virtual file system, or VFS, is an abstraction that allows applications to access
different types of file systems in a consistent fashion. This allows uniform access to
files in the local file system, ftp sites, RPM packages, and compressed archives. It is
currently undergoing a rewrite.

The GNU Midnight Commander file manager uses the VFS to provide the user with a
consistent way to access files regardless of their location.

In the future, applications will be able to use a VFS library to be able to access files in
any location in the same way that the file manager does. They will also have access to
high-level operations like copy file or copy directory recursively at the VFS level.

MIME types
MIME type is an industry standardized way of specifying the format and nature of a
piece of information. It does so by providing an extendable list of types that can be
associated with the information. GNOME has support for determining the MIME type
of a file, in both a fast manner, and a more accurate, but slower fashion. The fast
manner uses a regular expression on the filename to quickly try to determine the type.
The slow fashion will read through the contents of the file and try to determine the type
by magic.

GNOME also lets the user bind information to each mime-type. Currently, these
include open-action, view-action, edit-action, drop-action, and icon-filename. For
example, "gimp %f" might be bound to the edit-action of "image/x-png". This
information can be set by the system in ${PREFIX}/share/mime-info, and can be
overridden by the user on a per-user basis by the mime-type capplet. Currently GMC is

18

http://www.gnome.org/mc

the only major application that uses gnome-mime in gnome.

Session Management
GNOME uses the X Session Management Protocol to provide session management to
GNOME applications. Session management allows GNOME applications to "save
state" when the user exits the system.

The X Session Management Client Side API can be downloaded from:
ftp://ftp.x.org/pub/R6.4/xc/doc/hardc\opy/SM/SMlib.PS.gz

A document describing details of the protocol can be downloaded from:
ftp://ftp.x.org/pub/R6.4/xc/doc/hardcopy/SM/xsmp.PS.gz

GNOME also has some extensions to XSMP.

Session Management Extensions

The Gnome Session Manager complies with the X Session Management Protocol
document. However, it also implements a few extensions in order to provide nicer
behavior. A client is not required to use these extensions, but it can in order to better
integrate with the Gnome desktop.

The current extensions are both new properties which a client can set in order to change
how it is treated by gnome-session:
_GSM_Priority

This property is an SmCARD8 value between 0 and 99 giving the client’s priority
level. The session manager starts clients in priority order, starting with priority 0.
If a client does not specify a priority, the default priority of 50 is used.

_XC_RestartService
This property is of type SmLISTofARRAY8, and the format is protocol/data.
This property can be used to inform the session manager that an alternate method
is required in order to restart this client.

The only currently defined protocol is rstart-rsh . In this case, the data should
be the hostname on which to start the client; the session manager will use the
rstart program to run the client. If the host running the session manager is the
same as host, then the client will be started locally as usual.

GdkRGB
Renders RGB images in any of the possible X visual formats.

Imlib
Image loading, rendering, and dithering for a wide variety of image data
formats.

libart
High-performance rendering library based on the PostScript imaging model,
with support for antialiasing and alpha compositing.

19

ftp://ftp.x.org/pub/R6.4/xc/doc/hardcopy/SM/xsmp.PS.gz
ftp://ftp.x.org/pub/R6.4/xc/doc/hardcopy/SM/SMlib.PS.gz

Canvas
A powerful graphics engine that allows high performance rendering and
complex applications.

Printing
The GNOME architecture for hard-copy output.

GdkRGB

GdkRGB is a small module of GDK that can render RGB images to any of the possible
X visual formats. For example, it will automatically do color reduction and dithering
when rendering to an 8-bit pseudocolor visual, or it will use the original data when
rendering to a 24-bit truecolor visual.

GdkRGB achieves very high-quality output by using a color cube for color reduction,
and a large error diffusion matrix. It can also do dithering for 16-bit truecolor modes,
which makes them look almost as good as full 24-bit truecolor visuals. Also, GdkRGB
can perform operations on several pixels in parallel, thus increasing performance.

The GNOME Canvas uses GdkRGB to render the final RGB buffers to the screen, thus
achieving high quality and high performance.

Imlib

Imlib is a library with two main purposes. First, it can load image files in a large
number of formats. Second, it can render those images to any X visual format that the
application may need by doing color substitution and dithering.

Imlib has several native image loaders for common image formats like PNG, JPEG,
and XPM. If it needs to load an image whose format it does not know about, it can use
fallbacks by calling external programs such as ImageMagick or NetPBM.

The ability of rendering 24-bit RGB image data into any X visual representation is very
important for GNOME. This allows it to run efficiently on any kind of video hardware
while still having colorful icons and graphics, and at the same time allowing legacy X
programs to allocate the colors they need.

In addition, Imlib provides miscellaneous image manipulation functions such as
scaling, rotation, and color histogram manipulation.

Libart

Libart is a high-performance rendering library that provides a rich imaging model.
Libart’s imaging model is a superset of PostScript, and it adds support for antialiasing
and alpha compositing (transparency).

Libart is used as the core rendering engine for both the GNOME canvas and the
GNOME printing system. It uses sophisticated techniques such as microtile arrays and
sorted vector paths to maximize performance.

20

Libart provides a wealth of vector path-manipulation operations, affine
transformations, antialiased and alpha-composited vector path rendering, and functions
for manipulating Bézier paths.

The GNOME Canvas

The GNOME canvas is an engine for structured graphics that offers a rich imaging
model, high performance rendering, and a powerful, high-level API. It offers a choice
of two rendering back-ends, one based on Xlib for extremely fast display, and another
based on Libart, a sophisticated, antialiased, alpha-compositing engine. Applications
have a choice between the Xlib imaging model or a superset of the PostScript imaging
model, depending on the level of graphic sophistication required.

A canvas is a window with a collection of graphical items inside it. The canvas is
designed to work as a general-purpose display engine for applications. It provides
simple primitive item types such as rectangles, ellipses, and text. These can be used by
applications with modest graphics needs. Applications can also define their custom
canvas item types to provide sophisticated displays.

The canvas takes care of all drawing operations on its items so that it will never flicker.
Canvas items are normal GTK+ objects, and they emit signals based on events from the
mouse or keyboard. This allows the programmer to implement interactive behavior for
the items very easily.

Documentation

GNOME Canvas White Paper.

Draft proposal for Gnome printing architecture
24 Sep 1998: Sample code is now available. Download the latest release at:

http://www.levien.com/gnome/gnome-print-0.0.1.tar.gz

There will be some minor revisions to the spec, but I think it’s in usable form already.
If you’d like your Gnome app to be a testbed for the printing architecture, let me know.

Gnome is in need of a unified printing architecture. This document outlines a
proposal for such an architecture, geared towards heavily graphics-intensive
applications.

The goals of this architecture include:

Absolutely uncompromised output quality
Speed, memory efficiency, and other related performance goals
Ability to work smoothly with PostScript printers, fonts, and other resources
A screen display derived from the Canvas
An extension path for a wide variety of Unicode scripts
An extension path for a richer set of graphics operators than PostScript
supports, especially transparency

21

http://www.levien.com/gnome/gnome-print-0.0.1.tar.gz

To make life as easy as possible for application developers

Overview
Towards these goals, we propose an architecture comprising several different
components. The main component that an application program sees is the printing
API. This API is implemented as a library (as part of Gnome). Upon initialization,
the application recieves a printing context, which is conceptually a canvas for the
application to paint on using a sequence of paint method invocations. Finally, the
application invokes the showpage method, which causes the page to be imaged.

The printing context has a virtualized interface, and may represent a simple
translation into PostScript, rasterization for a non-PostScript printer, rasterization
for the screen, or translation into a display list file format.

Another major feature of the printing API is access to fonts. In our conceptual
model, fonts are not associated with a particular printer, but are rather generally
available resources, and are sent to the printer when necessary.

Along with the printing API, Gnome will include a text formatting API, which will
handle the basics of text formatting, including hyphenation, justification, kerning,
and ligatures. In the extension path, this API also combines several PostScript
fonts into a single virtual font, and also handles bidirectional text formatting.

First cut at the printing API
This draft of the printing API contains the functions needed to get basic PostScript
printing working. It is expected that many functions will be added later. However,
it shouldn’t be too hard to support backward compatibility with these functions.

Initialization
GnomePrintContext *
gnome_print_context_new (GnomePrinter *printer);

The main function to create a new printing context. For doing a print preview,
there may be a similar function that returns both a print context and a print
preview widget.

GnomePrinter *
gnome_print_default_printer (void);

This just returns the default printer. There will be a similar call for popping up a
"Select printer" dialog box.

void
gnome_print_context_close (GnomePrintContext *gpc);

void
gnome_print_context_free (GnomePrintContext *gpc);

22

The close call sends the rendered pages to the printer (eg by invoking lpr on the
temporary file). The free call destroys all data structures and frees up any other
resources. If free is called before close, it’s considered an abort.

API calls for rendering vector graphics

A shorthand notation will be used here - the C prototype:

int
gnome_print_moveto (GnomePrintContext *gpc, double x, double y);

will be represented as:

printer->moveto (double x, double y)

This notation is intended to be reminiscent of object oriented notations. The return
code is zero on success, or an error code on failure.

To make the API as consistent with PostScript as possible, a PrintContext contains
quite a bit of implicit state, including a current color, a current path, a current
clipping path, a current font, and a host of other settings for the specific graphics
operators. It’s up to the specific implementation whether to actually represent this
state or to simply pass it along to the next stage in the printing pipeline (i.e. to
generate a PostScript file).

One anticipated future extension is the ability of the printing context to reflect the
graphics state. This will need to be enabled in advance of any painting. When
enabled, a number of methods are enabled which return pieces of the implicit state
in appropriate data structures. For example, getcurrentpath () returns the current
path in a Bezier path data structure. Since many of the operations can do nontrivial
manipulations on the state (for example, strokepath ()), this implies that the library
actually maintains the state and is capable of serious imaging functions.

Thus, one way to access some of these imaging functions would be to support a
null printing context, the only function of which is to support these reflection
calls. The implementation of the printing API may also choose to dispatch method
invocations to both a simple pass-through implementation and the null context
implementation to implement enabling reflection.

Like PostScript, the methods are invoked "bottom to top," i.e. each painting
method paints over what’s already present. Thus, fairly sophisticated layering
techniques should be possible by carefully ordering the method invocations.

printer->newpath ()
printer->moveto (double x, double y)
printer->lineto (double x, double y)
printer->curveto (double x1, double y1, double x2, double y2, double
x3, double y3)
printer->closepath ()

These calls simply append segments to the "current path" object in the printer
context.

23

We may also want to support the rmoveto, rlineto, and rcurveto operators, which
are identical except for representing coordinates relative to the current point.

Also, the arc, arcn, and arcto operators would probably be handy, even though
they can be fairly easily simulated using curveto.

printer->setrgbcolor (double r, double g, double b)

Set the color, with (0, 0, 0) as black and (1, 1, 1) as white. It is expected that the
universe of color setting options will expand widely as ICC profile support and
prepress graphics are added. But this will do nicely for screen display and basic
printing.

printer->fill ()
printer->eofill ()

Fill the current path, using either the nonzero or even-odd winding rules.

printer->setlinewidth (double width)
printer->setmiterlimit (double limit)
printer->setlinejoin (int jointype)
printer->setlinecap (int captype)
printer->setdash (int n_values, double *values, double offset)

printer->strokepath ()
printer->stroke ()

These are basically straightforward implementations of the PostScript operators.

Font support

The font methods in the print API are low-level. Most applications will probably
want to use the higher level interface in the text formatting API.

GnomePrintFont *
findfont (char *fontname, double size);

printer->setfont (GnomePrintFont *font);

The findfont function doesn’t work on the basis of implicit state in the print
context. Rather, it goes off and finds the font, and returns some kind of handle to
it. If the font cannot be found, it returns NULL.

printer->show (char *text);

This works the same way as the show operator in PostScript - it displays the text
at the current point (i.e. the point set by moveto) in the current font, and
advances the point. The text is represented as an 8-bit null-terminated string in the
font’s own encoding. Thus, this function is not very good if kerning, ligatures, or
non-Roman scripts are desired. For most applications, the text formatting API will
be superior.

Thus, this function is a fairly thin layer over PostScript’s show operator. One
function it will provide, however, is to automatically download the font to the
printer if it exists in .pfb format on the machine but is not resident in the printer.

24

Matrix operations

PostScript uses the concept of a current transformation matrix (CTM) to represent
scaling, rotation, and generalize affine transforms. The matrix is represented as a
six-element array. The transformation from user space to device space is as
follows:

x_device = x_user * CTM[0] + y_user * CTM[2] + CTM[4];
y_device = x_user * CTM[1] + y_user * CTM[3] + CTM[5];

The initial CTM represents the bottom left corner of the page as (0, 0) in user
space, the point one inch above the corner as (0, 72), and the point one inch to the
right of the corner as (72, 0). Note that this coordinate system is "upside down"
relative to the usual screen coordinate system.

printer->concat (double matrix[6])
printer->setmatrix (double matrix[6])

The concat method executes CTM = matrix X CTM, using matrix multiplication
as defined in section 4.3 of the PostScript Language Reference Manual, 2nd ed.

The setmatrix method blows away the current CTM and replaces it with the one
given. As such, it’s fairly dangerous to use.

The translate, rotate, and scale methods can be implemented as simple wrappers
over concat.

The state stack

PostScript’s state has a number of elements that are easy to set, but fairly difficult
to unset, specifically modifications to the CTM, and the clipping path. Thus,
printing a tree-structured page in which individual nodes modify the state is best
done by wrapping the traversal of nodes in a gsave/grestore pair. These
operators push the entire graphics state on a stack and pop it.

printer->gsave ()
printer->grestore ()

Clipping
printer->clip ()
printer->eoclip ()

These methods compute the intersection of the current path and the current clip
path, and assign the result to the current clip path. There is no way to expand the
clip path except for wrapping the operation in a gsave/grestore .

The clip method uses the nonzero winding rule, while eoclip uses the even-odd
winding rule.

25

Images

Image support is a large can of worms - there are many, many options that could
be supported. Let’s keep it simple for now, though.

printer->grayimage (char *data, int width, int height, double matrix[6])
printer->rgbimage (char *data, int width, int height, double matrix[6])

The grayimage method is effectively similar to the image operator in PostScript,
and rgbimage is effectively similar to rgbimage with ncomp fixed at 3. Bit
depth is fixed at 8bpp.

Lots of extensions are possible here. PostScript supports bitdepths larger than
8bpp, and CMYK color spaces. Other extensions we may want to support include
larger color spaces (eg 6-color hifi color), and RGBA images. But those are best
left for another day.

Another important extension path is support for ICC color profiles. We expect
ICC profiles to be the native color management model in the Gnome printing
architecture, with PostScript CRD’s basically ignored.

Just print the damned page
printer->showpage ()

This method closes out the page. If the document is being printed to a temporary
file, it may just add an end-of-page code to the file. If the document is being
printed directly to the printer, it may start the actual paper in motion. In the case of
the null printing context, it just clears out all of the graphics state.

I am confident that this set is sufficient for most basic printing needs.

Text formatting API
It is expected that most printing in Gnome will be done through the text formatting
API rather than the low level font methods of the main printing API. Here is a
brief list of the additional features:

Typographic sophistication including kerning and ligatures
Direct support for reflection
Easy access to hyphenation and justification
String encoding is simple Unicode
We will be able to render text on the screen quicker and better

The basic datatype passed from the application to the text formatting API is a
attributed text. Conceptually, this is a sequence of 32-bit Unicode/ISO 10646
character codes, each with an associated attribute. In practice, this data will be
encoded to save on space. Characters will be UTF-8 encoded. Attributes will be
represented as run lengths (i.e. for characters i through j, use this attribute).

26

The first primary function of the text formatting API will be to convert this
attributed text into a list of lines, each of which consists of a list of attributed
glyphs. This process is generally known as "hyphenation and justification". In our
library, it also includes the steps of kerning and ligatures. This is also the step
where "virtual fonts" get resolved into real fonts.

The resulting data structure is opaque to the application (perhaps), but can be
queried extensively for geometry info. Example queries are metrics (width of each
line, bounding box for each line), and also enough info to resolve an (x, y)
coordinate back into a character number.

A special character will be used to represent a "box" for graphics or other in-line
element. The dimensions of the box are given as an attribute.

Finally, the list of lines of attributed glyphs is rendered to the printer, using an
additional method of the print context.

Here’s what I envision for attributes:

Font family (the name of the font, eg "Helvetica")
Size
Expansion/compression (either through scaling (ugh!) or through multiple
master)
Matrix slanting (ugh!)
Weight (normal or bold for most fonts, numeric for multiple master)
Other miscellaneous multiple master axes
Italics off/on
Kerning off/on
Ligatures on/normal/maximal (eg ct ligature in some fonts)
Tracking (ie letterspace)
Small caps
Alternate glyphs, font specific (eg a swash variant)
Underline (ugh!)
Strikethrough
Vertical displacement (ie for subscripts and superscripts)
Color

It would probably be best to implement attributes using some kind of extensible
tag mechanism. I’m tempted to just use XML for the whole thing, but that might
make it harder to handle queries back.

This section needs to get filled in with more detail.

A digression on virtual fonts

I see three applications where virtual fonts really help.

First, I think it’s far better to represent small capitals as an attribute rather than a
font change. Standard PostScript practice is to include small caps only in a
separate "expert" font. Switching back and forth between the regular and expert

27

fonts is a pain at best, and a serious problem when switching to a regular font that
does not have a separate small caps font - in the latter case, using a font attribute
just causes "false" small caps to be used (i.e. regular capitals set smaller and
relatively a little wider).

Second, the standard Adobe encoding only encodes the fi and fl ligatures. Others,
including ff, ffi, and ffl, are included in the separate expert font. It shouldn’t be
any harder to use these.

Third, when mixing Roman and non-Roman scripts, it would be very handy to
have a single unified virtual font that covered both scripts, even though it would
be implemented as more than one low-level font.

Virtual fonts also open an expansion path, for example for fonts with more than
one color, or fonts rendered using images. In these cases, the font may not be tied
directly to a traditional PostScript font at all.

Finally, virtual fonts abstract away from a specific font format. They may, for
example, provide a consistent interface for using TrueType fonts as well.

Incremental vs. static rendering, or, the Caanvas
The print architecture as described above is geared towards rendering static pages.
It is not good for maintaining a highly incremental display.

The primary challenge of incremental display is to compute the minimal region on
the display that needs to be repainted, then traverse only that part of the data
structure representing the page. To do this effectively requires detailed knowledge
of the geometry of the page elements.

I currently believe that the best course of action is to go ahead with the Caanvas
according more or less to the existing plan, but to make it interoperate easily with
the printing subsystem.

At a minimum, there will be a printing context for dumping into a Caanvas. In
addition, all Caanvas objects will contain methods for painting themselves into a
printing context. And, of course, the actual capabilities of Caanvas objects should
match the printing methods quite closely.

The preferred method of obtaining an on-screen print preview will be to dump into
a Caanvas printing context, then displaying the resulting Caanvas as a Gtk widget.
This will handily support scrolling and zooming without any additional
intervention of the application.

The direct Caanvas API’s will continue to be based more on self-contained data
structures rather than implicit state, so as to make the manipulation and editing of
the Caanvas object tree easier, and also to support fast computation of "deltas" as
objects change. Nonetheless, the conversion between Caanvas data structures and
printing methods will remain simple.

28

Extension paths
A number of extension paths come to mind immediately. It is important to get the
basic printing functionality to work well first, but it is worth planning for a
number of future extensions.

Transparency

The Caanvas currently supports partially-transparent colors, as well as full RGBA
images. However, PostScript does not. What’s needed is a way to render pages
containing transparency efficiently in PostScript. Such a task is difficult but not
impossible

A sorted display list file format

The best possible printing performance can be obtained using a sorted display list
file format. This is also the file format that’s best to spool.

Conceptually, a sorted display list consists of a list of elements, each with an
associated layer code and bounding box. The bounding box is guaranteed to
enclose all successive painting methods.

In an efficient sorted display list, the bounding box starts out enclosing the page,
then shrinks as rapidly as possible towards the bottom of the page. Thus, data can
be sent to the printer as the file is parsed. By contrast, with PostScript, it is not
possible to send the first byte of data to the printer until the last element is
handled, because it’s always possible that the last element paints the first pixel.

This is not to be undertaken lightly, however.

ICC transforms

For color matching, the Gnome printing model should use ICC transforms. It
should be possible to associate an ICC profile with the printer, and, in addition, it
should be possible to specify an ICC profile for each image. For many images, no
ICC profile is available, and the image can be assumed to be in sRGB.

Prepress

To adequately support prepress, the printing model must at a bare minimum
directly support a CMYK color space, as well as the appropriate ICC transforms.

However, doing prepress correctly also requires control over screening, support
for trapping, and a host of other tricky things. It would also make sense to support
more than four colors at this point, as well.

29

Internationalization

Rendering non-Roman scripts correctly is difficult. Issues include bidirectional
text, placement of diacriticals, infinitely more complex ligature rules, and the need
to handle very large fonts well (a typical CJK font is 3-5 megabytes).

Document Structuring Convention

One area of fairly high priority is to get Document Structuring Convention
properly supported in the resulting PostScript files. To do this efficiently requires
a few additional methods, especially for specifying at the beginning the number of
pages and the list of fonts used.

Encapsulated PostScript

On the other side is the ability to import Encapsulated PostScript files. For
outputting to PostScript, these can be included inline. For screen display, it’s
probably best to invoke GhostScript to render the document.

Performance issues
In this section, I muse on how the preceding specification will be best
implemented. I treat each printing context separately.

PostScript output

This section covers generation of PostScript to a file.

For the most part, printing to PostScript is just a question of writing the
appropriate printf statements for each of the methods. The one tricky area is to
download the fonts to the printer before they’re needed.

As we add extensions (mostly for transparency), the PostScript output method will
become less and less trivial.

Direct rendering to a buffer

One of the other modes that will be supported is direct rendering to a buffer. This
is done using the graphics primitives currently being developed for gfonted and
the Caanvas.

This is not, however, the best approach for printing to a color inkjet printer. Keep
in mind than an RGB buffer covering an 8x10 print area at 720 dpi is about 124
MB.

To solve this problem, display list techniques will be used instead.

30

Rendering to the Caanvas

One of the more efficient modes of operation will be to render into the Caanvas,
effectively creating a display list, then use the Caanvas architecture to render to
the screen or actual printer.

Essentially, each fill, stroke, image, or show method invocation becomes a
Caanvas object. Each concat or clip method invocation causes a new node in the
grouping tree, while gsave and grestore control the structure of the tree.

When the page is stored as a display list, it is much easier to efficiently implement
repaint of exposed areas, as well as to support scrolling. In addition, zooming of a
display list can be implemented without any work from the application side.

The Caanvas architecture is also one of the better ways of managing output to
color inket printers. The simple "band" technique of rendering long narrow strips,
then sending those to the printer, should work best.

The display list approach has one serious drawback: the entire page must be stored
in memory, more likely than not duplicating structures stored by the application.

Rendering to non-PostScript laser printers

Here, the main issue is rendering plain text efficiently. In general, for a display list
consisting of mostly plain text, the most efficient course of action is to render each
glyph actually used in the document, send those to the printer, then simply invoke
the glyphs as the display list is traversed.

For images and more complex graphics, this optimization is irrelevant, and it’s
best to just render the entire page as a bitmap and send it to the printer.

A concept: image callbacks

One way to deal with the memory usage issues of a large display list is to
represent images as callbacks to the application rather than big buffers of pixels.
Then, whenever image data is needed, the rendering engine (be it PostScript or
whatever) calls the callback, passing in a bounding box and a scaling factor
(possibly an entire transformation matrix). This technique also supports
low-resolution images for screen display as well as high-resolution images for
PostScript output.

There should probably be a "free" call of the callback to indicate that the printing
subsystem no longer requires the image data and will not call the callback again.

This technique addresses the main drawback of the display list architecture. The
extra complexity is almost certainly worth it.

31

Printing to color inkjets

We’ve already covered most of the performance issues, but I’ll go over printing to
a color inkjet in slightly more detail.

The application starts by getting a "color inkjet" print context. This context dumps
the page elements into a display list, as described above.

Upon the showpage method invocation, the display list is complete. The print
driver begins to render the page, one band at a time.

A typical band size would be the page width (about 5000 pixels for 7 inches at 720
dpi) by about 64 pixels tall, and 3 or 4 planes deep (depending on whether the
page model is RGB or CMYK). This buffer is about a megabyte.

For each band, the print driver traverses the display list. Hopefully, most objects
can be culled out using bounding box computations. After traversing the display
list, the driver has in hand about a megabyte worth of raw image pixels. It then
halftones these (using error diffusion) and writes the halftoned pixels (using the
printer’s native escape codes) to a temporary file.

When the print context is closed, the print driver invokes lpr on the resulting
temporary file.

For future work, the temporary file should be bypassed and there should be some
way to start the paper moving as soon as the display list is in hand.

levien.com Gnome home

CORBA and components enable GNOME programs to reuse code, add scriptability,
and enhance interoperability.

Bonobo
Bonobo is a set of standard interfaces that are used as part of the GNOME
project to provide standard component programming in Unix.

DOM
Document Object Model is a standard interface for access to document
elements.

Gnorba
The GNOME CORBA framework.

ORBit
The CORBA implementation used by GNOME.

Bonobo

Bonobo is a set of standard interfaces that are used as part of the GNOME project to
provide standard component programming in Unix. The Bonobo interfaces are all
based on the GNOME::obj interface that provides the foundation for discovering the

32

http://www.levien.com/gnome/

functionality provided by components.

Bonobo contains a number of interfaces and libraries that provide a way to create
reusable graphical components for Unix systems: instead of creating huge monolithic
applications that contain every possible feature desired by the user, the user or the
application would use existing components to get their job done.

Bonobo provides mechanisms for creating reusable components, reusing these
components and creating compound documents from a collection of components.

Document Object Model

The Document Object Model (DOM) is a model that allows documents to contain
objects that can be used, and manipulated. This allows the document to be easily
changed by adding, deleting or editing elements or object attributes. This also allows
for scripts and programs to update a document dynamically. The World Wide Web
Consortium has a specification for DOM on its DOM page.

gnome-dom will be the GNOME implementation of the DOM specification.
gnome-dom will contain libraries, and a server (via CORBA/ORBit) built on top of
libxml.

gnome-dom currently exists in CVS as a skeleton implementation - volunteers are
welcome to assist in completing it.

The GNOME CORBA Framework

The GNOME CORBA framework allows applications to easily use ORBit, the
CORBA implementation used by GNOME. One part of this framework provides
integration of the ORBit main loop with the Gtk+ main loop, security for incoming
CORBA requests, and a standard method of accessing the GNOME name service.

To allow applications to request access to a specific CORBA object, GNOME CORBA
servers place information in GOAD, the GNOME Object Activation Directory. This
directory stores information on the CORBA objects that a program can provide to other
programs. Each directory entry contains a unique implementation identifier (the
"GOAD ID"), a list of interfaces that the object supports, a human-readable description
of the object implementation, and information on how to create a new instance of the
object implementation.

If an application provides the implementation for a CORBA object, it is simple to
integrate that object into the GOAD system. An application would install a ’.goad’ data
file into the correct directory as part of its installation process. Then, a few simple
function calls must be made when the object is created and destroyed, and the
application must handle an extra command line option. Once an object implementation
is registered with GOAD, client applications can activate that implementation with a
single function call.

Also provided as part of the GNOME CORBA framework are a number of interface
definitions for commonly used interfaces, such as factories and reference-counted
objects.

33

http://www.w3.org/DOM/

ORBit

CORBA (the Common Object Request Broker Architecture) is a standard for
"distributed objects". This basically means that applications may make invoke
operations on objects that are not located in the same address space. Frequently object
client and server are in different processes or even on different computer systems. If
you are familiar with how RPC (Remote Procedure Call) works, then thinking of
CORBA as an object-oriented RPC specification may be helpful.

To make use of CORBA technology, applications must go through an ORB (Object
Request Broker) library that implements the CORBA API. The ORB hides all the low
level communications that are necessary for sending requests to objects, receiving
replies from them, and making object implementations accessable. To the application,
invoking an operation on a distributed object acts the same as a local function call.

When GNOME first started to make use of CORBA, it made use of the MICO ORB.
Mico did not fit GNOME’s needs very well, though, so Elliot Lee and Dick Porter
decided to write a new ORB from scratch. Thus ORBit was born.

Today, ORBit is the CORBA implementation used by many of the GNOME
components. It is fast and lean, allowing the use of CORBA in areas that would not
normally seem practical. It supports much of the CORBA 2.2 standard, and has hooks
that allow easy integration with GNOME programs. For more information on ORBit,
visit the ORBit web page.

Development
Glade Builder

The graphical interface builder for GTK+ and GNOME programs. It is used
to rapidly prototype and build applications with

Build Environment
The utilities used to make maintaining GNOME programs easier.

Glade
Glade is a user-interface building program. It is used to rapidly prototype GNOME and
GTK applications. It provides a framework that allows an application author to
dynamically add, remove, and modify widgets. It is done in a very simple, yet powerful
manner that lets even novice developers design a user interface in a short time.

Glade has two methods of saving its file. One involves generating the code necessary
for a project. There is a C and a C++ based backend currently, and there is no reason
why more couldn’t be added. This means that someone does not need to do the
occasionally pedantic work behind GUI creation.

The other method saves the generated GUI to an XML file. This can be loaded up again
by Glade, unlike saving to code. Additionally, applications can use it through
libglade . This library can load the XML files and display the results at runtime.

34

http://www.labs.redhat.com/orbit/
http://www.mico.org/

Also, the application can get pointers to arbitrary widgets by just referencing a label.
The advantage of this is that it splits the GUI away from the code, allowing a
separation between the applications design and its behavior.

Reference

Glade Home page

Build Tools

GNOME software packages make use of the following build tools for portability and
Makefile maintainance:

autoconf
Autoconf is a tool for producing shell scripts that automatically configure
software source code packages to adapt to many kinds of UNIX-like systems.
The configuration scripts produced by Autoconf are independent of Autoconf
when they are run, so their users do not need to have Autoconf. (autoconf
info page)p

libtool
libtool is a portable interface to the process of creating shared libraries.

automake
Automake allows the creation of commonly used Makefiles via a macro
language, and integrates with autoconf & libtool.

For more information on the build tools you can check out the Tools section
of this site.

Language Support
One of the primary goals of GNOME has been to facilitate using GNOME from any
programming language. By allowing the development of programs in the language that
best meets the task, productivity and program quality increase.

Language bindings for Gtk+ are available for a wide variety of languages (C, C++,
Objective C, Ada, Perl, Python, Guile, TOM, Eiffel, Dylan, JavaScript, Pike, Pascal,
Haskell), and many of these languages also have support for GNOME widgets
available. Work is underway to lengthen the list of supported languages even further.

External Components
Pilot Stuff

An architecture for interfacing to the Pilot PDA.

GnomeDB
The GNOME database access API.

35

http://glade.pn.org/

Gnome Mailer
Allowing access to electronic mail from a diverse set of applications

Palm Pilot

The Palm Pilot support for GNOME is very immature right now. The conduit system is
going through a rewrite. More information will be posted here as it becomes available.

If you would like to become involved with the GNOME/Pilot development you can
subscribe to the gnome-pilot-list@gnome.org mailing list. For information on
subscribing to this list and others go to the GNOME Mailing Lists page.

GNOME DB

GNOME DB is an attempt to implement a sort of unified data access for GNOME.
Currently it supports connections to MySQL and Postgres, as well as any database with
an ODBC API. Future implementations will allow different libraries offering access to
flat files and DBs without ODBC drivers.

CORBA access to the database structure is allowed through the GDA ("GNOME
Database Access") set of interfaces. These interfaces allow manipulation of database in
a more structured, object-oriented fashion than SQL.

GNOME DB offers to the developer a higher level interface to the database and the
operations performed on a database then ODBC does. Beside the "bare bone" IDL
interface a client library is implemented which uses an object oriented approach to
result sets returned from database operation. Using GTK’s object a recordset is derived
from GTK’s Adjustable class. So using scrollbars for recordsets is just a matter of
connecting the correct signals and handler functions. As an additional benefit the
implementatio if MVC (Modell, View, Controller) applications is very easy.

Current work concentrates to provide a graphical user interface library, which elements
can be used as BONOBO components, so that it’s easy to embed a grid for browsing a
recordset in any BONOBO application. The other area much work is currently done is
the management and configuration of databases and to ease the initial setup of a
working database environment.

GNOME Mailer

The GNOME Mailer project is designed to create a backend to a GNOME mailing
system that will handle various mail protocols.

Camel is the generic messaging library. It will eventually support the standard
messaging system for receiving, sending and storing messages. You can read the
preliminary Camel organization document.

GNOME Mailer is on the GNOME CVS server in the /gnome-mailer module.

Camel draws heavily from JavaMail and the IMAP4rev1 RFC. You can read the
JavaMail API specification.

36

http://java.sun.com/products/javamail/index.html
http://www.gnome.org/mailing-lists/index.shtml

Gnome Mailer developpement is coordinated in the gnome-mailer mailing list. You can
subscribe to this list by sending a mail to gnome-mailer-list-request@gnome.org with
the word "subscribe" in the subject. You can also browse the archives.

37

http://www.gnome.org/mailing-lists/archives/gnome-mailer-list

	Architecture and Design
	GTK+
	
	Documentation

	GLib
	Reference
	Tutorial

	GDK
	Reference

	GTK+ Object System
	Reference †GTK+ Reference Documentation Project‡

	Language Bindings
	Links

	Drag and Drop
	Articles
	Reference †GTK+ Reference Documentation Project‡

	Themes
	Reference †GTK+ Reference Documentation Project‡
	Links

	GNOME Widgets
	GnomeApp and GnomeApp-helper
	Reference

	gnome-mdi
	Reference

	GNOME Dialogs
	Reference

	Property Boxes
	GNOME Druids
	Tutorial

	ZVT Term Widget
	Features
	Reference

	GNOME Miscellaneous Features
	GNOME Game Score System
	gnome-config
	The popt argument parser
	GNOME Display Manager
	XML
	GNOME Sound Support

	GNOME Desktop Components
	Applets
	Capplets
	Desktop Icons and File Manager
	Window Manager
	Panel

	Internationalization
	
	Documentation

	Localization
	Unicode and Complex Text Processing
	Links

	Input Methods

	GNOME Filesystem Architecture
	Metadata
	Virtual File System
	MIME types

	Session Management
	Session Management Extensions
	GdkRGB
	Imlib
	Libart
	The GNOME Canvas

	Draft proposal for Gnome printing architecture
	Overview
	First cut at the printing API
	Initialization
	API calls for rendering vector graphics
	Font support
	Matrix operations
	The state stack
	Clipping
	Images
	Just print the damned page

	Text formatting API
	A digression on virtual fonts

	Incremental vs. static rendering, or, the Caanvas
	Extension paths
	Transparency
	A sorted display list file format
	ICC transforms
	Prepress
	Internationalization
	Document Structuring Convention
	Encapsulated PostScript

	Performance issues
	PostScript output
	Direct rendering to a buffer
	Rendering to the Caanvas
	Rendering to non-PostScript laser printers
	A concept: image callbacks
	Printing to color inkjets
	Bonobo
	Document Object Model
	The GNOME CORBA Framework
	ORBit

	Development
	Glade
	
	Reference

	Build Tools

	Language Support
	External Components
	Palm Pilot
	GNOME DB
	GNOME Mailer

