/***************************************************************************** * sdla_fr.c WANPIPE(tm) Multiprotocol WAN Link Driver. Frame relay module. * * Author(s): Nenad Corbic * Gideon Hack * * Copyright: (c) 1995-2001 Sangoma Technologies Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * ============================================================================ * Nov 23, 2000 Nenad Corbic o Added support for 2.4.X kernels * Nov 15, 2000 David Rokavarg * Nenad Corbic o Added frame relay bridging support. * Original code from Mark Wells and Kristian Hoffmann has * been integrated into the frame relay driver. * Nov 13, 2000 Nenad Corbic o Added true interface type encoding option. * Tcpdump doesn't support Frame Relay inteface * types, to fix this true type option will set * the interface type to RAW IP mode. * Nov 07, 2000 Nenad Corbic o Added security features for UDP debugging: * Deny all and specify allowed requests. * Nov 06, 2000 Nenad Corbic o Wanpipe interfaces conform to raw packet interfaces. * Moved the if_header into the if_send() routine. * The if_header() was breaking the libpcap * support. i.e. support for tcpdump, ethereal ... * Oct 12. 2000 Nenad Corbic o Added error message in fr_configure * Jul 31, 2000 Nenad Corbic o Fixed the Router UP Time. * Apr 28, 2000 Nenad Corbic o Added the option to shutdown an interface * when the channel gets disconnected. * Apr 28, 2000 Nenad Corbic o Added M.Grants patch: disallow duplicate * interface setups. * Apr 25, 2000 Nenad Corbic o Added M.Grants patch: dynamically add/remove * new dlcis/interfaces. * Mar 23, 2000 Nenad Corbic o Improved task queue, bh handling. * Mar 16, 2000 Nenad Corbic o Added Inverse ARP support * Mar 13, 2000 Nenad Corbic o Added new socket API support. * Mar 06, 2000 Nenad Corbic o Bug Fix: corrupted mbox recovery. * Feb 24, 2000 Nenad Corbic o Fixed up FT1 UDP debugging problem. * Dev 15, 1999 Nenad Corbic o Fixed up header files for 2.0.X kernels * * Nov 08, 1999 Nenad Corbic o Combined all debug UDP calls into one function * o Removed the ARP support. This has to be done * in the next version. * o Only a Node can implement NO signalling. * Initialize DLCI during if_open() if NO * signalling. * o Took out IPX support, implement in next * version * Sep 29, 1999 Nenad Corbic o Added SMP support and changed the update * function to use timer interrupt. * o Fixed the CIR bug: Set the value of BC * to CIR when the CIR is enabled. * o Updated comments, statistics and tracing. * Jun 02, 1999 Gideon Hack o Updated for S514 support. * Sep 18, 1998 Jaspreet Singh o Updated for 2.2.X kernels. * Jul 31, 1998 Jaspreet Singh o Removed wpf_poll routine. The channel/DLCI * status is received through an event interrupt. * Jul 08, 1998 David Fong o Added inverse ARP support. * Mar 26, 1997 Jaspreet Singh o Returning return codes for failed UDP cmds. * Jan 28, 1997 Jaspreet Singh o Improved handling of inactive DLCIs. * Dec 30, 1997 Jaspreet Singh o Replaced dev_tint() with mark_bh(NET_BH) * Dec 16, 1997 Jaspreet Singh o Implemented Multiple IPX support. * Nov 26, 1997 Jaspreet Singh o Improved load sharing with multiple boards * o Added Cli() to protect enabling of interrupts * while polling is called. * Nov 24, 1997 Jaspreet Singh o Added counters to avoid enabling of interrupts * when they have been disabled by another * interface or routine (eg. wpf_poll). * Nov 06, 1997 Jaspreet Singh o Added INTR_TEST_MODE to avoid polling * routine disable interrupts during interrupt * testing. * Oct 20, 1997 Jaspreet Singh o Added hooks in for Router UP time. * Oct 16, 1997 Jaspreet Singh o The critical flag is used to maintain flow * control by avoiding RACE conditions. The * cli() and restore_flags() are taken out. * The fr_channel structure is appended for * Driver Statistics. * Oct 15, 1997 Farhan Thawar o updated if_send() and receive for IPX * Aug 29, 1997 Farhan Thawar o Removed most of the cli() and sti() * o Abstracted the UDP management stuff * o Now use tbusy and critical more intelligently * Jul 21, 1997 Jaspreet Singh o Can configure T391, T392, N391, N392 & N393 * through router.conf. * o Protected calls to sdla_peek() by adDing * save_flags(), cli() and restore_flags(). * o Added error message for Inactive DLCIs in * fr_event() and update_chan_state(). * o Fixed freeing up of buffers using kfree() * when packets are received. * Jul 07, 1997 Jaspreet Singh o Added configurable TTL for UDP packets * o Added ability to discard multicast and * broadcast source addressed packets * Jun 27, 1997 Jaspreet Singh o Added FT1 monitor capabilities * New case (0x44) statement in if_send routine * Added a global variable rCount to keep track * of FT1 status enabled on the board. * May 29, 1997 Jaspreet Singh o Fixed major Flow Control Problem * With multiple boards a problem was seen where * the second board always stopped transmitting * packet after running for a while. The code * got into a stage where the interrupts were * disabled and dev->tbusy was set to 1. * This caused the If_send() routine to get into * the if clause for it(0,dev->tbusy) * forever. * The code got into this stage due to an * interrupt occuring within the if clause for * set_bit(0,dev->tbusy). Since an interrupt * disables furhter transmit interrupt and * makes dev->tbusy = 0, this effect was undone * by making dev->tbusy = 1 in the if clause. * The Fix checks to see if Transmit interrupts * are disabled then do not make dev->tbusy = 1 * Introduced a global variable: int_occur and * added tx_int_enabled in the wan_device * structure. * May 21, 1997 Jaspreet Singh o Fixed UDP Management for multiple * boards. * * Apr 25, 1997 Farhan Thawar o added UDP Management stuff * o fixed bug in if_send() and tx_intr() to * sleep and wakeup all devices * Mar 11, 1997 Farhan Thawar Version 3.1.1 * o fixed (+1) bug in fr508_rx_intr() * o changed if_send() to return 0 if * wandev.critical() is true * o free socket buffer in if_send() if * returning 0 * o added tx_intr() routine * Jan 30, 1997 Gene Kozin Version 3.1.0 * o implemented exec() entry point * o fixed a bug causing driver configured as * a FR switch to be stuck in WAN_ * mode * Jan 02, 1997 Gene Kozin Initial version. *****************************************************************************/ #include #include #include /* printk(), and other useful stuff */ #include /* offsetof(), etc. */ #include /* return codes */ #include /* inline memset(), etc. */ #include /* kmalloc(), kfree() */ #include /* WAN router definitions */ #include /* WANPIPE common user API definitions */ #include /* ARPHRD_* defines */ #include /* htons(), etc. */ #include /* for inb(), outb(), etc. */ #include /* for do_gettimeofday */ #include /* sockaddr_in */ #include /* in_ntoa(), etc... */ #include #include #include #include /* Wanpipe Socket */ #include #include /* frame relay firmware API definitions */ #if defined(LINUX_2_1) || defined(LINUX_2_4) #include #include #include #else #include #endif #include /* Dynamic Route Creation */ #include /* eth_type_trans() used for bridging */ #include /****** Defines & Macros ****************************************************/ #define MAX_CMD_RETRY 10 /* max number of firmware retries */ #define FR_HEADER_LEN 8 /* max encapsulation header size */ #define FR_CHANNEL_MTU 1500 /* unfragmented logical channel MTU */ /* Q.922 frame types */ #define Q922_UI 0x03 /* Unnumbered Info frame */ #define Q922_XID 0xAF /* DLCI configured or not */ #define DLCI_NOT_CONFIGURED 0x00 #define DLCI_CONFIG_PENDING 0x01 #define DLCI_CONFIGURED 0x02 /* CIR enabled or not */ #define CIR_ENABLED 0x00 #define CIR_DISABLED 0x01 #define FRAME_RELAY_API 1 #define MAX_BH_BUFF 10 /* For handle_IPXWAN() */ #define CVHexToAscii(b) (((unsigned char)(b) > (unsigned char)9) ? ((unsigned char)'A' + ((unsigned char)(b) - (unsigned char)10)) : ((unsigned char)'0' + (unsigned char)(b))) /****** Data Structures *****************************************************/ /* This is an extention of the 'struct device' we create for each network * interface to keep the rest of channel-specific data. */ typedef struct fr_channel { wanpipe_common_t common; char name[WAN_IFNAME_SZ+1]; /* interface name, ASCIIZ */ unsigned dlci_configured ; /* check whether configured or not */ unsigned cir_status; /* check whether CIR enabled or not */ unsigned dlci; /* logical channel number */ unsigned cir; /* committed information rate */ unsigned bc; /* committed burst size */ unsigned be; /* excess burst size */ unsigned mc; /* multicast support on or off */ unsigned tx_int_status; /* Transmit Interrupt Status */ unsigned short pkt_length; /* Packet Length */ unsigned long router_start_time;/* Router start time in seconds */ unsigned long tick_counter; /* counter for transmit time out */ char dev_pending_devtint; /* interface pending dev_tint() */ void *dlci_int_interface; /* pointer to the DLCI Interface */ unsigned long IB_addr; /* physical address of Interface Byte */ unsigned long state_tick; /* time of the last state change */ unsigned char enable_IPX; /* Enable/Disable the use of IPX */ unsigned long network_number; /* Internal Network Number for IPX*/ sdla_t *card; /* -> owner */ unsigned route_flag; /* Add/Rem dest addr in route tables */ unsigned inarp; /* Inverse Arp Request status */ unsigned char inarp_ready; /* Ready to send requests */ int inarp_interval; /* Time between InArp Requests */ unsigned long inarp_tick; /* InArp jiffies tick counter */ unsigned char interface_down; /* Bring interface down on disconnect */ #if defined(LINUX_2_1) || defined(LINUX_2_4) struct net_device_stats ifstats; /* interface statistics */ #else struct enet_statistics ifstats; #endif if_send_stat_t drvstats_if_send; rx_intr_stat_t drvstats_rx_intr; pipe_mgmt_stat_t drvstats_gen; unsigned long router_up_time; unsigned short transmit_length; struct sk_buff *delay_skb; #if defined(LINUX_2_1) || defined(LINUX_2_4) bh_data_t *bh_head; /* Circular buffer for chdlc_bh */ unsigned long tq_working; volatile int bh_write; volatile int bh_read; atomic_t bh_buff_used; #endif /* Polling task queue. Each interface * has its own task queue, which is used * to defer events from the interrupt */ struct tq_struct fr_poll_task; struct timer_list fr_arp_timer; u32 ip_local; u32 ip_remote; u8 config_dlci; u32 unconfig_dlci; /* Whether this interface should be setup as a gateway. * Used by dynamic route setup code */ u8 gateway; /* True interface type */ u8 true_if_encoding; u8 fr_header[FR_HEADER_LEN]; char fr_header_len; } fr_channel_t; /* Route Flag options */ #define NO_ROUTE 0x00 #define ADD_ROUTE 0x01 #define ROUTE_ADDED 0x02 #define REMOVE_ROUTE 0x03 #define ARP_REQ 0x04 /* inarp options */ #define INARP_NONE 0x00 #define INARP_REQUEST 0x01 #define INARP_CONFIGURED 0x02 /* reasons for enabling the timer interrupt on the adapter */ #define TMR_INT_ENABLED_UDP 0x01 #define TMR_INT_ENABLED_UPDATE 0x02 #define TMR_INT_ENABLED_ARP 0x04 #define TMR_INT_ENABLED_UPDATE_STATE 0x08 #define TMR_INT_ENABLED_CONFIG 0x10 #define TMR_INT_ENABLED_UNCONFIG 0x20 typedef struct dlci_status { unsigned short dlci PACKED; unsigned char state PACKED; } dlci_status_t; typedef struct dlci_IB_mapping { unsigned short dlci PACKED; unsigned long addr_value PACKED; } dlci_IB_mapping_t; /* This structure is used for DLCI list Tx interrupt mode. It is used to enable interrupt bit and set the packet length for transmission */ typedef struct fr_dlci_interface { unsigned char gen_interrupt PACKED; unsigned short packet_length PACKED; unsigned char reserved PACKED; } fr_dlci_interface_t; /* variable for keeping track of enabling/disabling FT1 monitor status */ static int rCount = 0; extern void disable_irq(unsigned int); extern void enable_irq(unsigned int); /* variable for keeping track of number of interrupts generated during * interrupt test routine */ static int Intr_test_counter; /****** Function Prototypes *************************************************/ /* WAN link driver entry points. These are called by the WAN router module. */ static int update(wan_device_t *wandev); static int new_if(wan_device_t *wandev, netdevice_t *dev, wanif_conf_t *conf); static int del_if(wan_device_t *wandev, netdevice_t *dev); static void disable_comm (sdla_t *card); /* WANPIPE-specific entry points */ static int wpf_exec(struct sdla *card, void *u_cmd, void *u_data); /* Network device interface */ static int if_init(netdevice_t *dev); static int if_open(netdevice_t *dev); static int if_close(netdevice_t *dev); #ifdef LINUX_2_4 static void if_tx_timeout (netdevice_t *dev); #endif #if defined(LINUX_2_1) || defined(LINUX_2_4) static int if_rebuild_hdr (struct sk_buff *skb); #else static int if_rebuild_hdr (void* hdr, netdevice_t* dev, unsigned long raddr, struct sk_buff* skb); #endif static int if_send(struct sk_buff *skb, netdevice_t *dev); static int chk_bcast_mcast_addr(sdla_t *card, netdevice_t* dev, struct sk_buff *skb); #if defined(LINUX_2_1) || defined(LINUX_2_4) static struct net_device_stats *if_stats(netdevice_t *dev); #else static struct enet_statistics* if_stats (netdevice_t* dev); #endif /* Interrupt handlers */ static void fr_isr(sdla_t *card); static void rx_intr(sdla_t *card); static void tx_intr(sdla_t *card); static void timer_intr(sdla_t *card); static void spur_intr(sdla_t *card); /* Frame relay firmware interface functions */ static int fr_read_version(sdla_t *card, char *str); static int fr_configure(sdla_t *card, fr_conf_t *conf); static int fr_dlci_configure(sdla_t *card, fr_dlc_conf_t *conf, unsigned dlci); static int fr_init_dlci (sdla_t *card, fr_channel_t *chan); static int fr_set_intr_mode (sdla_t *card, unsigned mode, unsigned mtu, unsigned short timeout); static int fr_comm_enable(sdla_t *card); static void fr_comm_disable(sdla_t *card); static int fr_get_err_stats(sdla_t *card); static int fr_get_stats(sdla_t *card); static int fr_add_dlci(sdla_t *card, int dlci); static int fr_activate_dlci(sdla_t *card, int dlci); static int fr_delete_dlci (sdla_t* card, int dlci); static int fr_issue_isf(sdla_t *card, int isf); static int fr_send(sdla_t *card, int dlci, unsigned char attr, int len, void *buf); static int fr_send_data_header(sdla_t *card, int dlci, unsigned char attr, int len, void *buf,unsigned char hdr_len); static unsigned int fr_send_hdr(sdla_t *card, int dlci, unsigned int offset); static int check_dlci_config (sdla_t *card, fr_channel_t *chan); static void initialize_rx_tx_buffers (sdla_t *card); /* Firmware asynchronous event handlers */ static int fr_event(sdla_t *card, int event, fr_mbox_t *mbox); static int fr_modem_failure(sdla_t *card, fr_mbox_t *mbox); static int fr_dlci_change(sdla_t *card, fr_mbox_t *mbox); /* Miscellaneous functions */ static int update_chan_state(netdevice_t *dev); static void set_chan_state(netdevice_t *dev, int state); static netdevice_t *find_channel(sdla_t *card, unsigned dlci); static int is_tx_ready(sdla_t *card, fr_channel_t *chan); static unsigned int dec_to_uint(unsigned char *str, int len); static int reply_udp( unsigned char *data, unsigned int mbox_len ); static int intr_test( sdla_t* card ); static void init_chan_statistics( fr_channel_t* chan ); static void init_global_statistics( sdla_t* card ); static void read_DLCI_IB_mapping( sdla_t* card, fr_channel_t* chan ); static int setup_for_delayed_transmit(netdevice_t* dev, struct sk_buff *skb); netdevice_t * move_dev_to_next (sdla_t *, netdevice_t *); static int check_tx_status(sdla_t *, netdevice_t *); #if defined(LINUX_2_1) || defined(LINUX_2_4) /* Frame Relay Socket API */ static void trigger_fr_bh (fr_channel_t *); static void fr_bh (netdevice_t *); static int fr_bh_cleanup (netdevice_t *); static int bh_enqueue (netdevice_t *, struct sk_buff *); #endif static void trigger_fr_poll (netdevice_t *); static void fr_poll (netdevice_t *); //static void add_gateway (netdevice_t *); static void trigger_unconfig_fr (netdevice_t *dev); static void unconfig_fr (sdla_t *); static void trigger_config_fr (sdla_t *); static void config_fr (sdla_t *); /* Inverse ARP and Dynamic routing functions */ int process_ARP(arphdr_1490_t *ArpPacket, sdla_t *card, netdevice_t *dev); int is_arp(void *buf); int send_inarp_request(sdla_t *card, netdevice_t *dev); static void trigger_fr_arp (netdevice_t *); static void fr_arp (unsigned long data); /* Udp management functions */ static int process_udp_mgmt_pkt(sdla_t *card); static int udp_pkt_type( struct sk_buff *skb, sdla_t *card ); static int store_udp_mgmt_pkt(int udp_type, char udp_pkt_src, sdla_t* card, struct sk_buff *skb, int dlci); /* IPX functions */ static void switch_net_numbers(unsigned char *sendpacket, unsigned long network_number, unsigned char incoming); static int handle_IPXWAN(unsigned char *sendpacket, char *devname, unsigned char enable_IPX, unsigned long network_number); /* Lock Functions: SMP supported */ void s508_s514_unlock(sdla_t *card, unsigned long *smp_flags); void s508_s514_lock(sdla_t *card, unsigned long *smp_flags); unsigned short calc_checksum (char *, int); static int setup_fr_header(struct sk_buff** skb, netdevice_t* dev, char op_mode); /****** Public Functions ****************************************************/ /*============================================================================ * Frame relay protocol initialization routine. * * This routine is called by the main WANPIPE module during setup. At this * point adapter is completely initialized and firmware is running. * o read firmware version (to make sure it's alive) * o configure adapter * o initialize protocol-specific fields of the adapter data space. * * Return: 0 o.k. * < 0 failure. */ int wpf_init(sdla_t *card, wandev_conf_t *conf) { int err; fr508_flags_t* flags; union { char str[80]; fr_conf_t cfg; } u; fr_buf_info_t* buf_info; int i; printk(KERN_INFO "\n"); /* Verify configuration ID */ if (conf->config_id != WANCONFIG_FR) { printk(KERN_INFO "%s: invalid configuration ID %u!\n", card->devname, conf->config_id); return -EINVAL; } /* Initialize protocol-specific fields of adapter data space */ switch (card->hw.fwid) { case SFID_FR508: card->mbox = (void*)(card->hw.dpmbase + FR508_MBOX_OFFS); card->flags = (void*)(card->hw.dpmbase + FR508_FLAG_OFFS); if(card->hw.type == SDLA_S514) { card->mbox += FR_MB_VECTOR; card->flags += FR_MB_VECTOR; } card->isr = &fr_isr; break; default: return -EINVAL; } flags = card->flags; /* Read firmware version. Note that when adapter initializes, it * clears the mailbox, so it may appear that the first command was * executed successfully when in fact it was merely erased. To work * around this, we execute the first command twice. */ if (fr_read_version(card, NULL) || fr_read_version(card, u.str)) return -EIO; printk(KERN_INFO "%s: running frame relay firmware v%s\n", card->devname, u.str); /* Adjust configuration */ conf->mtu += FR_HEADER_LEN; conf->mtu = (conf->mtu >= MIN_LGTH_FR_DATA_CFG) ? min_t(unsigned int, conf->mtu, FR_MAX_NO_DATA_BYTES_IN_FRAME) : FR_CHANNEL_MTU + FR_HEADER_LEN; conf->bps = min_t(unsigned int, conf->bps, 2048000); /* Initialze the configuration structure sent to the board to zero */ memset(&u.cfg, 0, sizeof(u.cfg)); memset(card->u.f.dlci_to_dev_map, 0, sizeof(card->u.f.dlci_to_dev_map)); /* Configure adapter firmware */ u.cfg.mtu = conf->mtu; u.cfg.kbps = conf->bps / 1000; u.cfg.cir_fwd = u.cfg.cir_bwd = 16; u.cfg.bc_fwd = u.cfg.bc_bwd = 16; u.cfg.options = 0x0000; printk(KERN_INFO "%s: Global CIR enabled by Default\n", card->devname); switch (conf->u.fr.signalling) { case WANOPT_FR_ANSI: u.cfg.options = 0x0000; break; case WANOPT_FR_Q933: u.cfg.options |= 0x0200; break; case WANOPT_FR_LMI: u.cfg.options |= 0x0400; break; case WANOPT_NO: u.cfg.options |= 0x0800; break; default: printk(KERN_INFO "%s: Illegal Signalling option\n", card->wandev.name); return -EINVAL; } card->wandev.signalling = conf->u.fr.signalling; if (conf->station == WANOPT_CPE) { if (conf->u.fr.signalling == WANOPT_NO){ printk(KERN_INFO "%s: ERROR - For NO signalling, station must be set to Node!", card->devname); return -EINVAL; } u.cfg.station = 0; u.cfg.options |= 0x8000; /* auto config DLCI */ card->u.f.dlci_num = 0; } else { u.cfg.station = 1; /* switch emulation mode */ /* For switch emulation we have to create a list of dlci(s) * that will be sent to be global SET_DLCI_CONFIGURATION * command in fr_configure() routine. */ card->u.f.dlci_num = min_t(unsigned int, max_t(unsigned int, conf->u.fr.dlci_num, 1), 100); for ( i = 0; i < card->u.f.dlci_num; i++) { card->u.f.node_dlci[i] = (unsigned short) conf->u.fr.dlci[i] ? conf->u.fr.dlci[i] : 16; } } if (conf->clocking == WANOPT_INTERNAL) u.cfg.port |= 0x0001; if (conf->interface == WANOPT_RS232) u.cfg.port |= 0x0002; if (conf->u.fr.t391) u.cfg.t391 = min_t(unsigned int, conf->u.fr.t391, 30); else u.cfg.t391 = 5; if (conf->u.fr.t392) u.cfg.t392 = min_t(unsigned int, conf->u.fr.t392, 30); else u.cfg.t392 = 15; if (conf->u.fr.n391) u.cfg.n391 = min_t(unsigned int, conf->u.fr.n391, 255); else u.cfg.n391 = 2; if (conf->u.fr.n392) u.cfg.n392 = min_t(unsigned int, conf->u.fr.n392, 10); else u.cfg.n392 = 3; if (conf->u.fr.n393) u.cfg.n393 = min_t(unsigned int, conf->u.fr.n393, 10); else u.cfg.n393 = 4; if (fr_configure(card, &u.cfg)) return -EIO; if (card->hw.type == SDLA_S514) { buf_info = (void*)(card->hw.dpmbase + FR_MB_VECTOR + FR508_RXBC_OFFS); card->rxmb = (void*)(buf_info->rse_next + card->hw.dpmbase); card->u.f.rxmb_base = (void*)(buf_info->rse_base + card->hw.dpmbase); card->u.f.rxmb_last = (void*)(buf_info->rse_base + (buf_info->rse_num - 1) * sizeof(fr_rx_buf_ctl_t) + card->hw.dpmbase); }else{ buf_info = (void*)(card->hw.dpmbase + FR508_RXBC_OFFS); card->rxmb = (void*)(buf_info->rse_next - FR_MB_VECTOR + card->hw.dpmbase); card->u.f.rxmb_base = (void*)(buf_info->rse_base - FR_MB_VECTOR + card->hw.dpmbase); card->u.f.rxmb_last = (void*)(buf_info->rse_base + (buf_info->rse_num - 1) * sizeof(fr_rx_buf_ctl_t) - FR_MB_VECTOR + card->hw.dpmbase); } card->u.f.rx_base = buf_info->buf_base; card->u.f.rx_top = buf_info->buf_top; card->u.f.tx_interrupts_pending = 0; card->wandev.mtu = conf->mtu; card->wandev.bps = conf->bps; card->wandev.interface = conf->interface; card->wandev.clocking = conf->clocking; card->wandev.station = conf->station; card->poll = NULL; card->exec = &wpf_exec; card->wandev.update = &update; card->wandev.new_if = &new_if; card->wandev.del_if = &del_if; card->wandev.state = WAN_DISCONNECTED; card->wandev.ttl = conf->ttl; card->wandev.udp_port = conf->udp_port; card->disable_comm = &disable_comm; card->u.f.arp_dev = NULL; /* Intialize global statistics for a card */ init_global_statistics( card ); card->TracingEnabled = 0; /* Interrupt Test */ Intr_test_counter = 0; card->intr_mode = INTR_TEST_MODE; err = intr_test( card ); printk(KERN_INFO "%s: End of Interrupt Test rc=0x%x count=%i\n", card->devname,err,Intr_test_counter); if (err || (Intr_test_counter < MAX_INTR_TEST_COUNTER)) { printk(KERN_ERR "%s: Interrupt Test Failed, Counter: %i\n", card->devname, Intr_test_counter); printk(KERN_ERR "Please choose another interrupt\n"); err = -EIO; return err; } printk(KERN_INFO "%s: Interrupt Test Passed, Counter: %i\n", card->devname, Intr_test_counter); /* Apr 28 2000. Nenad Corbic * Enable commnunications here, not in if_open or new_if, since * interfaces come down when the link is disconnected. */ /* If you enable comms and then set ints, you get a Tx int as you * perform the SET_INT_TRIGGERS command. So, we only set int * triggers and then adjust the interrupt mask (to disable Tx ints) * before enabling comms. */ if (fr_set_intr_mode(card, (FR_INTR_RXRDY | FR_INTR_TXRDY | FR_INTR_DLC | FR_INTR_TIMER | FR_INTR_TX_MULT_DLCIs) , card->wandev.mtu, 0)) { return -EIO; } flags->imask &= ~(FR_INTR_TXRDY | FR_INTR_TIMER); if (fr_comm_enable(card)) { return -EIO; } wanpipe_set_state(card, WAN_CONNECTED); spin_lock_init(&card->u.f.if_send_lock); printk(KERN_INFO "\n"); return 0; } /******* WAN Device Driver Entry Points *************************************/ /*============================================================================ * Update device status & statistics. */ static int update (wan_device_t* wandev) { volatile sdla_t* card; unsigned long timeout; fr508_flags_t* flags; /* sanity checks */ if ((wandev == NULL) || (wandev->private == NULL)) return -EFAULT; if (wandev->state == WAN_UNCONFIGURED) return -ENODEV; card = wandev->private; flags = card->flags; card->u.f.update_comms_stats = 1; card->u.f.timer_int_enabled |= TMR_INT_ENABLED_UPDATE; flags->imask |= FR_INTR_TIMER; timeout = jiffies; for(;;) { if(card->u.f.update_comms_stats == 0) break; if ((jiffies - timeout) > (1 * HZ)){ card->u.f.update_comms_stats = 0; return -EAGAIN; } } return 0; } /*============================================================================ * Create new logical channel. * This routine is called by the router when ROUTER_IFNEW IOCTL is being * handled. * o parse media- and hardware-specific configuration * o make sure that a new channel can be created * o allocate resources, if necessary * o prepare network device structure for registaration. * * Return: 0 o.k. * < 0 failure (channel will not be created) */ static int new_if (wan_device_t* wandev, netdevice_t* dev, wanif_conf_t* conf) { sdla_t* card = wandev->private; fr_channel_t* chan; int dlci = 0; int err = 0; if ((conf->name[0] == '\0') || (strlen(conf->name) > WAN_IFNAME_SZ)) { printk(KERN_INFO "%s: Invalid interface name!\n", card->devname); return -EINVAL; } /* allocate and initialize private data */ chan = kmalloc(sizeof(fr_channel_t), GFP_KERNEL); if (chan == NULL) return -ENOMEM; memset(chan, 0, sizeof(fr_channel_t)); strcpy(chan->name, conf->name); chan->card = card; /* verify media address */ if (is_digit(conf->addr[0])) { dlci = dec_to_uint(conf->addr, 0); if (dlci && (dlci <= HIGHEST_VALID_DLCI)) { chan->dlci = dlci; } else { printk(KERN_ERR "%s: Invalid DLCI %u on interface %s!\n", wandev->name, dlci, chan->name); err = -EINVAL; } } else { printk(KERN_ERR "%s: Invalid media address on interface %s!\n", wandev->name, chan->name); err = -EINVAL; } if ((chan->true_if_encoding = conf->true_if_encoding) == WANOPT_YES){ printk(KERN_INFO "%s: Enabling, true interface type encoding.\n", card->devname); } /* Setup wanpipe as a router (WANPIPE) even if it is * a bridged DLCI, or as an API */ if (strcmp(conf->usedby, "WANPIPE") == 0 || strcmp(conf->usedby, "BRIDGE") == 0 || strcmp(conf->usedby, "BRIDGE_N") == 0){ if(strcmp(conf->usedby, "WANPIPE") == 0){ chan->common.usedby = WANPIPE; printk(KERN_INFO "%s: Running in WANPIPE mode.\n", card->devname); }else if(strcmp(conf->usedby, "BRIDGE") == 0){ chan->common.usedby = BRIDGE; #if defined(LINUX_2_1) || defined(LINUX_2_4) printk(KERN_INFO "%s: Running in WANPIPE (BRIDGE) mode.\n", card->devname); #else printk(KERN_INFO "%s: WANPIPE Bridging mode not supported in 2.0.X kernels.\n", card->devname); err = -EPROTONOSUPPORT; #endif }else if( strcmp(conf->usedby, "BRIDGE_N") == 0 ){ chan->common.usedby = BRIDGE_NODE; #if defined(LINUX_2_1) || defined(LINUX_2_4) printk(KERN_INFO "%s: Running in WANPIPE (BRIDGE_NODE) mode.\n", card->devname); #else printk(KERN_INFO "%s: WANPIPE Bridging mode not supported in 2.0.X kernels.\n", card->devname); err = -EPROTONOSUPPORT; #endif } if (!err){ /* Dynamic interface configuration option. * On disconnect, if the options is selected, * the interface will be brought down */ if (conf->if_down == WANOPT_YES){ set_bit(DYN_OPT_ON,&chan->interface_down); printk(KERN_INFO "%s: Dynamic interface configuration enabled.\n", card->devname); } } } else if(strcmp(conf->usedby, "API") == 0){ #if defined(LINUX_2_1) || defined(LINUX_2_4) chan->common.usedby = API; printk(KERN_INFO "%s: Running in API mode.\n", wandev->name); #else printk(KERN_INFO "%s: The API Mode is not supported for" "kernels lower than 2.2.X !\n", wandev->name); printk(KERN_INFO "%s: Please upgrade to a 2.2.X kernel for the API support\n", wandev->name); err = -EINVAL; #endif } if (err) { kfree(chan); return err; } /* place cir,be,bc and other channel specific information into the * chan structure */ if (conf->cir) { chan->cir = max_t(unsigned int, 1, min_t(unsigned int, conf->cir, 512)); chan->cir_status = CIR_ENABLED; /* If CIR is enabled, force BC to equal CIR * this solves number of potential problems if CIR is * set and BC is not */ chan->bc = chan->cir; if (conf->be){ chan->be = max_t(unsigned int, 0, min_t(unsigned int, conf->be, 511)); }else{ conf->be = 0; } printk (KERN_INFO "%s: CIR enabled for DLCI %i \n", wandev->name,chan->dlci); printk (KERN_INFO "%s: CIR = %i ; BC = %i ; BE = %i\n", wandev->name,chan->cir,chan->bc,chan->be); }else{ chan->cir_status = CIR_DISABLED; printk (KERN_INFO "%s: CIR disabled for DLCI %i\n", wandev->name,chan->dlci); } chan->mc = conf->mc; if (conf->inarp == WANOPT_YES){ #if defined(LINUX_2_1) || defined(LINUX_2_4) printk(KERN_INFO "%s: Inverse ARP Support Enabled\n",card->devname); chan->inarp = conf->inarp ? INARP_REQUEST : INARP_NONE; chan->inarp_interval = conf->inarp_interval ? conf->inarp_interval : 10; #else printk(KERN_INFO "%s: Warning, Inverse ARP Support not available for 2.0.X kernels!\n", card->devname); chan->inarp = INARP_NONE; chan->inarp_interval = 10; #endif }else{ printk(KERN_INFO "%s: Inverse ARP Support Disabled\n",card->devname); chan->inarp = INARP_NONE; chan->inarp_interval = 10; } chan->dlci_configured = DLCI_NOT_CONFIGURED; /*FIXME: IPX disabled in this WANPIPE version */ if (conf->enable_IPX == WANOPT_YES){ printk(KERN_INFO "%s: ERROR - This version of WANPIPE doesn't support IPX\n", card->devname); kfree(chan); return -EINVAL; }else{ chan->enable_IPX = WANOPT_NO; } if (conf->network_number){ chan->network_number = conf->network_number; }else{ chan->network_number = 0xDEADBEEF; } chan->route_flag = NO_ROUTE; init_chan_statistics(chan); chan->transmit_length = 0; /* prepare network device data space for registration */ #ifdef LINUX_2_4 strcpy(dev->name,chan->name); #else dev->name = (char *)kmalloc(strlen(chan->name) + 2, GFP_KERNEL); if(dev->name == NULL) { kfree(chan); return -ENOMEM; } sprintf(dev->name, "%s", chan->name); #endif dev->init = &if_init; dev->priv = chan; /* Initialize FR Polling Task Queue * We need a poll routine for each network * interface. */ #ifndef LINUX_2_4 chan->fr_poll_task.next = NULL; #endif chan->fr_poll_task.sync = 0; chan->fr_poll_task.routine = (void *)(void *)fr_poll; chan->fr_poll_task.data = dev; init_timer(&chan->fr_arp_timer); chan->fr_arp_timer.data=(unsigned long)dev; chan->fr_arp_timer.function = fr_arp; wandev->new_if_cnt++; /* Tells us that if this interface is a * gateway or not */ if ((chan->gateway = conf->gateway) == WANOPT_YES){ printk(KERN_INFO "%s: Interface %s is set as a gateway.\n", card->devname,dev->name); } /* M. Grant Patch Apr 28 2000 * Disallow duplicate dlci configurations. */ if (card->u.f.dlci_to_dev_map[chan->dlci] != NULL) { kfree(chan); return -EBUSY; } /* Configure this dlci at a later date, when * the interface comes up. i.e. when if_open() * executes */ set_bit(0,&chan->config_dlci); printk(KERN_INFO "\n"); return 0; } /*============================================================================ * Delete logical channel. */ static int del_if (wan_device_t* wandev, netdevice_t* dev) { fr_channel_t* chan = dev->priv; unsigned long smp_flags=0; /* This interface is dead, make sure the * ARP timer is stopped */ del_timer(&chan->fr_arp_timer); /* If we are a NODE, we must unconfigure this DLCI * Trigger an unconfigure command that will * be executed in timer interrupt. We must wait * for the command to complete. */ trigger_unconfig_fr(dev); lock_adapter_irq(&wandev->lock, &smp_flags); wandev->new_if_cnt--; unlock_adapter_irq(&wandev->lock, &smp_flags); return 0; } /*===================================================================== * disable_comm * * Description: * Disable communications. * This code runs in shutdown (sdlamain.c) * under critical flag. Therefore it is not * necessary to set a critical flag here * * Usage: * Commnunications are disabled only on a card * shutdown. */ static void disable_comm (sdla_t *card) { printk(KERN_INFO "%s: Disabling Communications!\n", card->devname); fr_comm_disable(card); } /****** WANPIPE-specific entry points ***************************************/ /*============================================================================ * Execute adapter interface command. */ static int wpf_exec (struct sdla* card, void* u_cmd, void* u_data) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err, len; fr_cmd_t cmd; #if defined(LINUX_2_1) || defined(LINUX_2_4) if(copy_from_user((void*)&cmd, u_cmd, sizeof(cmd))) return -EFAULT; /* execute command */ do { memcpy(&mbox->cmd, &cmd, sizeof(cmd)); if (cmd.length){ if( copy_from_user((void*)&mbox->data, u_data, cmd.length)) return -EFAULT; } if (sdla_exec(mbox)) err = mbox->cmd.result; else return -EIO; } while (err && retry-- && fr_event(card, err, mbox)); /* return result */ if (copy_to_user(u_cmd, (void*)&mbox->cmd, sizeof(fr_cmd_t))) return -EFAULT; len = mbox->cmd.length; if (len && u_data && !copy_to_user(u_data, (void*)&mbox->data, len)) return -EFAULT; return 0; #else if (!u_cmd || verify_area(VERIFY_WRITE, u_cmd, sizeof(fr_cmd_t))) return -EFAULT; memcpy_fromfs((void*)&cmd, u_cmd, sizeof(cmd)); if (cmd.length) { if (!u_data || verify_area(VERIFY_READ, u_data, cmd.length)) return -EFAULT; } /* execute command */ do { memcpy(&mbox->cmd, &cmd, sizeof(cmd)); if (cmd.length) memcpy_fromfs((void*)&mbox->data, u_data, cmd.length); if (sdla_exec(mbox)) err = mbox->cmd.result; else return -EIO; } while (err && retry-- && fr_event(card, err, mbox)); /* return result */ memcpy_tofs(u_cmd, (void*)&mbox->cmd, sizeof(fr_cmd_t)); len = mbox->cmd.length; if (len && u_data && !verify_area(VERIFY_WRITE, u_data, len)) memcpy_tofs(u_data, (void*)&mbox->data, len); return 0; #endif } /****** Network Device Interface ********************************************/ /*============================================================================ * Initialize Linux network interface. * * This routine is called only once for each interface, during Linux network * interface registration. Returning anything but zero will fail interface * registration. */ static int if_init (netdevice_t* dev) { fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; wan_device_t* wandev = &card->wandev; #ifdef LINUX_2_0 int i; #endif /* Initialize device driver entry points */ dev->open = &if_open; dev->stop = &if_close; dev->hard_header = NULL; dev->rebuild_header = &if_rebuild_hdr; dev->hard_start_xmit = &if_send; dev->get_stats = &if_stats; #ifdef LINUX_2_4 dev->tx_timeout = &if_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; #endif if (chan->common.usedby == WANPIPE || chan->common.usedby == API){ #ifdef LINUX_2_0 dev->family = AF_INET; #endif /* Initialize media-specific parameters */ if (chan->true_if_encoding){ dev->type = ARPHRD_DLCI; /* This breaks tcpdump */ }else{ dev->type = ARPHRD_PPP; /* ARP h/w type */ } dev->flags |= IFF_POINTOPOINT; dev->flags |= IFF_NOARP; /* Enable Multicast addressing */ if (chan->mc == WANOPT_YES){ dev->flags |= IFF_MULTICAST; } dev->mtu = wandev->mtu - FR_HEADER_LEN; /* For an API, the maximum number of bytes that the stack will pass to the driver is (dev->mtu + dev->hard_header_len). So, adjust the mtu so that a frame of maximum size can be transmitted by the API. */ if(chan->common.usedby == API) { dev->mtu += (sizeof(api_tx_hdr_t) - FR_HEADER_LEN); } dev->hard_header_len = FR_HEADER_LEN;/* media header length */ dev->addr_len = 2; /* hardware address length */ *(unsigned short*)dev->dev_addr = htons(chan->dlci); /* Set transmit buffer queue length */ dev->tx_queue_len = 100; /* Initialize socket buffers */ #if !defined(LINUX_2_1) && !defined(LINUX_2_4) for (i = 0; i < DEV_NUMBUFFS; ++i) skb_queue_head_init(&dev->buffs[i]); #endif }else{ /* Setup the interface for Bridging */ int hw_addr=0; ether_setup(dev); /* Use a random number to generate the MAC address */ memcpy(dev->dev_addr, "\xFE\xFC\x00\x00\x00\x00", 6); get_random_bytes(&hw_addr, sizeof(hw_addr)); *(int *)(dev->dev_addr + 2) += hw_addr; } /* Initialize hardware parameters (just for reference) */ dev->irq = wandev->irq; dev->dma = wandev->dma; dev->base_addr = wandev->ioport; dev->mem_start = wandev->maddr; dev->mem_end = wandev->maddr + wandev->msize - 1; return 0; } /*============================================================================ * Open network interface. * o if this is the first open, then enable communications and interrupts. * o prevent module from unloading by incrementing use count * * Return 0 if O.k. or errno. */ static int if_open (netdevice_t* dev) { fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; int err = 0; struct timeval tv; if (is_dev_running(dev)) return -EBUSY; #if defined(LINUX_2_1) || defined(LINUX_2_4) /* Initialize the task queue */ chan->tq_working=0; #ifndef LINUX_2_4 chan->common.wanpipe_task.next = NULL; #endif chan->common.wanpipe_task.sync = 0; chan->common.wanpipe_task.routine = (void *)(void *)fr_bh; chan->common.wanpipe_task.data = dev; /* Allocate and initialize BH circular buffer */ chan->bh_head = kmalloc((sizeof(bh_data_t)*MAX_BH_BUFF),GFP_ATOMIC); memset(chan->bh_head,0,(sizeof(bh_data_t)*MAX_BH_BUFF)); atomic_set(&chan->bh_buff_used, 0); #endif #ifdef LINUX_2_4 netif_start_queue(dev); #else dev->interrupt = 0; dev->tbusy = 0; dev->start = 1; #endif wanpipe_open(card); do_gettimeofday( &tv ); chan->router_start_time = tv.tv_sec; if (test_bit(0,&chan->config_dlci)){ trigger_config_fr (card); }else if (chan->inarp == INARP_REQUEST){ trigger_fr_arp(dev); } return err; } /*============================================================================ * Close network interface. * o if this is the last open, then disable communications and interrupts. * o reset flags. */ static int if_close (netdevice_t* dev) { fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; if (chan->inarp == INARP_CONFIGURED) { chan->inarp = INARP_REQUEST; } stop_net_queue(dev); #ifndef LINUX_2_4 dev->start=0; #endif wanpipe_close(card); return 0; } /*============================================================================ * Re-build media header. * * Return: 1 physical address resolved. * 0 physical address not resolved */ #if defined(LINUX_2_1) || defined(LINUX_2_4) static int if_rebuild_hdr (struct sk_buff* skb) { #else static int if_rebuild_hdr (void* hdr, netdevice_t* dev, unsigned long raddr, struct sk_buff* skb) { #endif #if defined(LINUX_2_1) || defined(LINUX_2_4) netdevice_t *dev = skb->dev; #endif fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; printk(KERN_INFO "%s: rebuild_header() called for interface %s!\n", card->devname, dev->name); return 1; } #ifdef LINUX_2_4 /*============================================================================ * Handle transmit timeout event from netif watchdog */ static void if_tx_timeout (netdevice_t *dev) { fr_channel_t* chan = dev->priv; sdla_t *card = chan->card; /* If our device stays busy for at least 5 seconds then we will * kick start the device by making dev->tbusy = 0. We expect * that our device never stays busy more than 5 seconds. So this * is only used as a last resort. */ chan->drvstats_if_send.if_send_tbusy++; ++chan->ifstats.collisions; printk (KERN_INFO "%s: Transmit timed out on %s\n", card->devname, dev->name); chan->drvstats_if_send.if_send_tbusy_timeout++; netif_wake_queue (dev); } #endif /*============================================================================ * Send a packet on a network interface. * o set tbusy flag (marks start of the transmission) to block a timer-based * transmit from overlapping. * o set critical flag when accessing board. * o check link state. If link is not up, then drop the packet. * o check channel status. If it's down then initiate a call. * o pass a packet to corresponding WAN device. * o free socket buffer * * Return: 0 complete (socket buffer must be freed) * non-0 packet may be re-transmitted (tbusy must be set) * * Notes: * 1. This routine is called either by the protocol stack or by the "net * bottom half" (with interrupts enabled). * * 2. Using the start_net_queue() and stop_net_queue() MACROS * will inhibit further transmit requests from the protocol stack * and can be used for flow control with protocol layer. */ static int if_send (struct sk_buff* skb, netdevice_t* dev) { fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; int err; unsigned char *sendpacket; fr508_flags_t* adptr_flags = card->flags; int udp_type, delay_tx_queued=0; unsigned long smp_flags=0; unsigned char attr = 0; chan->drvstats_if_send.if_send_entry++; #ifdef LINUX_2_4 netif_stop_queue(dev); #endif if (skb == NULL) { /* if we get here, some higher layer thinks we've missed an * tx-done interrupt. */ printk(KERN_INFO "%s: interface %s got kicked!\n", card->devname, dev->name); chan->drvstats_if_send.if_send_skb_null ++; wake_net_dev(dev); return 0; } /* If a peripheral task is running just drop packets */ if (test_bit(PERI_CRIT, &card->wandev.critical)){ printk(KERN_INFO "%s: Critical in if_send(): Peripheral running!\n", card->devname); wan_dev_kfree_skb(skb,FREE_WRITE); start_net_queue(dev); return 0; } /* We must set the 'tbusy' flag if we already have a packet queued for transmission in the transmit interrupt handler. However, we must ensure that the transmit interrupt does not reset the 'tbusy' flag just before we set it, as this will result in a "transmit timeout". */ set_bit(SEND_TXIRQ_CRIT, (void*)&card->wandev.critical); if(chan->transmit_length) { stop_net_queue(dev); chan->tick_counter = jiffies; clear_bit(SEND_TXIRQ_CRIT, (void*)&card->wandev.critical); return 1; } clear_bit(SEND_TXIRQ_CRIT, (void*)&card->wandev.critical); #ifndef LINUX_2_4 if (dev->tbusy) { /* If our device stays busy for at least 5 seconds then we will * kick start the device by making dev->tbusy = 0. We expect * that our device never stays busy more than 5 seconds. So this * is only used as a last resort. */ chan->drvstats_if_send.if_send_tbusy++; ++chan->ifstats.collisions; if ((jiffies - chan->tick_counter) < (5 * HZ)) { return 1; } printk(KERN_INFO "%s: Transmit timed out on %s\n", card->devname, chan->name); chan->drvstats_if_send.if_send_tbusy_timeout ++; dev->tbusy = 0; } #endif /* Move the if_header() code to here. By inserting frame * relay header in if_header() we would break the * tcpdump and other packet sniffers */ chan->fr_header_len = setup_fr_header(&skb,dev,chan->common.usedby); if (chan->fr_header_len < 0 ){ ++chan->ifstats.tx_dropped; ++card->wandev.stats.tx_dropped; wan_dev_kfree_skb(skb,FREE_WRITE); start_net_queue(dev); return 0; } sendpacket = skb->data; udp_type = udp_pkt_type(skb, card); if(udp_type != UDP_INVALID_TYPE) { if(store_udp_mgmt_pkt(udp_type, UDP_PKT_FRM_STACK, card, skb, chan->dlci)) { adptr_flags->imask |= FR_INTR_TIMER; if (udp_type == UDP_FPIPE_TYPE){ chan->drvstats_if_send. if_send_PIPE_request ++; } } start_net_queue(dev); return 0; } //FIXME: can we do better than sendpacket[2]? if ((chan->common.usedby == WANPIPE) && (sendpacket[2] == 0x45)) { /* check to see if the source IP address is a broadcast or */ /* multicast IP address */ if(chk_bcast_mcast_addr(card, dev, skb)){ ++chan->ifstats.tx_dropped; ++card->wandev.stats.tx_dropped; wan_dev_kfree_skb(skb, FREE_WRITE); start_net_queue(dev); return 0; } } /* Lock the S514/S508 card: SMP Supported */ s508_s514_lock(card,&smp_flags); if (test_and_set_bit(SEND_CRIT, (void*)&card->wandev.critical)) { chan->drvstats_if_send.if_send_critical_non_ISR ++; chan->ifstats.tx_dropped ++; printk(KERN_INFO "%s Critical in IF_SEND: if_send() already running!\n", card->devname); goto if_send_start_and_exit; } /* API packet check: minimum packet size must be greater than * 16 byte API header */ if((chan->common.usedby == API) && (skb->len <= sizeof(api_tx_hdr_t))) { ++chan->ifstats.tx_dropped; ++card->wandev.stats.tx_dropped; goto if_send_start_and_exit; }else{ /* During API transmission, get rid of the API header */ if (chan->common.usedby == API) { api_tx_hdr_t* api_tx_hdr; api_tx_hdr = (api_tx_hdr_t*)&skb->data[0x00]; attr = api_tx_hdr->attr; skb_pull(skb,sizeof(api_tx_hdr_t)); } } if (card->wandev.state != WAN_CONNECTED) { chan->drvstats_if_send.if_send_wan_disconnected ++; ++chan->ifstats.tx_dropped; ++card->wandev.stats.tx_dropped; } else if (chan->common.state != WAN_CONNECTED) { chan->drvstats_if_send.if_send_dlci_disconnected ++; /* Update the DLCI state in timer interrupt */ card->u.f.timer_int_enabled |= TMR_INT_ENABLED_UPDATE_STATE; adptr_flags->imask |= FR_INTR_TIMER; ++chan->ifstats.tx_dropped; ++card->wandev.stats.tx_dropped; } else if (!is_tx_ready(card, chan)) { /* No tx buffers available, store for delayed transmit */ if (!setup_for_delayed_transmit(dev, skb)){ set_bit(1,&delay_tx_queued); } chan->drvstats_if_send.if_send_no_bfrs++; } else if (!skb->protocol) { /* No protocols drop packet */ chan->drvstats_if_send.if_send_protocol_error ++; ++card->wandev.stats.tx_errors; } else if (test_bit(ARP_CRIT,&card->wandev.critical)){ /* We are trying to send an ARP Packet, block IP data until * ARP is sent */ ++chan->ifstats.tx_dropped; ++card->wandev.stats.tx_dropped; } else { //FIXME: IPX is not implemented in this version of Frame Relay ? if((chan->common.usedby == WANPIPE) && sendpacket[1] == 0x00 && sendpacket[2] == 0x80 && sendpacket[6] == 0x81 && sendpacket[7] == 0x37) { if( chan->enable_IPX ) { switch_net_numbers(sendpacket, chan->network_number, 0); } else { //FIXME: Take this out when IPX is fixed printk(KERN_INFO "%s: WARNING: Unsupported IPX data in send, packet dropped\n", card->devname); } }else{ err = fr_send_data_header(card, chan->dlci, attr, skb->len, skb->data, chan->fr_header_len); if (err) { switch(err) { case FRRES_CIR_OVERFLOW: case FRRES_BUFFER_OVERFLOW: if (!setup_for_delayed_transmit(dev, skb)){ set_bit(1,&delay_tx_queued); } chan->drvstats_if_send. if_send_adptr_bfrs_full ++; break; case FRRES_TOO_LONG: if (net_ratelimit()){ printk(KERN_INFO "%s: Error: Frame too long, transmission failed %i\n", card->devname, (unsigned int)skb->len); } /* Drop down to default */ default: chan->drvstats_if_send. if_send_dlci_disconnected ++; ++chan->ifstats.tx_dropped; ++card->wandev.stats.tx_dropped; break; } } else { chan->drvstats_if_send. if_send_bfr_passed_to_adptr++; ++chan->ifstats.tx_packets; ++card->wandev.stats.tx_packets; #if defined(LINUX_2_1) || defined(LINUX_2_4) chan->ifstats.tx_bytes += skb->len; card->wandev.stats.tx_bytes += skb->len; #endif #ifdef LINUX_2_4 dev->trans_start = jiffies; #endif } } } if_send_start_and_exit: start_net_queue(dev); /* If we queued the packet for transmission, we must not * deallocate it. The packet is unlinked from the IP stack * not copied. Therefore, we must keep the original packet */ if (!test_bit(1,&delay_tx_queued)) { wan_dev_kfree_skb(skb, FREE_WRITE); }else{ adptr_flags->imask |= FR_INTR_TXRDY; card->u.f.tx_interrupts_pending ++; } clear_bit(SEND_CRIT, (void*)&card->wandev.critical); s508_s514_unlock(card,&smp_flags); return 0; } /*============================================================================ * Setup so that a frame can be transmitted on the occurence of a transmit * interrupt. */ static int setup_for_delayed_transmit (netdevice_t* dev, struct sk_buff *skb) { fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; fr_dlci_interface_t* dlci_interface; int len = skb->len; /* Check that the dlci is properly configured, * before using tx interrupt */ if (!chan->dlci_int_interface){ if (net_ratelimit()){ printk(KERN_INFO "%s: ERROR on DLCI %i: Not configured properly !\n", card->devname, chan->dlci); printk(KERN_INFO "%s: Please contact Sangoma Technologies\n", card->devname); } return 1; } dlci_interface = chan->dlci_int_interface; if(chan->transmit_length) { printk(KERN_INFO "%s: Big mess in setup_for_del...\n", card->devname); return 1; } if(len > FR_MAX_NO_DATA_BYTES_IN_FRAME) { //FIXME: increment some statistic */ return 1; } skb_unlink(skb); chan->transmit_length = len; chan->delay_skb = skb; dlci_interface->gen_interrupt |= FR_INTR_TXRDY; dlci_interface->packet_length = len; /* Turn on TX interrupt at the end of if_send */ return 0; } /*============================================================================ * Check to see if the packet to be transmitted contains a broadcast or * multicast source IP address. * Return 0 if not broadcast/multicast address, otherwise return 1. */ static int chk_bcast_mcast_addr(sdla_t *card, netdevice_t* dev, struct sk_buff *skb) { u32 src_ip_addr; u32 broadcast_ip_addr = 0; #if defined(LINUX_2_1) || defined(LINUX_2_4) struct in_device *in_dev; #endif fr_channel_t* chan = dev->priv; /* read the IP source address from the outgoing packet */ src_ip_addr = *(u32 *)(skb->data + 14); /* read the IP broadcast address for the device */ #if defined(LINUX_2_1) || defined(LINUX_2_4) in_dev = dev->ip_ptr; if(in_dev != NULL) { struct in_ifaddr *ifa= in_dev->ifa_list; if(ifa != NULL) broadcast_ip_addr = ifa->ifa_broadcast; else return 0; } #else broadcast_ip_addr = dev->pa_brdaddr; #endif /* check if the IP Source Address is a Broadcast address */ if((dev->flags & IFF_BROADCAST) && (src_ip_addr == broadcast_ip_addr)) { printk(KERN_INFO "%s: Broadcast Source Address silently discarded\n", card->devname); return 1; } /* check if the IP Source Address is a Multicast address */ if((chan->mc == WANOPT_NO) && (ntohl(src_ip_addr) >= 0xE0000001) && (ntohl(src_ip_addr) <= 0xFFFFFFFE)) { printk(KERN_INFO "%s: Multicast Source Address silently discarded\n", card->devname); return 1; } return 0; } /*============================================================================ * Reply to UDP Management system. * Return nothing. */ static int reply_udp( unsigned char *data, unsigned int mbox_len ) { unsigned short len, udp_length, temp, ip_length; unsigned long ip_temp; int even_bound = 0; fr_udp_pkt_t *fr_udp_pkt = (fr_udp_pkt_t *)data; /* Set length of packet */ len = //sizeof(fr_encap_hdr_t)+ sizeof(ip_pkt_t)+ sizeof(udp_pkt_t)+ sizeof(wp_mgmt_t)+ sizeof(cblock_t)+ mbox_len; /* fill in UDP reply */ fr_udp_pkt->wp_mgmt.request_reply = UDPMGMT_REPLY; /* fill in UDP length */ udp_length = sizeof(udp_pkt_t)+ sizeof(wp_mgmt_t)+ sizeof(cblock_t)+ mbox_len; /* put it on an even boundary */ if ( udp_length & 0x0001 ) { udp_length += 1; len += 1; even_bound = 1; } temp = (udp_length<<8)|(udp_length>>8); fr_udp_pkt->udp_pkt.udp_length = temp; /* swap UDP ports */ temp = fr_udp_pkt->udp_pkt.udp_src_port; fr_udp_pkt->udp_pkt.udp_src_port = fr_udp_pkt->udp_pkt.udp_dst_port; fr_udp_pkt->udp_pkt.udp_dst_port = temp; /* add UDP pseudo header */ temp = 0x1100; *((unsigned short *) (fr_udp_pkt->data+mbox_len+even_bound)) = temp; temp = (udp_length<<8)|(udp_length>>8); *((unsigned short *) (fr_udp_pkt->data+mbox_len+even_bound+2)) = temp; /* calculate UDP checksum */ fr_udp_pkt->udp_pkt.udp_checksum = 0; fr_udp_pkt->udp_pkt.udp_checksum = calc_checksum(&data[UDP_OFFSET/*+sizeof(fr_encap_hdr_t)*/], udp_length+UDP_OFFSET); /* fill in IP length */ ip_length = udp_length + sizeof(ip_pkt_t); temp = (ip_length<<8)|(ip_length>>8); fr_udp_pkt->ip_pkt.total_length = temp; /* swap IP addresses */ ip_temp = fr_udp_pkt->ip_pkt.ip_src_address; fr_udp_pkt->ip_pkt.ip_src_address = fr_udp_pkt->ip_pkt.ip_dst_address; fr_udp_pkt->ip_pkt.ip_dst_address = ip_temp; /* fill in IP checksum */ fr_udp_pkt->ip_pkt.hdr_checksum = 0; fr_udp_pkt->ip_pkt.hdr_checksum = calc_checksum(&data[/*sizeof(fr_encap_hdr_t)*/0], sizeof(ip_pkt_t)); return len; } /* reply_udp */ unsigned short calc_checksum (char *data, int len) { unsigned short temp; unsigned long sum=0; int i; for( i = 0; i > 16 ) { sum = (sum & 0xffffUL) + (sum >> 16); } temp = (unsigned short)sum; temp = ~temp; if( temp == 0 ) temp = 0xffff; return temp; } /* If incoming is 0 (outgoing)- if the net numbers is ours make it 0 if incoming is 1 - if the net number is 0 make it ours */ static void switch_net_numbers(unsigned char *sendpacket, unsigned long network_number, unsigned char incoming) { unsigned long pnetwork_number; pnetwork_number = (unsigned long)((sendpacket[14] << 24) + (sendpacket[15] << 16) + (sendpacket[16] << 8) + sendpacket[17]); if (!incoming) { /* If the destination network number is ours, make it 0 */ if( pnetwork_number == network_number) { sendpacket[14] = sendpacket[15] = sendpacket[16] = sendpacket[17] = 0x00; } } else { /* If the incoming network is 0, make it ours */ if( pnetwork_number == 0) { sendpacket[14] = (unsigned char)(network_number >> 24); sendpacket[15] = (unsigned char)((network_number & 0x00FF0000) >> 16); sendpacket[16] = (unsigned char)((network_number & 0x0000FF00) >> 8); sendpacket[17] = (unsigned char)(network_number & 0x000000FF); } } pnetwork_number = (unsigned long)((sendpacket[26] << 24) + (sendpacket[27] << 16) + (sendpacket[28] << 8) + sendpacket[29]); if( !incoming ) { /* If the source network is ours, make it 0 */ if( pnetwork_number == network_number) { sendpacket[26] = sendpacket[27] = sendpacket[28] = sendpacket[29] = 0x00; } } else { /* If the source network is 0, make it ours */ if( pnetwork_number == 0 ) { sendpacket[26] = (unsigned char)(network_number >> 24); sendpacket[27] = (unsigned char)((network_number & 0x00FF0000) >> 16); sendpacket[28] = (unsigned char)((network_number & 0x0000FF00) >> 8); sendpacket[29] = (unsigned char)(network_number & 0x000000FF); } } } /* switch_net_numbers */ /*============================================================================ * Get ethernet-style interface statistics. * Return a pointer to struct enet_statistics. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) static struct net_device_stats *if_stats(netdevice_t *dev) #else static struct enet_statistics* if_stats (netdevice_t* dev) #endif { fr_channel_t* chan = dev->priv; if(chan == NULL) return NULL; return &chan->ifstats; } /****** Interrupt Handlers **************************************************/ /*============================================================================ * fr_isr: S508 frame relay interrupt service routine. * * Description: * Frame relay main interrupt service route. This * function check the interrupt type and takes * the appropriate action. */ static void fr_isr (sdla_t* card) { fr508_flags_t* flags = card->flags; char *ptr = &flags->iflag; int i,err; fr_mbox_t* mbox = card->mbox; /* This flag prevents nesting of interrupts. See sdla_isr() routine * in sdlamain.c. */ card->in_isr = 1; ++card->statistics.isr_entry; /* All peripheral (configuraiton, re-configuration) events * take presidence over the ISR. Thus, retrigger */ if (test_bit(PERI_CRIT, (void*)&card->wandev.critical)) { ++card->statistics.isr_already_critical; goto fr_isr_exit; } if(card->hw.type != SDLA_S514) { if (test_bit(SEND_CRIT, (void*)&card->wandev.critical)) { printk(KERN_INFO "%s: Critical while in ISR: If Send Running!\n", card->devname); ++card->statistics.isr_already_critical; goto fr_isr_exit; } } switch (flags->iflag) { case FR_INTR_RXRDY: /* receive interrupt */ ++card->statistics.isr_rx; rx_intr(card); break; case FR_INTR_TXRDY: /* transmit interrupt */ ++ card->statistics.isr_tx; tx_intr(card); break; case FR_INTR_READY: Intr_test_counter++; ++card->statistics.isr_intr_test; break; case FR_INTR_DLC: /* Event interrupt occured */ mbox->cmd.command = FR_READ_STATUS; mbox->cmd.length = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; if (err) fr_event(card, err, mbox); break; case FR_INTR_TIMER: /* Timer interrupt */ timer_intr(card); break; default: ++card->statistics.isr_spurious; spur_intr(card); printk(KERN_INFO "%s: Interrupt Type 0x%02X!\n", card->devname, flags->iflag); printk(KERN_INFO "%s: ID Bytes = ",card->devname); for(i = 0; i < 8; i ++) printk(KERN_INFO "0x%02X ", *(ptr + 0x28 + i)); printk(KERN_INFO "\n"); break; } fr_isr_exit: card->in_isr = 0; flags->iflag = 0; return; } /*=========================================================== * rx_intr Receive interrupt handler. * * Description * Upon receiveing an interrupt: * 1. Check that the firmware is in sync with * the driver. * 2. Find an appropriate network interface * based on the received dlci number. * 3. Check that the netowrk interface exists * and that it's setup properly. * 4. Copy the data into an skb buffer. * 5. Check the packet type and take * appropriate acton: UPD, API, ARP or Data. */ static void rx_intr (sdla_t* card) { fr_rx_buf_ctl_t* frbuf = card->rxmb; fr508_flags_t* flags = card->flags; fr_channel_t* chan; char *ptr = &flags->iflag; struct sk_buff* skb; netdevice_t* dev; void* buf; unsigned dlci, len, offs, len_incl_hdr; int i, udp_type; /* Check that firmware buffers are in sync */ if (frbuf->flag != 0x01) { printk(KERN_INFO "%s: corrupted Rx buffer @ 0x%X, flag = 0x%02X!\n", card->devname, (unsigned)frbuf, frbuf->flag); printk(KERN_INFO "%s: ID Bytes = ",card->devname); for(i = 0; i < 8; i ++) printk(KERN_INFO "0x%02X ", *(ptr + 0x28 + i)); printk(KERN_INFO "\n"); ++card->statistics.rx_intr_corrupt_rx_bfr; /* Bug Fix: Mar 6 2000 * If we get a corrupted mailbox, it means that driver * is out of sync with the firmware. There is no recovery. * If we don't turn off all interrupts for this card * the machine will crash. */ printk(KERN_INFO "%s: Critical router failure ...!!!\n", card->devname); printk(KERN_INFO "Please contact Sangoma Technologies !\n"); fr_set_intr_mode(card, 0, 0, 0); return; } len = frbuf->length; dlci = frbuf->dlci; offs = frbuf->offset; /* Find the network interface for this packet */ dev = find_channel(card, dlci); /* Check that the network interface is active and * properly setup */ if (dev == NULL) { if( net_ratelimit()) { printk(KERN_INFO "%s: received data on unconfigured DLCI %d!\n", card->devname, dlci); } ++card->statistics.rx_intr_on_orphaned_DLCI; ++card->wandev.stats.rx_dropped; goto rx_done; } if ((chan = dev->priv) == NULL){ if( net_ratelimit()) { printk(KERN_INFO "%s: received data on unconfigured DLCI %d!\n", card->devname, dlci); } ++card->statistics.rx_intr_on_orphaned_DLCI; ++card->wandev.stats.rx_dropped; goto rx_done; } skb = dev_alloc_skb(len); if (!is_dev_running(dev) || (skb == NULL)){ ++chan->ifstats.rx_dropped; if(skb == NULL) { if (net_ratelimit()) { printk(KERN_INFO "%s: no socket buffers available!\n", card->devname); } chan->drvstats_rx_intr.rx_intr_no_socket ++; } if (!is_dev_running(dev)){ chan->drvstats_rx_intr. rx_intr_dev_not_started ++; if (skb){ wan_dev_kfree_skb(skb, FREE_READ); } } goto rx_done; } /* Copy data from the board into the socket buffer */ if ((offs + len) > card->u.f.rx_top + 1) { unsigned tmp = card->u.f.rx_top - offs + 1; buf = skb_put(skb, tmp); sdla_peek(&card->hw, offs, buf, tmp); offs = card->u.f.rx_base; len -= tmp; } buf = skb_put(skb, len); sdla_peek(&card->hw, offs, buf, len); /* We got the packet from the bard. * Check the packet type and take appropriate action */ udp_type = udp_pkt_type( skb, card ); if(udp_type != UDP_INVALID_TYPE) { /* UDP Debug packet received, store the * packet and handle it in timer interrupt */ skb_pull(skb, 1); if (wanrouter_type_trans(skb, dev)){ if(store_udp_mgmt_pkt(udp_type,UDP_PKT_FRM_NETWORK,card,skb,dlci)){ flags->imask |= FR_INTR_TIMER; if (udp_type == UDP_FPIPE_TYPE){ ++chan->drvstats_rx_intr.rx_intr_PIPE_request; } } } #if defined(LINUX_2_1) || defined(LINUX_2_4) }else if (chan->common.usedby == API) { /* We are in API mode. * Add an API header to the RAW packet * and queue it into a circular buffer. * Then kick the fr_bh() bottom half handler */ api_rx_hdr_t* api_rx_hdr; chan->drvstats_rx_intr.rx_intr_bfr_passed_to_stack ++; chan->ifstats.rx_packets ++; card->wandev.stats.rx_packets ++; chan->ifstats.rx_bytes += skb->len; card->wandev.stats.rx_bytes += skb->len; skb_push(skb, sizeof(api_rx_hdr_t)); api_rx_hdr = (api_rx_hdr_t*)&skb->data[0x00]; api_rx_hdr->attr = frbuf->attr; api_rx_hdr->time_stamp = frbuf->tmstamp; skb->protocol = htons(ETH_P_IP); skb->mac.raw = skb->data; skb->dev = dev; skb->pkt_type = WAN_PACKET_DATA; bh_enqueue(dev, skb); trigger_fr_bh(chan); #endif }else if (handle_IPXWAN(skb->data,chan->name,chan->enable_IPX, chan->network_number)){ //FIXME: Frame Relay IPX is not supported, Yet ! //if (chan->enable_IPX) { // fr_send(card, dlci, 0, skb->len,skb->data); //} wan_dev_kfree_skb(skb, FREE_READ); } else if (is_arp(skb->data)) { /* ARP support enabled Mar 16 2000 * Process incoming ARP reply/request, setup * dynamic routes. */ if (process_ARP((arphdr_1490_t *)skb->data, card, dev)) { if (net_ratelimit()){ printk (KERN_INFO "%s: Error processing ARP Packet.\n", card->devname); } } wan_dev_kfree_skb(skb, FREE_READ); } else if (skb->data[0] != 0x03) { if (net_ratelimit()) { printk(KERN_INFO "%s: Non IETF packet discarded.\n", card->devname); } wan_dev_kfree_skb(skb, FREE_READ); } else { len_incl_hdr = skb->len; /* Decapsulate packet and pass it up the protocol stack */ skb->dev = dev; if (chan->common.usedby == BRIDGE || chan->common.usedby == BRIDGE_NODE){ /* Make sure it's an Ethernet frame, otherwise drop it */ if (!memcmp(skb->data, "\x03\x00\x80\x00\x80\xC2\x00\x07", 8)) { skb_pull(skb, 8); skb->protocol=eth_type_trans(skb,dev); }else{ ++chan->drvstats_rx_intr.rx_intr_bfr_not_passed_to_stack; ++chan->ifstats.rx_errors; ++card->wandev.stats.rx_errors; goto rx_done; } }else{ /* remove hardware header */ buf = skb_pull(skb, 1); if (!wanrouter_type_trans(skb, dev)) { /* can't decapsulate packet */ wan_dev_kfree_skb(skb, FREE_READ); ++chan->drvstats_rx_intr.rx_intr_bfr_not_passed_to_stack; ++chan->ifstats.rx_errors; ++card->wandev.stats.rx_errors; goto rx_done; } skb->mac.raw = skb->data; } /* Send a packed up the IP stack */ netif_rx(skb); ++chan->drvstats_rx_intr.rx_intr_bfr_passed_to_stack; ++chan->ifstats.rx_packets; ++card->wandev.stats.rx_packets; #if defined(LINUX_2_1) || defined(LINUX_2_4) chan->ifstats.rx_bytes += len_incl_hdr; card->wandev.stats.rx_bytes += len_incl_hdr; #endif } rx_done: /* Release buffer element and calculate a pointer to the next one */ frbuf->flag = 0; card->rxmb = ++frbuf; if ((void*)frbuf > card->u.f.rxmb_last) card->rxmb = card->u.f.rxmb_base; } /*================================================================== * tx_intr: Transmit interrupt handler. * * Rationale: * If the board is busy transmitting, if_send() will * buffers a single packet and turn on * the tx interrupt. Tx interrupt will be called * by the board, once the firmware can send more * data. Thus, no polling is required. * * Description: * Tx interrupt is called for each * configured dlci channel. Thus: * 1. Obtain the netowrk interface based on the * dlci number. * 2. Check that network interface is up and * properly setup. * 3. Check for a buffered packed. * 4. Transmit the packed. * 5. If we are in WANPIPE mode, mark the * NET_BH handler. * 6. If we are in API mode, kick * the AF_WANPIPE socket for more data. * */ static void tx_intr(sdla_t *card) { fr508_flags_t* flags = card->flags; fr_tx_buf_ctl_t* bctl; netdevice_t* dev; fr_channel_t* chan; if(card->hw.type == SDLA_S514){ bctl = (void*)(flags->tse_offs + card->hw.dpmbase); }else{ bctl = (void*)(flags->tse_offs - FR_MB_VECTOR + card->hw.dpmbase); } /* Find the structure and make it unbusy */ dev = find_channel(card, flags->dlci); if (dev == NULL){ printk(KERN_INFO "NO DEV IN TX Interrupt\n"); goto end_of_tx_intr; } if ((chan = dev->priv) == NULL){ printk(KERN_INFO "NO CHAN IN TX Interrupt\n"); goto end_of_tx_intr; } if(!chan->transmit_length || !chan->delay_skb) { printk(KERN_INFO "%s: tx int error - transmit length zero\n", card->wandev.name); goto end_of_tx_intr; } /* If the 'if_send()' procedure is currently checking the 'tbusy' status, then we cannot transmit. Instead, we configure the microcode so as to re-issue this transmit interrupt at a later stage. */ if (test_bit(SEND_TXIRQ_CRIT, (void*)&card->wandev.critical)) { fr_dlci_interface_t* dlci_interface = chan->dlci_int_interface; bctl->flag = 0xA0; dlci_interface->gen_interrupt |= FR_INTR_TXRDY; return; }else{ bctl->dlci = flags->dlci; bctl->length = chan->transmit_length+chan->fr_header_len; sdla_poke(&card->hw, fr_send_hdr(card,bctl->dlci,bctl->offset), chan->delay_skb->data, chan->delay_skb->len); bctl->flag = 0xC0; ++chan->ifstats.tx_packets; ++card->wandev.stats.tx_packets; #if defined(LINUX_2_1) || defined(LINUX_2_4) chan->ifstats.tx_bytes += chan->transmit_length; card->wandev.stats.tx_bytes += chan->transmit_length; #endif /* We must free an sk buffer, which we used * for delayed transmission; Otherwise, the sock * will run out of memory */ wan_dev_kfree_skb(chan->delay_skb, FREE_WRITE); chan->delay_skb = NULL; chan->transmit_length = 0; #ifdef LINUX_2_4 dev->trans_start = jiffies; #endif #ifdef LINUX_2_0 wake_net_dev(dev); #else if (is_queue_stopped(dev)){ /* If using API, than wakeup socket BH handler */ if (chan->common.usedby == API){ start_net_queue(dev); wakeup_sk_bh(dev); }else{ wake_net_dev(dev); } } #endif } end_of_tx_intr: /* if any other interfaces have transmit interrupts pending, * do not disable the global transmit interrupt */ if(!(-- card->u.f.tx_interrupts_pending)) flags->imask &= ~FR_INTR_TXRDY; } /*============================================================================ * timer_intr: Timer interrupt handler. * * Rationale: * All commans must be executed within the timer * interrupt since no two commands should execute * at the same time. * * Description: * The timer interrupt is used to: * 1. Processing udp calls from 'fpipemon'. * 2. Processing update calls from /proc file system * 3. Reading board-level statistics for * updating the proc file system. * 4. Sending inverse ARP request packets. * 5. Configure a dlci/channel. * 6. Unconfigure a dlci/channel. (Node only) */ static void timer_intr(sdla_t *card) { fr508_flags_t* flags = card->flags; /* UDP Debuging: fpipemon call */ if (card->u.f.timer_int_enabled & TMR_INT_ENABLED_UDP) { if(card->u.f.udp_type == UDP_FPIPE_TYPE) { if(process_udp_mgmt_pkt(card)) { card->u.f.timer_int_enabled &= ~TMR_INT_ENABLED_UDP; } } } /* /proc update call : triggered from update() */ if (card->u.f.timer_int_enabled & TMR_INT_ENABLED_UPDATE) { fr_get_err_stats(card); fr_get_stats(card); card->u.f.update_comms_stats = 0; card->u.f.timer_int_enabled &= ~TMR_INT_ENABLED_UPDATE; } /* Update the channel state call. This is call is * triggered by if_send() function */ if (card->u.f.timer_int_enabled & TMR_INT_ENABLED_UPDATE_STATE){ netdevice_t *dev; if (card->wandev.state == WAN_CONNECTED){ for (dev=card->wandev.dev; dev; dev = *((netdevice_t **)dev->priv)){ fr_channel_t *chan = dev->priv; if (chan->common.state != WAN_CONNECTED){ update_chan_state(dev); } } } card->u.f.timer_int_enabled &= ~TMR_INT_ENABLED_UPDATE_STATE; } /* configure a dlci/channel */ if (card->u.f.timer_int_enabled & TMR_INT_ENABLED_CONFIG){ config_fr(card); card->u.f.timer_int_enabled &= ~TMR_INT_ENABLED_CONFIG; } /* unconfigure a dlci/channel */ if (card->u.f.timer_int_enabled & TMR_INT_ENABLED_UNCONFIG){ unconfig_fr(card); card->u.f.timer_int_enabled &= ~TMR_INT_ENABLED_UNCONFIG; } /* Transmit ARP packets */ if (card->u.f.timer_int_enabled & TMR_INT_ENABLED_ARP){ int i=0; netdevice_t *dev; if (card->u.f.arp_dev == NULL) card->u.f.arp_dev = card->wandev.dev; dev = card->u.f.arp_dev; for (;;){ fr_channel_t *chan = dev->priv; /* If the interface is brought down cancel sending In-ARPs */ if (!(dev->flags&IFF_UP)){ clear_bit(0,&chan->inarp_ready); } if (test_bit(0,&chan->inarp_ready)){ if (check_tx_status(card,dev)){ set_bit(ARP_CRIT,&card->wandev.critical); break; } if (!send_inarp_request(card,dev)){ trigger_fr_arp(dev); chan->inarp_tick = jiffies; } clear_bit(0,&chan->inarp_ready); dev = move_dev_to_next(card,dev); break; } dev = move_dev_to_next(card,dev); if (++i == card->wandev.new_if_cnt){ card->u.f.timer_int_enabled &= ~TMR_INT_ENABLED_ARP; break; } } card->u.f.arp_dev = dev; } if(!card->u.f.timer_int_enabled) flags->imask &= ~FR_INTR_TIMER; } /*============================================================================ * spur_intr: Spurious interrupt handler. * * Description: * We don't know this interrupt. * Print a warning. */ static void spur_intr (sdla_t* card) { if (net_ratelimit()){ printk(KERN_INFO "%s: spurious interrupt!\n", card->devname); } } //FIXME: Fix the IPX in next version /*=========================================================================== * Return 0 for non-IPXWAN packet * 1 for IPXWAN packet or IPX is not enabled! * FIXME: Use a IPX structure here not offsets */ static int handle_IPXWAN(unsigned char *sendpacket, char *devname, unsigned char enable_IPX, unsigned long network_number) { int i; if( sendpacket[1] == 0x00 && sendpacket[2] == 0x80 && sendpacket[6] == 0x81 && sendpacket[7] == 0x37) { /* It's an IPX packet */ if (!enable_IPX){ /* Return 1 so we don't pass it up the stack. */ //FIXME: Take this out when IPX is fixed if (net_ratelimit()){ printk (KERN_INFO "%s: WARNING: Unsupported IPX packet received and dropped\n", devname); } return 1; } } else { /* It's not IPX so return and pass it up the stack. */ return 0; } if( sendpacket[24] == 0x90 && sendpacket[25] == 0x04){ /* It's IPXWAN */ if( sendpacket[10] == 0x02 && sendpacket[42] == 0x00){ /* It's a timer request packet */ printk(KERN_INFO "%s: Received IPXWAN Timer Request packet\n", devname); /* Go through the routing options and answer no to every * option except Unnumbered RIP/SAP */ for(i = 49; sendpacket[i] == 0x00; i += 5){ /* 0x02 is the option for Unnumbered RIP/SAP */ if( sendpacket[i + 4] != 0x02){ sendpacket[i + 1] = 0; } } /* Skip over the extended Node ID option */ if( sendpacket[i] == 0x04 ){ i += 8; } /* We also want to turn off all header compression opt. */ for(; sendpacket[i] == 0x80 ;){ sendpacket[i + 1] = 0; i += (sendpacket[i + 2] << 8) + (sendpacket[i + 3]) + 4; } /* Set the packet type to timer response */ sendpacket[42] = 0x01; printk(KERN_INFO "%s: Sending IPXWAN Timer Response\n", devname); } else if( sendpacket[42] == 0x02 ){ /* This is an information request packet */ printk(KERN_INFO "%s: Received IPXWAN Information Request packet\n", devname); /* Set the packet type to information response */ sendpacket[42] = 0x03; /* Set the router name */ sendpacket[59] = 'F'; sendpacket[60] = 'P'; sendpacket[61] = 'I'; sendpacket[62] = 'P'; sendpacket[63] = 'E'; sendpacket[64] = '-'; sendpacket[65] = CVHexToAscii(network_number >> 28); sendpacket[66] = CVHexToAscii((network_number & 0x0F000000)>> 24); sendpacket[67] = CVHexToAscii((network_number & 0x00F00000)>> 20); sendpacket[68] = CVHexToAscii((network_number & 0x000F0000)>> 16); sendpacket[69] = CVHexToAscii((network_number & 0x0000F000)>> 12); sendpacket[70] = CVHexToAscii((network_number & 0x00000F00)>> 8); sendpacket[71] = CVHexToAscii((network_number & 0x000000F0)>> 4); sendpacket[72] = CVHexToAscii(network_number & 0x0000000F); for(i = 73; i < 107; i+= 1) { sendpacket[i] = 0; } printk(KERN_INFO "%s: Sending IPXWAN Information Response packet\n", devname); } else { printk(KERN_INFO "%s: Unknown IPXWAN packet!\n",devname); return 0; } /* Set the WNodeID to our network address */ sendpacket[43] = (unsigned char)(network_number >> 24); sendpacket[44] = (unsigned char)((network_number & 0x00FF0000) >> 16); sendpacket[45] = (unsigned char)((network_number & 0x0000FF00) >> 8); sendpacket[46] = (unsigned char)(network_number & 0x000000FF); return 1; } /* If we get here, its an IPX-data packet so it'll get passed up the * stack. * switch the network numbers */ switch_net_numbers(sendpacket, network_number ,1); return 0; } /*============================================================================ * process_route * * Rationale: * If the interface goes down, or we receive an ARP request, * we have to change the network interface ip addresses. * This cannot be done within the interrupt. * * Description: * * This routine is called as a polling routine to dynamically * add/delete routes negotiated by inverse ARP. It is in this * "task" because we don't want routes to be added while in * interrupt context. * * Usage: * This function is called by fr_poll() polling funtion. */ static void process_route (netdevice_t *dev) { fr_channel_t *chan = dev->priv; sdla_t *card = chan->card; #if defined(LINUX_2_1) || defined(LINUX_2_4) struct ifreq if_info; struct sockaddr_in *if_data; mm_segment_t fs = get_fs(); u32 ip_tmp; int err; switch(chan->route_flag){ case ADD_ROUTE: /* Set remote addresses */ memset(&if_info, 0, sizeof(if_info)); strcpy(if_info.ifr_name, dev->name); set_fs(get_ds()); /* get user space block */ if_data = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data->sin_addr.s_addr = chan->ip_remote; if_data->sin_family = AF_INET; err = devinet_ioctl( SIOCSIFDSTADDR, &if_info ); set_fs(fs); /* restore old block */ if (err) { printk(KERN_INFO "%s: Route Add failed. Error: %d\n", card->devname,err); printk(KERN_INFO "%s: Address: %s\n", chan->name, in_ntoa(chan->ip_remote)); }else { printk(KERN_INFO "%s: Route Added Successfully: %s\n", card->devname,in_ntoa(chan->ip_remote)); chan->route_flag = ROUTE_ADDED; } break; case REMOVE_ROUTE: /* Set remote addresses */ memset(&if_info, 0, sizeof(if_info)); strcpy(if_info.ifr_name, dev->name); ip_tmp = get_ip_address(dev,WAN_POINTOPOINT_IP); set_fs(get_ds()); /* get user space block */ if_data = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data->sin_addr.s_addr = 0; if_data->sin_family = AF_INET; err = devinet_ioctl( SIOCSIFDSTADDR, &if_info ); set_fs(fs); if (err) { printk(KERN_INFO "%s: Deleting of route failed. Error: %d\n", card->devname,err); printk(KERN_INFO "%s: Address: %s\n", dev->name,in_ntoa(chan->ip_remote) ); } else { printk(KERN_INFO "%s: Route Removed Sucessfuly: %s\n", card->devname,in_ntoa(ip_tmp)); chan->route_flag = NO_ROUTE; } break; } /* Case Statement */ #else /* Dynamic Route adding/removing */ struct rtentry route; int err = 0; unsigned long fs = get_fs(); memset(&route, 0, sizeof(route)); route.rt_dev = dev->name; route.rt_flags = 0; ((struct sockaddr_in *) &(route.rt_dst)) -> sin_addr.s_addr=dev->pa_dstaddr; ((struct sockaddr_in *) &(route.rt_dst)) -> sin_family = AF_INET; ((struct sockaddr_in *) &(route.rt_genmask)) -> sin_addr.s_addr = 0xFFFFFFFF; ((struct sockaddr_in *) &(route.rt_genmask)) -> sin_family = AF_INET; switch(chan->route_flag) { case ADD_ROUTE: set_fs(get_ds()); /* get user space block */ err = ip_rt_new(&route); set_fs(fs); /* restore old block */ if (err) { printk(KERN_INFO "%s: Adding of route failed. Error: %d\n", card->devname,err); printk(KERN_INFO "%s: Address: %s\n", chan->name, in_ntoa(dev->pa_dstaddr) ); } else { chan->route_flag = ROUTE_ADDED; } break; case REMOVE_ROUTE: set_fs(get_ds()); /* get user space block */ err = ip_rt_kill(&route); set_fs(fs); /* restore old block */ if (err) { printk(KERN_INFO "%s: Deleting of route failed. Error: %d\n", card->devname,err); printk(KERN_INFO "%s: Address: %s\n", dev->name,in_ntoa(dev->pa_dstaddr) ); } else { printk(KERN_INFO "%s: Removed route.\n", ((fr_channel_t*)dev->priv)->name); chan->route_flag = NO_ROUTE; } break; } #endif } /****** Frame Relay Firmware-Specific Functions *****************************/ /*============================================================================ * Read firmware code version. * o fill string str with firmware version info. */ static int fr_read_version (sdla_t* card, char* str) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.command = FR_READ_CODE_VERSION; mbox->cmd.length = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); if (!err && str) { int len = mbox->cmd.length; memcpy(str, mbox->data, len); str[len] = '\0'; } return err; } /*============================================================================ * Set global configuration. */ static int fr_configure (sdla_t* card, fr_conf_t *conf) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int dlci_num = card->u.f.dlci_num; int err, i; do { memcpy(mbox->data, conf, sizeof(fr_conf_t)); if (dlci_num) for (i = 0; i < dlci_num; ++i) ((fr_conf_t*)mbox->data)->dlci[i] = card->u.f.node_dlci[i]; mbox->cmd.command = FR_SET_CONFIG; mbox->cmd.length = sizeof(fr_conf_t) + dlci_num * sizeof(short); err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); /*NC Oct 12 2000 */ if (err != CMD_OK){ printk(KERN_ERR "%s: Frame Relay Configuration Failed: rc=0x%x\n", card->devname,err); } return err; } /*============================================================================ * Set DLCI configuration. */ static int fr_dlci_configure (sdla_t* card, fr_dlc_conf_t *conf, unsigned dlci) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { memcpy(mbox->data, conf, sizeof(fr_dlc_conf_t)); mbox->cmd.dlci = (unsigned short) dlci; mbox->cmd.command = FR_SET_CONFIG; mbox->cmd.length = sizeof(fr_dlc_conf_t); err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry--); return err; } /*============================================================================ * Set interrupt mode. */ static int fr_set_intr_mode (sdla_t* card, unsigned mode, unsigned mtu, unsigned short timeout) { fr_mbox_t* mbox = card->mbox; fr508_intr_ctl_t* ictl = (void*)mbox->data; int retry = MAX_CMD_RETRY; int err; do { memset(ictl, 0, sizeof(fr508_intr_ctl_t)); ictl->mode = mode; ictl->tx_len = mtu; ictl->irq = card->hw.irq; /* indicate timeout on timer */ if (mode & 0x20) ictl->timeout = timeout; mbox->cmd.length = sizeof(fr508_intr_ctl_t); mbox->cmd.command = FR_SET_INTR_MODE; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); return err; } /*============================================================================ * Enable communications. */ static int fr_comm_enable (sdla_t* card) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.command = FR_COMM_ENABLE; mbox->cmd.length = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); return err; } /*============================================================================ * fr_comm_disable * * Warning: This functin is called by the shutdown() procedure. It is void * since dev->priv are has already been deallocated and no * error checking is possible using fr_event() function. */ static void fr_comm_disable (sdla_t* card) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.command = FR_SET_MODEM_STATUS; mbox->cmd.length = 1; mbox->data[0] = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry--); retry = MAX_CMD_RETRY; do { mbox->cmd.command = FR_COMM_DISABLE; mbox->cmd.length = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry--); return; } /*============================================================================ * Get communications error statistics. */ static int fr_get_err_stats (sdla_t* card) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.command = FR_READ_ERROR_STATS; mbox->cmd.length = 0; mbox->cmd.dlci = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); if (!err) { fr_comm_stat_t* stats = (void*)mbox->data; card->wandev.stats.rx_over_errors = stats->rx_overruns; card->wandev.stats.rx_crc_errors = stats->rx_bad_crc; card->wandev.stats.rx_missed_errors = stats->rx_aborts; card->wandev.stats.rx_length_errors = stats->rx_too_long; card->wandev.stats.tx_aborted_errors = stats->tx_aborts; } return err; } /*============================================================================ * Get statistics. */ static int fr_get_stats (sdla_t* card) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.command = FR_READ_STATISTICS; mbox->cmd.length = 0; mbox->cmd.dlci = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); if (!err) { fr_link_stat_t* stats = (void*)mbox->data; card->wandev.stats.rx_frame_errors = stats->rx_bad_format; card->wandev.stats.rx_dropped = stats->rx_dropped + stats->rx_dropped2; } return err; } /*============================================================================ * Add DLCI(s) (Access Node only!). * This routine will perform the ADD_DLCIs command for the specified DLCI. */ static int fr_add_dlci (sdla_t* card, int dlci) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { unsigned short* dlci_list = (void*)mbox->data; mbox->cmd.length = sizeof(short); dlci_list[0] = dlci; mbox->cmd.command = FR_ADD_DLCI; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); return err; } /*============================================================================ * Activate DLCI(s) (Access Node only!). * This routine will perform the ACTIVATE_DLCIs command with a DLCI number. */ static int fr_activate_dlci (sdla_t* card, int dlci) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { unsigned short* dlci_list = (void*)mbox->data; mbox->cmd.length = sizeof(short); dlci_list[0] = dlci; mbox->cmd.command = FR_ACTIVATE_DLCI; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); return err; } /*============================================================================ * Delete DLCI(s) (Access Node only!). * This routine will perform the DELETE_DLCIs command with a DLCI number. */ static int fr_delete_dlci (sdla_t* card, int dlci) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { unsigned short* dlci_list = (void*)mbox->data; mbox->cmd.length = sizeof(short); dlci_list[0] = dlci; mbox->cmd.command = FR_DELETE_DLCI; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); return err; } /*============================================================================ * Issue in-channel signalling frame. */ static int fr_issue_isf (sdla_t* card, int isf) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { mbox->data[0] = isf; mbox->cmd.length = 1; mbox->cmd.command = FR_ISSUE_IS_FRAME; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); return err; } static unsigned int fr_send_hdr (sdla_t*card, int dlci, unsigned int offset) { netdevice_t *dev = find_channel(card,dlci); fr_channel_t *chan; if (!dev || !(chan=dev->priv)) return offset; if (chan->fr_header_len){ sdla_poke(&card->hw, offset, chan->fr_header, chan->fr_header_len); } return offset+chan->fr_header_len; } /*============================================================================ * Send a frame on a selected DLCI. */ static int fr_send_data_header (sdla_t* card, int dlci, unsigned char attr, int len, void *buf, unsigned char hdr_len) { fr_mbox_t* mbox = card->mbox + 0x800; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.dlci = dlci; mbox->cmd.attr = attr; mbox->cmd.length = len+hdr_len; mbox->cmd.command = FR_WRITE; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); if (!err) { fr_tx_buf_ctl_t* frbuf; if(card->hw.type == SDLA_S514) frbuf = (void*)(*(unsigned long*)mbox->data + card->hw.dpmbase); else frbuf = (void*)(*(unsigned long*)mbox->data - FR_MB_VECTOR + card->hw.dpmbase); sdla_poke(&card->hw, fr_send_hdr(card,dlci,frbuf->offset), buf, len); frbuf->flag = 0x01; } return err; } static int fr_send (sdla_t* card, int dlci, unsigned char attr, int len, void *buf) { fr_mbox_t* mbox = card->mbox + 0x800; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.dlci = dlci; mbox->cmd.attr = attr; mbox->cmd.length = len; mbox->cmd.command = FR_WRITE; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); if (!err) { fr_tx_buf_ctl_t* frbuf; if(card->hw.type == SDLA_S514) frbuf = (void*)(*(unsigned long*)mbox->data + card->hw.dpmbase); else frbuf = (void*)(*(unsigned long*)mbox->data - FR_MB_VECTOR + card->hw.dpmbase); sdla_poke(&card->hw, frbuf->offset, buf, len); frbuf->flag = 0x01; } return err; } /****** Firmware Asynchronous Event Handlers ********************************/ /*============================================================================ * Main asyncronous event/error handler. * This routine is called whenever firmware command returns non-zero * return code. * * Return zero if previous command has to be cancelled. */ static int fr_event (sdla_t *card, int event, fr_mbox_t* mbox) { fr508_flags_t* flags = card->flags; char *ptr = &flags->iflag; int i; switch (event) { case FRRES_MODEM_FAILURE: return fr_modem_failure(card, mbox); case FRRES_CHANNEL_DOWN: { netdevice_t *dev; /* Remove all routes from associated DLCI's */ for (dev = card->wandev.dev; dev; dev = *((netdevice_t **)dev->priv)) { fr_channel_t *chan = dev->priv; if (chan->route_flag == ROUTE_ADDED) { chan->route_flag = REMOVE_ROUTE; } if (chan->inarp == INARP_CONFIGURED) { chan->inarp = INARP_REQUEST; } /* If the link becomes disconnected then, * all channels will be disconnected * as well. */ set_chan_state(dev,WAN_DISCONNECTED); } wanpipe_set_state(card, WAN_DISCONNECTED); return 1; } case FRRES_CHANNEL_UP: { netdevice_t *dev; /* FIXME: Only startup devices that are on the list */ for (dev = card->wandev.dev; dev; dev = *((netdevice_t **)dev->priv)) { set_chan_state(dev,WAN_CONNECTED); } wanpipe_set_state(card, WAN_CONNECTED); return 1; } case FRRES_DLCI_CHANGE: return fr_dlci_change(card, mbox); case FRRES_DLCI_MISMATCH: printk(KERN_INFO "%s: DLCI list mismatch!\n", card->devname); return 1; case CMD_TIMEOUT: printk(KERN_ERR "%s: command 0x%02X timed out!\n", card->devname, mbox->cmd.command); printk(KERN_INFO "%s: ID Bytes = ",card->devname); for(i = 0; i < 8; i ++) printk(KERN_INFO "0x%02X ", *(ptr + 0x18 + i)); printk(KERN_INFO "\n"); break; case FRRES_DLCI_INACTIVE: break; case FRRES_CIR_OVERFLOW: break; case FRRES_BUFFER_OVERFLOW: break; default: printk(KERN_INFO "%s: command 0x%02X returned 0x%02X!\n" , card->devname, mbox->cmd.command, event); } return 0; } /*============================================================================ * Handle modem error. * * Return zero if previous command has to be cancelled. */ static int fr_modem_failure (sdla_t *card, fr_mbox_t* mbox) { printk(KERN_INFO "%s: physical link down! (modem error 0x%02X)\n", card->devname, mbox->data[0]); switch (mbox->cmd.command){ case FR_WRITE: case FR_READ: return 0; } return 1; } /*============================================================================ * Handle DLCI status change. * * Return zero if previous command has to be cancelled. */ static int fr_dlci_change (sdla_t *card, fr_mbox_t* mbox) { dlci_status_t* status = (void*)mbox->data; int cnt = mbox->cmd.length / sizeof(dlci_status_t); fr_channel_t *chan; netdevice_t* dev2; for (; cnt; --cnt, ++status) { unsigned short dlci= status->dlci; netdevice_t* dev = find_channel(card, dlci); if (dev == NULL){ printk(KERN_INFO "%s: CPE contains unconfigured DLCI= %d\n", card->devname, dlci); printk(KERN_INFO "%s: unconfigured DLCI %d reported by network\n" , card->devname, dlci); }else{ if (status->state == FR_LINK_INOPER) { printk(KERN_INFO "%s: DLCI %u is inactive!\n", card->devname, dlci); if (dev && is_dev_running(dev)) set_chan_state(dev, WAN_DISCONNECTED); } if (status->state & FR_DLCI_DELETED) { printk(KERN_INFO "%s: DLCI %u has been deleted!\n", card->devname, dlci); if (dev && is_dev_running(dev)){ fr_channel_t *chan = dev->priv; if (chan->route_flag == ROUTE_ADDED) { chan->route_flag = REMOVE_ROUTE; /* The state change will trigger * the fr polling routine */ } if (chan->inarp == INARP_CONFIGURED) { chan->inarp = INARP_REQUEST; } set_chan_state(dev, WAN_DISCONNECTED); } } else if (status->state & FR_DLCI_ACTIVE) { chan = dev->priv; /* This flag is used for configuring specific DLCI(s) when they become active. */ chan->dlci_configured = DLCI_CONFIG_PENDING; set_chan_state(dev, WAN_CONNECTED); } } } for (dev2 =card->wandev.dev; dev2; dev2 = *((netdevice_t **)dev2->priv)){ chan = dev2->priv; if (chan->dlci_configured == DLCI_CONFIG_PENDING) { if (fr_init_dlci(card, chan)){ return 1; } } } return 1; } static int fr_init_dlci (sdla_t *card, fr_channel_t *chan) { fr_dlc_conf_t cfg; memset(&cfg, 0, sizeof(cfg)); if ( chan->cir_status == CIR_DISABLED) { cfg.cir_fwd = cfg.cir_bwd = 16; cfg.bc_fwd = cfg.bc_bwd = 16; cfg.conf_flags = 0x0001; }else if (chan->cir_status == CIR_ENABLED) { cfg.cir_fwd = cfg.cir_bwd = chan->cir; cfg.bc_fwd = cfg.bc_bwd = chan->bc; cfg.be_fwd = cfg.be_bwd = chan->be; cfg.conf_flags = 0x0000; } if (fr_dlci_configure( card, &cfg , chan->dlci)){ printk(KERN_INFO "%s: DLCI Configure failed for %d\n", card->devname, chan->dlci); return 1; } chan->dlci_configured = DLCI_CONFIGURED; /* Read the interface byte mapping into the channel * structure. */ read_DLCI_IB_mapping( card, chan ); return 0; } /******* Miscellaneous ******************************************************/ /*============================================================================ * Update channel state. */ static int update_chan_state (netdevice_t* dev) { fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; int err; do { mbox->cmd.command = FR_LIST_ACTIVE_DLCI; mbox->cmd.length = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); if (!err) { unsigned short* list = (void*)mbox->data; int cnt = mbox->cmd.length / sizeof(short); err=1; for (; cnt; --cnt, ++list) { if (*list == chan->dlci) { set_chan_state(dev, WAN_CONNECTED); /* May 23 2000. NC * When a dlci is added or restarted, * the dlci_int_interface pointer must * be reinitialized. */ if (!chan->dlci_int_interface){ err=fr_init_dlci (card,chan); } break; } } } return err; } /*============================================================================ * Set channel state. */ static void set_chan_state (netdevice_t* dev, int state) { fr_channel_t* chan = dev->priv; sdla_t* card = chan->card; if (chan->common.state != state) { switch (state) { case WAN_CONNECTED: printk(KERN_INFO "%s: Interface %s: DLCI %d connected\n", card->devname, dev->name, chan->dlci); /* If the interface was previoulsy down, * bring it up, since the channel is active */ trigger_fr_poll (dev); trigger_fr_arp (dev); break; case WAN_CONNECTING: printk(KERN_INFO "%s: Interface %s: DLCI %d connecting\n", card->devname, dev->name, chan->dlci); break; case WAN_DISCONNECTED: printk (KERN_INFO "%s: Interface %s: DLCI %d disconnected!\n", card->devname, dev->name, chan->dlci); /* If the interface is up, bring it down, * since the channel is now disconnected */ trigger_fr_poll (dev); break; } chan->common.state = state; } chan->state_tick = jiffies; } /*============================================================================ * Find network device by its channel number. * * We need this critical flag because we change * the dlci_to_dev_map outside the interrupt. * * NOTE: del_if() functions updates this array, it uses * the spin locks to avoid corruption. */ static netdevice_t* find_channel (sdla_t* card, unsigned dlci) { if(dlci > HIGHEST_VALID_DLCI) return NULL; return(card->u.f.dlci_to_dev_map[dlci]); } /*============================================================================ * Check to see if a frame can be sent. If no transmit buffers available, * enable transmit interrupts. * * Return: 1 - Tx buffer(s) available * 0 - no buffers available */ static int is_tx_ready (sdla_t* card, fr_channel_t* chan) { unsigned char sb; if(card->hw.type == SDLA_S514) return 1; sb = inb(card->hw.port); if (sb & 0x02) return 1; return 0; } /*============================================================================ * Convert decimal string to unsigned integer. * If len != 0 then only 'len' characters of the string are converted. */ static unsigned int dec_to_uint (unsigned char* str, int len) { unsigned val; if (!len) len = strlen(str); for (val = 0; len && is_digit(*str); ++str, --len) val = (val * 10) + (*str - (unsigned)'0'); return val; } /*============================================================================= * Store a UDP management packet for later processing. */ static int store_udp_mgmt_pkt(int udp_type, char udp_pkt_src, sdla_t* card, struct sk_buff *skb, int dlci) { int udp_pkt_stored = 0; netdevice_t *dev=find_channel(card,dlci); fr_channel_t *chan; if (!dev || !(chan=dev->priv)) return 1; if(!card->u.f.udp_pkt_lgth && (skb->len <= MAX_LGTH_UDP_MGNT_PKT)){ card->u.f.udp_pkt_lgth = skb->len + chan->fr_header_len; card->u.f.udp_type = udp_type; card->u.f.udp_pkt_src = udp_pkt_src; card->u.f.udp_dlci = dlci; memcpy(card->u.f.udp_pkt_data, skb->data, skb->len); card->u.f.timer_int_enabled |= TMR_INT_ENABLED_UDP; udp_pkt_stored = 1; }else{ printk(KERN_INFO "ERROR: UDP packet not stored for DLCI %d\n", dlci); } if(udp_pkt_src == UDP_PKT_FRM_STACK){ wan_dev_kfree_skb(skb, FREE_WRITE); }else{ wan_dev_kfree_skb(skb, FREE_READ); } return(udp_pkt_stored); } /*============================================================================== * Process UDP call of type FPIPE8ND */ static int process_udp_mgmt_pkt(sdla_t* card) { int c_retry = MAX_CMD_RETRY; unsigned char *buf; unsigned char frames; unsigned int len; unsigned short buffer_length; struct sk_buff *new_skb; fr_mbox_t* mbox = card->mbox; int err; struct timeval tv; int udp_mgmt_req_valid = 1; netdevice_t* dev; fr_channel_t* chan; fr_udp_pkt_t *fr_udp_pkt; unsigned short num_trc_els; fr_trc_el_t* ptr_trc_el; fr_trc_el_t trc_el; fpipemon_trc_t* fpipemon_trc; char udp_pkt_src = card->u.f.udp_pkt_src; int dlci = card->u.f.udp_dlci; /* Find network interface for this packet */ dev = find_channel(card, dlci); if (!dev){ card->u.f.udp_pkt_lgth = 0; return 1; } if ((chan = dev->priv) == NULL){ card->u.f.udp_pkt_lgth = 0; return 1; } /* If the UDP packet is from the network, we are going to have to transmit a response. Before doing so, we must check to see that we are not currently transmitting a frame (in 'if_send()') and that we are not already in a 'delayed transmit' state. */ if(udp_pkt_src == UDP_PKT_FRM_NETWORK) { if (check_tx_status(card,dev)){ card->u.f.udp_pkt_lgth = 0; return 1; } } fr_udp_pkt = (fr_udp_pkt_t *)card->u.f.udp_pkt_data; if(udp_pkt_src == UDP_PKT_FRM_NETWORK) { switch(fr_udp_pkt->cblock.command) { case FR_READ_MODEM_STATUS: case FR_READ_STATUS: case FPIPE_ROUTER_UP_TIME: case FR_READ_ERROR_STATS: case FPIPE_DRIVER_STAT_GEN: case FR_READ_STATISTICS: case FR_READ_ADD_DLC_STATS: case FR_READ_CONFIG: case FR_READ_CODE_VERSION: udp_mgmt_req_valid = 1; break; default: udp_mgmt_req_valid = 0; break; } } if(!udp_mgmt_req_valid) { /* set length to 0 */ fr_udp_pkt->cblock.length = 0; /* set return code */ fr_udp_pkt->cblock.result = 0xCD; chan->drvstats_gen.UDP_PIPE_mgmt_direction_err ++; if (net_ratelimit()){ printk(KERN_INFO "%s: Warning, Illegal UDP command attempted from network: %x\n", card->devname,fr_udp_pkt->cblock.command); } } else { switch(fr_udp_pkt->cblock.command) { case FPIPE_ENABLE_TRACING: if(!card->TracingEnabled) { do { mbox->cmd.command = FR_SET_TRACE_CONFIG; mbox->cmd.length = 1; mbox->cmd.dlci = 0x00; mbox->data[0] = fr_udp_pkt->data[0] | RESET_TRC; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && c_retry-- && fr_event(card, err, mbox)); if(err) { card->TracingEnabled = 0; /* set the return code */ fr_udp_pkt->cblock.result = mbox->cmd.result; mbox->cmd.length = 0; break; } sdla_peek(&card->hw, NO_TRC_ELEMENTS_OFF, &num_trc_els, 2); sdla_peek(&card->hw, BASE_TRC_ELEMENTS_OFF, &card->u.f.trc_el_base, 4); card->u.f.curr_trc_el = card->u.f.trc_el_base; card->u.f.trc_el_last = card->u.f.curr_trc_el + ((num_trc_els - 1) * sizeof(fr_trc_el_t)); /* Calculate the maximum trace data area in */ /* the UDP packet */ card->u.f.trc_bfr_space=(MAX_LGTH_UDP_MGNT_PKT - //sizeof(fr_encap_hdr_t) - sizeof(ip_pkt_t) - sizeof(udp_pkt_t) - sizeof(wp_mgmt_t) - sizeof(cblock_t)); /* set return code */ fr_udp_pkt->cblock.result = 0; } else { /* set return code to line trace already enabled */ fr_udp_pkt->cblock.result = 1; } mbox->cmd.length = 0; card->TracingEnabled = 1; break; case FPIPE_DISABLE_TRACING: if(card->TracingEnabled) { do { mbox->cmd.command = FR_SET_TRACE_CONFIG; mbox->cmd.length = 1; mbox->cmd.dlci = 0x00; mbox->data[0] = ~ACTIVATE_TRC; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && c_retry-- && fr_event(card, err, mbox)); } /* set return code */ fr_udp_pkt->cblock.result = 0; mbox->cmd.length = 0; card->TracingEnabled = 0; break; case FPIPE_GET_TRACE_INFO: /* Line trace cannot be performed on the 502 */ if(!card->TracingEnabled) { /* set return code */ fr_udp_pkt->cblock.result = 1; mbox->cmd.length = 0; break; } (void *)ptr_trc_el = card->u.f.curr_trc_el; buffer_length = 0; fr_udp_pkt->data[0x00] = 0x00; for(frames = 0; frames < MAX_FRMS_TRACED; frames ++) { sdla_peek(&card->hw, (unsigned long)ptr_trc_el, (void *)&trc_el.flag, sizeof(fr_trc_el_t)); if(trc_el.flag == 0x00) { break; } if((card->u.f.trc_bfr_space - buffer_length) < sizeof(fpipemon_trc_hdr_t)) { fr_udp_pkt->data[0x00] |= MORE_TRC_DATA; break; } fpipemon_trc = (fpipemon_trc_t *)&fr_udp_pkt->data[buffer_length]; fpipemon_trc->fpipemon_trc_hdr.status = trc_el.attr; fpipemon_trc->fpipemon_trc_hdr.tmstamp = trc_el.tmstamp; fpipemon_trc->fpipemon_trc_hdr.length = trc_el.length; if(!trc_el.offset || !trc_el.length) { fpipemon_trc->fpipemon_trc_hdr.data_passed = 0x00; }else if((trc_el.length + sizeof(fpipemon_trc_hdr_t) + 1) > (card->u.f.trc_bfr_space - buffer_length)){ fpipemon_trc->fpipemon_trc_hdr.data_passed = 0x00; fr_udp_pkt->data[0x00] |= MORE_TRC_DATA; }else { fpipemon_trc->fpipemon_trc_hdr.data_passed = 0x01; sdla_peek(&card->hw, trc_el.offset, fpipemon_trc->data, trc_el.length); } trc_el.flag = 0x00; sdla_poke(&card->hw, (unsigned long)ptr_trc_el, &trc_el.flag, 1); ptr_trc_el ++; if((void *)ptr_trc_el > card->u.f.trc_el_last) (void*)ptr_trc_el = card->u.f.trc_el_base; buffer_length += sizeof(fpipemon_trc_hdr_t); if(fpipemon_trc->fpipemon_trc_hdr.data_passed) { buffer_length += trc_el.length; } if(fr_udp_pkt->data[0x00] & MORE_TRC_DATA) { break; } } if(frames == MAX_FRMS_TRACED) { fr_udp_pkt->data[0x00] |= MORE_TRC_DATA; } card->u.f.curr_trc_el = (void *)ptr_trc_el; /* set the total number of frames passed */ fr_udp_pkt->data[0x00] |= ((frames << 1) & (MAX_FRMS_TRACED << 1)); /* set the data length and return code */ fr_udp_pkt->cblock.length = mbox->cmd.length = buffer_length; fr_udp_pkt->cblock.result = 0; break; case FPIPE_FT1_READ_STATUS: sdla_peek(&card->hw, 0xF020, &fr_udp_pkt->data[0x00] , 2); fr_udp_pkt->cblock.length = mbox->cmd.length = 2; fr_udp_pkt->cblock.result = 0; break; case FPIPE_FLUSH_DRIVER_STATS: init_chan_statistics(chan); init_global_statistics(card); mbox->cmd.length = 0; break; case FPIPE_ROUTER_UP_TIME: do_gettimeofday(&tv); chan->router_up_time = tv.tv_sec - chan->router_start_time; *(unsigned long *)&fr_udp_pkt->data = chan->router_up_time; mbox->cmd.length = fr_udp_pkt->cblock.length = 4; fr_udp_pkt->cblock.result = 0; break; case FPIPE_DRIVER_STAT_IFSEND: memcpy(fr_udp_pkt->data, &chan->drvstats_if_send.if_send_entry, sizeof(if_send_stat_t)); mbox->cmd.length = fr_udp_pkt->cblock.length =sizeof(if_send_stat_t); fr_udp_pkt->cblock.result = 0; break; case FPIPE_DRIVER_STAT_INTR: memcpy(fr_udp_pkt->data, &card->statistics.isr_entry, sizeof(global_stats_t)); memcpy(&fr_udp_pkt->data[sizeof(global_stats_t)], &chan->drvstats_rx_intr.rx_intr_no_socket, sizeof(rx_intr_stat_t)); mbox->cmd.length = fr_udp_pkt->cblock.length = sizeof(global_stats_t) + sizeof(rx_intr_stat_t); fr_udp_pkt->cblock.result = 0; break; case FPIPE_DRIVER_STAT_GEN: memcpy(fr_udp_pkt->data, &chan->drvstats_gen.UDP_PIPE_mgmt_kmalloc_err, sizeof(pipe_mgmt_stat_t)); memcpy(&fr_udp_pkt->data[sizeof(pipe_mgmt_stat_t)], &card->statistics, sizeof(global_stats_t)); mbox->cmd.length = fr_udp_pkt->cblock.length = sizeof(global_stats_t)+ sizeof(rx_intr_stat_t); fr_udp_pkt->cblock.result = 0; break; case FR_FT1_STATUS_CTRL: if(fr_udp_pkt->data[0] == 1) { if(rCount++ != 0 ){ fr_udp_pkt->cblock.result = 0; mbox->cmd.length = 1; break; } } /* Disable FT1 MONITOR STATUS */ if(fr_udp_pkt->data[0] == 0) { if( --rCount != 0) { fr_udp_pkt->cblock.result = 0; mbox->cmd.length = 1; break; } } goto udp_mgmt_dflt; default: udp_mgmt_dflt: do { memcpy(&mbox->cmd, &fr_udp_pkt->cblock.command, sizeof(fr_cmd_t)); if(mbox->cmd.length) { memcpy(&mbox->data, (char *)fr_udp_pkt->data, mbox->cmd.length); } err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && c_retry-- && fr_event(card, err, mbox)); if(!err) chan->drvstats_gen. UDP_PIPE_mgmt_adptr_cmnd_OK ++; else chan->drvstats_gen. UDP_PIPE_mgmt_adptr_cmnd_timeout ++; /* copy the result back to our buffer */ memcpy(&fr_udp_pkt->cblock.command, &mbox->cmd, sizeof(fr_cmd_t)); if(mbox->cmd.length) { memcpy(&fr_udp_pkt->data, &mbox->data, mbox->cmd.length); } } } /* Fill UDP TTL */ fr_udp_pkt->ip_pkt.ttl = card->wandev.ttl; len = reply_udp(card->u.f.udp_pkt_data, mbox->cmd.length); if(udp_pkt_src == UDP_PKT_FRM_NETWORK) { chan->fr_header_len=2; chan->fr_header[0]=Q922_UI; chan->fr_header[1]=NLPID_IP; err = fr_send_data_header(card, dlci, 0, len, card->u.f.udp_pkt_data,chan->fr_header_len); if (err){ chan->drvstats_gen.UDP_PIPE_mgmt_adptr_send_passed ++; }else{ chan->drvstats_gen.UDP_PIPE_mgmt_adptr_send_failed ++; } } else { /* Allocate socket buffer */ if((new_skb = dev_alloc_skb(len)) != NULL) { /* copy data into new_skb */ buf = skb_put(new_skb, len); memcpy(buf, card->u.f.udp_pkt_data, len); chan->drvstats_gen. UDP_PIPE_mgmt_passed_to_stack ++; new_skb->dev = dev; new_skb->protocol = htons(ETH_P_IP); new_skb->mac.raw = new_skb->data; netif_rx(new_skb); } else { chan->drvstats_gen.UDP_PIPE_mgmt_no_socket ++; printk(KERN_INFO "%s: UDP mgmt cmnd, no socket buffers available!\n", card->devname); } } card->u.f.udp_pkt_lgth = 0; return 1; } /*============================================================================== * Send Inverse ARP Request */ int send_inarp_request(sdla_t *card, netdevice_t *dev) { int err=0; #if defined(LINUX_2_1) || defined(LINUX_2_4) arphdr_1490_t *ArpPacket; arphdr_fr_t *arphdr; fr_channel_t *chan = dev->priv; struct in_device *in_dev; in_dev = dev->ip_ptr; if(in_dev != NULL ) { ArpPacket = kmalloc(sizeof(arphdr_1490_t) + sizeof(arphdr_fr_t), GFP_ATOMIC); /* SNAP Header indicating ARP */ ArpPacket->control = 0x03; ArpPacket->pad = 0x00; ArpPacket->NLPID = 0x80; ArpPacket->OUI[0] = 0; ArpPacket->OUI[1] = 0; ArpPacket->OUI[2] = 0; ArpPacket->PID = 0x0608; arphdr = (arphdr_fr_t *)(ArpPacket + 1); // Go to ARP Packet /* InARP request */ arphdr->ar_hrd = 0x0F00; /* Frame Relay HW type */ arphdr->ar_pro = 0x0008; /* IP Protocol */ arphdr->ar_hln = 2; /* HW addr length */ arphdr->ar_pln = 4; /* IP addr length */ arphdr->ar_op = htons(0x08); /* InARP Request */ arphdr->ar_sha = 0; /* src HW DLCI - Doesn't matter */ if(in_dev->ifa_list != NULL) arphdr->ar_sip = in_dev->ifa_list->ifa_local; /* Local Address */else arphdr->ar_sip = 0; arphdr->ar_tha = 0; /* dst HW DLCI - Doesn't matter */ arphdr->ar_tip = 0; /* Remote Address -- what we want */ err = fr_send(card, chan->dlci, 0, sizeof(arphdr_1490_t) + sizeof(arphdr_fr_t), (void *)ArpPacket); if (!err){ printk(KERN_INFO "\n%s: Sending InARP request on DLCI %d.\n", card->devname, chan->dlci); clear_bit(ARP_CRIT,&card->wandev.critical); } kfree(ArpPacket); }else{ printk(KERN_INFO "%s: INARP ERROR: %s doesn't have a local IP address!\n", card->devname,dev->name); return 1; } #else arphdr_1490_t *ArpPacket; arphdr_fr_t *arphdr; fr_channel_t *chan = dev->priv; ArpPacket = kmalloc(sizeof(arphdr_1490_t) + sizeof(arphdr_fr_t), GFP_ATOMIC); /* SNAP Header indicating ARP */ ArpPacket->control = 0x03; ArpPacket->pad = 0x00; ArpPacket->NLPID = 0x80; ArpPacket->OUI[0] = 0; ArpPacket->OUI[1] = 0; ArpPacket->OUI[2] = 0; ArpPacket->PID = 0x0608; arphdr = (arphdr_fr_t *)(ArpPacket + 1); // Go to ARP Packet /* InARP request */ arphdr->ar_hrd = 0x0F00; /* Frame Relay HW type */ arphdr->ar_pro = 0x0008; /* IP Protocol */ arphdr->ar_hln = 2; /* HW addr length */ arphdr->ar_pln = 4; /* IP addr length */ arphdr->ar_op = htons(0x08); /* InARP Request */ arphdr->ar_sha = 0; /* src HW DLCI - Doesn't matter */ arphdr->ar_sip = dev->pa_addr; /* Local Address */ arphdr->ar_tha = 0; /* dst HW DLCI - Doesn't matter */ arphdr->ar_tip = 0; /* Remote Address -- what we want */ printk(KERN_INFO "%s: Sending InARP request on DLCI %d.\n", card->devname, chan->dlci); err = fr_send(card, chan->dlci, 0, sizeof(arphdr_1490_t) + sizeof(arphdr_fr_t), (void *)ArpPacket); if (!err){ printk(KERN_INFO "\n%s: Sending InARP request on DLCI %d.\n", card->devname, chan->dlci); clear_bit(ARP_CRIT,&card->wandev.critical); } kfree(ArpPacket); #endif return 0; } /*============================================================================== * Check packet for ARP Type */ int is_arp(void *buf) { arphdr_1490_t *arphdr = (arphdr_1490_t *)buf; if (arphdr->pad == 0x00 && arphdr->NLPID == 0x80 && arphdr->PID == 0x0608) return 1; else return 0; } /*============================================================================== * Process ARP Packet Type */ int process_ARP(arphdr_1490_t *ArpPacket, sdla_t *card, netdevice_t* dev) { #if defined(LINUX_2_1) || defined(LINUX_2_4) arphdr_fr_t *arphdr = (arphdr_fr_t *)(ArpPacket + 1); /* Skip header */ fr_rx_buf_ctl_t* frbuf = card->rxmb; struct in_device *in_dev; fr_channel_t *chan = dev->priv; #else arphdr_fr_t *arphdr = (arphdr_fr_t *)(ArpPacket + 1); /* Skip header */ fr_rx_buf_ctl_t* frbuf = card->rxmb; #endif /* Before we transmit ARP packet, we must check * to see that we are not currently transmitting a * frame (in 'if_send()') and that we are not * already in a 'delayed transmit' state. */ if (check_tx_status(card,dev)){ if (net_ratelimit()){ printk(KERN_INFO "%s: Disabling comminication to process ARP\n", card->devname); } set_bit(ARP_CRIT,&card->wandev.critical); return 0; } #if defined(LINUX_2_1) || defined(LINUX_2_4) in_dev = dev->ip_ptr; /* Check that IP addresses exist for our network address */ if (in_dev == NULL || in_dev->ifa_list == NULL) return -1; switch (ntohs(arphdr->ar_op)) { case 0x08: // Inverse ARP request -- Send Reply, add route. /* Check for valid Address */ printk(KERN_INFO "%s: Recvd PtP addr -InArp Req: %s\n", card->devname, in_ntoa(arphdr->ar_sip)); /* Check that the network address is the same as ours, only * if the netowrk mask is not 255.255.255.255. Otherwise * this check would not make sense */ if (in_dev->ifa_list->ifa_mask != 0xFFFFFFFF && (in_dev->ifa_list->ifa_mask & arphdr->ar_sip) != (in_dev->ifa_list->ifa_mask & in_dev->ifa_list->ifa_local)){ printk(KERN_INFO "%s: Invalid PtP address. %s InARP ignored.\n", card->devname,in_ntoa(arphdr->ar_sip)); printk(KERN_INFO "%s: mask %s\n", card->devname, in_ntoa(in_dev->ifa_list->ifa_mask)); printk(KERN_INFO "%s: local %s\n", card->devname,in_ntoa(in_dev->ifa_list->ifa_local)); return -1; } if (in_dev->ifa_list->ifa_local == arphdr->ar_sip){ printk(KERN_INFO "%s: Local addr = PtP addr. InARP ignored.\n", card->devname); return -1; } arphdr->ar_op = htons(0x09); /* InARP Reply */ /* Set addresses */ arphdr->ar_tip = arphdr->ar_sip; arphdr->ar_sip = in_dev->ifa_list->ifa_local; chan->ip_local = in_dev->ifa_list->ifa_local; chan->ip_remote = arphdr->ar_sip; fr_send(card, frbuf->dlci, 0, frbuf->length, (void *)ArpPacket); if (test_bit(ARP_CRIT,&card->wandev.critical)){ if (net_ratelimit()){ printk(KERN_INFO "%s: ARP Processed Enabling Communication!\n", card->devname); } } clear_bit(ARP_CRIT,&card->wandev.critical); chan->ip_local = in_dev->ifa_list->ifa_local; chan->ip_remote = arphdr->ar_sip; /* Add Route Flag */ /* The route will be added in the polling routine so that it is not interrupt context. */ chan->route_flag = ADD_ROUTE; trigger_fr_poll (dev); break; case 0x09: // Inverse ARP reply /* Check for valid Address */ printk(KERN_INFO "%s: Recvd PtP addr %s -InArp Reply\n", card->devname, in_ntoa(arphdr->ar_sip)); /* Compare network addresses, only if network mask * is not 255.255.255.255 It would not make sense * to perform this test if the mask was all 1's */ if (in_dev->ifa_list->ifa_mask != 0xffffffff && (in_dev->ifa_list->ifa_mask & arphdr->ar_sip) != (in_dev->ifa_list->ifa_mask & in_dev->ifa_list->ifa_local)) { printk(KERN_INFO "%s: Invalid PtP address. InARP ignored.\n", card->devname); return -1; } /* Make sure that the received IP address is not * the same as our own local address */ if (in_dev->ifa_list->ifa_local == arphdr->ar_sip) { printk(KERN_INFO "%s: Local addr = PtP addr. InARP ignored.\n", card->devname); return -1; } chan->ip_local = in_dev->ifa_list->ifa_local; chan->ip_remote = arphdr->ar_sip; /* Add Route Flag */ /* The route will be added in the polling routine so that it is not interrupt context. */ chan->route_flag = ADD_ROUTE; chan->inarp = INARP_CONFIGURED; trigger_fr_poll(dev); break; default: break; // ARP's and RARP's -- Shouldn't happen. } return 0; #else switch (ntohs(arphdr->ar_op)) { case 0x08: // Inverse ARP request -- Send Reply, add route. /* Check for valid Address */ printk(KERN_INFO "%s: Recvd PtP addr %s -InArp Req\n", ((fr_channel_t *)dev->priv)->name, in_ntoa(arphdr->ar_sip)); if (dev->pa_mask != 0xFFFFFFFF){ if ((dev->pa_mask & arphdr->ar_sip) != (dev->pa_mask & dev->pa_addr)) { printk(KERN_INFO "%s: Invalid PtP address. InARP ignored.\n", card->devname); return -1; } } if (dev->pa_addr == arphdr->ar_sip) { printk(KERN_INFO "%s: Local addr = PtP addr. InARP ignored.\n", card->devname); return -1; } arphdr->ar_op = htons(0x09); /* InARP Reply */ /* Set addresses */ arphdr->ar_tip = arphdr->ar_sip; arphdr->ar_sip = dev->pa_addr; fr_send(card, frbuf->dlci, 0, frbuf->length, (void *)ArpPacket); clear_bit(ARP_CRIT,&card->wandev.critical); /* Modify Point-to-Point Address */ dev->pa_dstaddr = arphdr->ar_tip; /* Add Route Flag */ /* The route will be added in the polling routine so that it is not interrupt context. */ ((fr_channel_t *) dev->priv)->route_flag = ADD_ROUTE; trigger_fr_poll(dev); break; case 0x09: // Inverse ARP reply /* Check for valid Address */ printk(KERN_INFO "%s: Recvd PtP addr %s -InArp Reply\n", ((fr_channel_t *)dev->priv)->name, in_ntoa(arphdr->ar_sip)); if ((dev->pa_mask & arphdr->ar_sip) != (dev->pa_mask & dev->pa_addr)) { printk(KERN_INFO "%s: Invalid PtP address. InARP ignored.\n", card->devname); return -1; } if (dev->pa_addr == arphdr->ar_sip) { printk(KERN_INFO "%s: Local addr = PtP addr. InARP ignored.\n", card->devname); return -1; } /* Modify Point-to-Point Address */ dev->pa_dstaddr = arphdr->ar_sip; /* Add Route Flag */ /* The route will be added in the polling routine so that it is not interrupt context. */ ((fr_channel_t *) dev->priv)->route_flag = ADD_ROUTE; ((fr_channel_t *) dev->priv)->inarp = INARP_CONFIGURED; trigger_fr_poll(dev); break; default: // ARP's and RARP's -- Shouldn't happen. } return 0; #endif } /*============================================================ * trigger_fr_arp * * Description: * Add an fr_arp() task into a arp * timer handler for a specific dlci/interface. * This will kick the fr_arp() routine * within the specified time interval. * * Usage: * This timer is used to send ARP requests at * certain time intervals. * Called by an interrupt to request an action * at a later date. */ static void trigger_fr_arp (netdevice_t *dev) { fr_channel_t* chan = dev->priv; del_timer(&chan->fr_arp_timer); chan->fr_arp_timer.expires = jiffies + (chan->inarp_interval * HZ); add_timer(&chan->fr_arp_timer); return; } /*============================================================================== * ARP Request Action * * This funciton is called by timer interrupt to send an arp request * to the remote end. */ static void fr_arp (unsigned long data) { netdevice_t *dev = (netdevice_t *)data; fr_channel_t *chan = dev->priv; volatile sdla_t *card = chan->card; fr508_flags_t* flags = card->flags; /* Send ARP packets for all devs' until * ARP state changes to CONFIGURED */ if (chan->inarp == INARP_REQUEST && chan->common.state == WAN_CONNECTED && card->wandev.state == WAN_CONNECTED){ set_bit(0,&chan->inarp_ready); card->u.f.timer_int_enabled |= TMR_INT_ENABLED_ARP; flags->imask |= FR_INTR_TIMER; } return; } /*============================================================================== * Perform the Interrupt Test by running the READ_CODE_VERSION command MAX_INTR_ * TEST_COUNTER times. */ static int intr_test( sdla_t* card ) { fr_mbox_t* mb = card->mbox; int err,i; err = fr_set_intr_mode(card, FR_INTR_READY, card->wandev.mtu, 0 ); if (err == CMD_OK) { for ( i = 0; i < MAX_INTR_TEST_COUNTER; i++ ) { /* Run command READ_CODE_VERSION */ mb->cmd.length = 0; mb->cmd.command = FR_READ_CODE_VERSION; err = sdla_exec(mb) ? mb->cmd.result : CMD_TIMEOUT; if (err != CMD_OK) fr_event(card, err, mb); } } else { return err; } err = fr_set_intr_mode( card, 0, card->wandev.mtu, 0 ); if( err != CMD_OK ) return err; return 0; } /*============================================================================== * Determine what type of UDP call it is. FPIPE8ND ? */ static int udp_pkt_type( struct sk_buff *skb, sdla_t* card ) { fr_udp_pkt_t *fr_udp_pkt = (fr_udp_pkt_t *)skb->data; /* Quick HACK */ if((fr_udp_pkt->ip_pkt.protocol == UDPMGMT_UDP_PROTOCOL) && (fr_udp_pkt->ip_pkt.ver_inet_hdr_length == 0x45) && (fr_udp_pkt->udp_pkt.udp_dst_port == ntohs(card->wandev.udp_port)) && (fr_udp_pkt->wp_mgmt.request_reply == UDPMGMT_REQUEST)) { if(!strncmp(fr_udp_pkt->wp_mgmt.signature, UDPMGMT_FPIPE_SIGNATURE, 8)){ return UDP_FPIPE_TYPE; } } return UDP_INVALID_TYPE; } /*============================================================================== * Initializes the Statistics values in the fr_channel structure. */ void init_chan_statistics( fr_channel_t* chan) { memset(&chan->drvstats_if_send.if_send_entry, 0, sizeof(if_send_stat_t)); memset(&chan->drvstats_rx_intr.rx_intr_no_socket, 0, sizeof(rx_intr_stat_t)); memset(&chan->drvstats_gen.UDP_PIPE_mgmt_kmalloc_err, 0, sizeof(pipe_mgmt_stat_t)); } /*============================================================================== * Initializes the Statistics values in the Sdla_t structure. */ void init_global_statistics( sdla_t* card ) { /* Intialize global statistics for a card */ memset(&card->statistics.isr_entry, 0, sizeof(global_stats_t)); } static void read_DLCI_IB_mapping( sdla_t* card, fr_channel_t* chan ) { fr_mbox_t* mbox = card->mbox; int retry = MAX_CMD_RETRY; dlci_IB_mapping_t* result; int err, counter, found; do { mbox->cmd.command = FR_READ_DLCI_IB_MAPPING; mbox->cmd.length = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; } while (err && retry-- && fr_event(card, err, mbox)); if( mbox->cmd.result != 0){ printk(KERN_INFO "%s: Read DLCI IB Mapping failed\n", chan->name); } counter = mbox->cmd.length / sizeof(dlci_IB_mapping_t); result = (void *)mbox->data; found = 0; for (; counter; --counter, ++result) { if ( result->dlci == chan->dlci ) { chan->IB_addr = result->addr_value; if(card->hw.type == SDLA_S514){ chan->dlci_int_interface = (void*)(card->hw.dpmbase + chan->IB_addr); }else{ chan->dlci_int_interface = (void*)(card->hw.dpmbase + (chan->IB_addr & 0x00001FFF)); } found = 1; break; } } if (!found) printk( KERN_INFO "%s: DLCI %d not found by IB MAPPING cmd\n", card->devname, chan->dlci); } void s508_s514_lock(sdla_t *card, unsigned long *smp_flags) { if (card->hw.type != SDLA_S514){ #if defined(__SMP__) || defined(LINUX_2_4) spin_lock_irqsave(&card->wandev.lock, *smp_flags); #else disable_irq(card->hw.irq); #endif }else{ #if defined(__SMP__) || defined(LINUX_2_4) spin_lock(&card->u.f.if_send_lock); #endif } return; } void s508_s514_unlock(sdla_t *card, unsigned long *smp_flags) { if (card->hw.type != SDLA_S514){ #if defined(__SMP__) || defined(LINUX_2_4) spin_unlock_irqrestore (&card->wandev.lock, *smp_flags); #else enable_irq(card->hw.irq); #endif }else{ #if defined(__SMP__) || defined(LINUX_2_4) spin_unlock(&card->u.f.if_send_lock); #endif } return; } #if defined(LINUX_2_1) || defined(LINUX_2_4) /*---------------------------------------------------------------------- RECEIVE INTERRUPT: BOTTOM HALF HANDLERS ----------------------------------------------------------------------*/ /*======================================================== * bh_enqueue * * Description: * Insert a received packed into a circular * rx queue. This packed will be picked up * by fr_bh() and sent up the stack to the * user. * * Usage: * This function is called by rx interrupt, * in API mode. * */ static int bh_enqueue (netdevice_t *dev, struct sk_buff *skb) { /* Check for full */ fr_channel_t* chan = dev->priv; sdla_t *card = chan->card; if (atomic_read(&chan->bh_buff_used) == MAX_BH_BUFF){ ++card->wandev.stats.rx_dropped; wan_dev_kfree_skb(skb, FREE_READ); return 1; } ((bh_data_t *)&chan->bh_head[chan->bh_write])->skb = skb; if (chan->bh_write == (MAX_BH_BUFF-1)){ chan->bh_write=0; }else{ ++chan->bh_write; } atomic_inc(&chan->bh_buff_used); return 0; } /*======================================================== * trigger_fr_bh * * Description: * Kick the fr_bh() handler * * Usage: * rx interrupt calls this function during * the API mode. */ static void trigger_fr_bh (fr_channel_t *chan) { if (!test_and_set_bit(0,&chan->tq_working)){ wanpipe_queue_tq(&chan->common.wanpipe_task); wanpipe_mark_bh(); } } /*======================================================== * fr_bh * * Description: * Frame relay receive BH handler. * Dequeue data from the BH circular * buffer and pass it up the API sock. * * Rationale: * This fuction is used to offload the * rx_interrupt during API operation mode. * The fr_bh() function executes for each * dlci/interface. * * Once receive interrupt copies data from the * card into an skb buffer, the skb buffer * is appended to a circular BH buffer. * Then the interrupt kicks fr_bh() to finish the * job at a later time (no within the interrupt). * * Usage: * Interrupts use this to defer a taks to * a polling routine. * */ static void fr_bh (netdevice_t * dev) { fr_channel_t* chan = dev->priv; sdla_t *card = chan->card; struct sk_buff *skb; if (atomic_read(&chan->bh_buff_used) == 0){ clear_bit(0, &chan->tq_working); return; } while (atomic_read(&chan->bh_buff_used)){ if (chan->common.sk == NULL || chan->common.func == NULL){ clear_bit(0, &chan->tq_working); return; } skb = ((bh_data_t *)&chan->bh_head[chan->bh_read])->skb; if (skb != NULL){ if (chan->common.sk == NULL || chan->common.func == NULL){ ++card->wandev.stats.rx_dropped; ++chan->ifstats.rx_dropped; wan_dev_kfree_skb(skb, FREE_READ); fr_bh_cleanup(dev); continue; } if (chan->common.func(skb,dev,chan->common.sk) != 0){ /* Sock full cannot send, queue us for * another try */ atomic_set(&chan->common.receive_block,1); return; }else{ fr_bh_cleanup(dev); } }else{ fr_bh_cleanup(dev); } } clear_bit(0, &chan->tq_working); return; } static int fr_bh_cleanup (netdevice_t *dev) { fr_channel_t* chan = dev->priv; ((bh_data_t *)&chan->bh_head[chan->bh_read])->skb = NULL; if (chan->bh_read == (MAX_BH_BUFF-1)){ chan->bh_read=0; }else{ ++chan->bh_read; } atomic_dec(&chan->bh_buff_used); return 0; } #endif /*---------------------------------------------------------------------- POLL BH HANDLERS AND KICK ROUTINES ----------------------------------------------------------------------*/ /*============================================================ * trigger_fr_poll * * Description: * Add a fr_poll() task into a tq_scheduler bh handler * for a specific dlci/interface. This will kick * the fr_poll() routine at a later time. * * Usage: * Interrupts use this to defer a taks to * a polling routine. * */ static void trigger_fr_poll (netdevice_t *dev) { fr_channel_t* chan = dev->priv; #ifdef LINUX_2_4 schedule_task(&chan->fr_poll_task); #else queue_task(&chan->fr_poll_task, &tq_scheduler); #endif return; } /*============================================================ * fr_poll * * Rationale: * We cannot manipulate the routing tables, or * ip addresses withing the interrupt. Therefore * we must perform such actons outside an interrupt * at a later time. * * Description: * Frame relay polling routine, responsible for * shutting down interfaces upon disconnect * and adding/removing routes. * * Usage: * This function is executed for each frame relay * dlci/interface through a tq_schedule bottom half. * * trigger_fr_poll() function is used to kick * the fr_poll routine. */ static void fr_poll (netdevice_t *dev) { fr_channel_t* chan; sdla_t *card; u8 check_gateway=0; if (!dev || (chan = dev->priv) == NULL) return; card = chan->card; /* (Re)Configuraiton is in progress, stop what you are * doing and get out */ if (test_bit(PERI_CRIT,&card->wandev.critical)){ return; } switch (chan->common.state){ case WAN_DISCONNECTED: if (test_bit(DYN_OPT_ON,&chan->interface_down) && !test_bit(DEV_DOWN, &chan->interface_down) && dev->flags&IFF_UP){ printk(KERN_INFO "%s: Interface %s is Down.\n", card->devname,dev->name); change_dev_flags(dev,dev->flags&~IFF_UP); set_bit(DEV_DOWN, &chan->interface_down); chan->route_flag = NO_ROUTE; }else{ if (chan->inarp != INARP_NONE) process_route(dev); } break; case WAN_CONNECTED: if (test_bit(DYN_OPT_ON,&chan->interface_down) && test_bit(DEV_DOWN, &chan->interface_down) && !(dev->flags&IFF_UP)){ printk(KERN_INFO "%s: Interface %s is Up.\n", card->devname,dev->name); change_dev_flags(dev,dev->flags|IFF_UP); clear_bit(DEV_DOWN, &chan->interface_down); check_gateway=1; } if (chan->inarp != INARP_NONE){ process_route(dev); check_gateway=1; } if (chan->gateway && check_gateway) add_gateway(card,dev); break; } return; } /*============================================================== * check_tx_status * * Rationale: * We cannot transmit from an interrupt while * the if_send is transmitting data. Therefore, * we must check whether the tx buffers are * begin used, before we transmit from an * interrupt. * * Description: * Checks whether it's safe to use the transmit * buffers. * * Usage: * ARP and UDP handling routines use this function * because, they need to transmit data during * an interrupt. */ static int check_tx_status(sdla_t *card, netdevice_t *dev) { if (card->hw.type == SDLA_S514){ if (test_bit(SEND_CRIT, (void*)&card->wandev.critical) || test_bit(SEND_TXIRQ_CRIT, (void*)&card->wandev.critical)) { return 1; } } if (is_queue_stopped(dev) || (card->u.f.tx_interrupts_pending)) return 1; return 0; } /*=============================================================== * move_dev_to_next * * Description: * Move the dev pointer to the next location in the * link list. Check if we are at the end of the * list, if so start from the begining. * * Usage: * Timer interrupt uses this function to efficiently * step through the devices that need to send ARP data. * */ netdevice_t * move_dev_to_next (sdla_t *card, netdevice_t *dev) { if (card->wandev.new_if_cnt != 1){ if (*((netdevice_t **)dev->priv) == NULL){ return card->wandev.dev; }else{ return *((netdevice_t **)dev->priv); } } return dev; } /*============================================================== * trigger_config_fr * * Rationale: * All commands must be performed inside of a * interrupt. * * Description: * Kick the config_fr() routine throught the * timer interrupt. */ static void trigger_config_fr (sdla_t *card) { fr508_flags_t* flags = card->flags; card->u.f.timer_int_enabled |= TMR_INT_ENABLED_CONFIG; flags->imask |= FR_INTR_TIMER; } /*============================================================== * config_fr * * Rationale: * All commands must be performed inside of a * interrupt. & * Description: * Configure a DLCI. This function is executed * by a timer_interrupt. The if_open() function * triggers it. * * Usage: * new_if() collects all data necessary to * configure the DLCI. It sets the chan->dlci_ready * bit. When the if_open() function is executed * it checks this bit, and if its set it triggers * the timer interrupt to execute the config_fr() * function. */ static void config_fr (sdla_t *card) { netdevice_t *dev; fr_channel_t *chan; for (dev=card->wandev.dev; dev; dev=*((netdevice_t **)dev->priv)){ if ((chan=dev->priv) == NULL) continue; if (!test_bit(0,&chan->config_dlci)) continue; clear_bit(0,&chan->config_dlci); /* If signalling is set to NO, then setup * DLCI addresses right away. Don't have to wait for * link to connect. */ if (card->wandev.signalling == WANOPT_NO){ printk(KERN_INFO "%s: Signalling set to NO: Mapping DLCI's\n", card->wandev.name); if (fr_init_dlci(card,chan)){ printk(KERN_INFO "%s: ERROR: Failed to configure DLCI %i !\n", card->devname, chan->dlci); return; } } if (card->wandev.station == WANOPT_CPE) { update_chan_state(dev); /* CPE: issue full status enquiry */ fr_issue_isf(card, FR_ISF_FSE); } else { /* FR switch: activate DLCI(s) */ /* For Switch emulation we have to ADD and ACTIVATE * the DLCI(s) that were configured with the SET_DLCI_ * CONFIGURATION command. Add and Activate will fail if * DLCI specified is not included in the list. * * Also If_open is called once for each interface. But * it does not get in here for all the interface. So * we have to pass the entire list of DLCI(s) to add * activate routines. */ if (!check_dlci_config (card, chan)){ fr_add_dlci(card, chan->dlci); fr_activate_dlci(card, chan->dlci); } } card->u.f.dlci_to_dev_map[chan->dlci] = dev; } return; } /*============================================================== * config_fr * * Rationale: * All commands must be executed during an interrupt. * * Description: * Trigger uncofig_fr() function through * the timer interrupt. * */ static void trigger_unconfig_fr (netdevice_t *dev) { fr_channel_t *chan = dev->priv; volatile sdla_t *card = chan->card; u32 timeout; fr508_flags_t* flags = card->flags; int reset_critical=0; if (test_bit(PERI_CRIT,(void*)&card->wandev.critical)){ clear_bit(PERI_CRIT,(void*)&card->wandev.critical); reset_critical=1; } /* run unconfig_dlci() function * throught the timer interrupt */ set_bit(0,(void*)&chan->unconfig_dlci); card->u.f.timer_int_enabled |= TMR_INT_ENABLED_UNCONFIG; flags->imask |= FR_INTR_TIMER; /* Wait for the command to complete */ timeout = jiffies; for(;;) { if(!(card->u.f.timer_int_enabled & TMR_INT_ENABLED_UNCONFIG)) break; if ((jiffies - timeout) > (1 * HZ)){ card->u.f.timer_int_enabled &= ~TMR_INT_ENABLED_UNCONFIG; printk(KERN_INFO "%s: Failed to delete DLCI %i\n", card->devname,chan->dlci); break; } } if (reset_critical){ set_bit(PERI_CRIT,(void*)&card->wandev.critical); } } /*============================================================== * unconfig_fr * * Rationale: * All commands must be executed during an interrupt. * * Description: * Remove the dlci from firmware. * This funciton is used in NODE shutdown. */ static void unconfig_fr (sdla_t *card) { netdevice_t *dev; fr_channel_t *chan; for (dev=card->wandev.dev; dev; dev=*((netdevice_t **)dev->priv)){ if ((chan=dev->priv) == NULL) continue; if (!test_bit(0,&chan->unconfig_dlci)) continue; clear_bit(0,&chan->unconfig_dlci); if (card->wandev.station == WANOPT_NODE){ printk(KERN_INFO "%s: Unconfiguring DLCI %i\n", card->devname,chan->dlci); fr_delete_dlci(card,chan->dlci); } card->u.f.dlci_to_dev_map[chan->dlci] = NULL; } } static int setup_fr_header(struct sk_buff ** skb_orig, netdevice_t* dev, char op_mode) { struct sk_buff *skb = *skb_orig; fr_channel_t *chan=dev->priv; if (op_mode == WANPIPE){ chan->fr_header[0]=Q922_UI; switch (htons(skb->protocol)){ case ETH_P_IP: chan->fr_header[1]=NLPID_IP; break; default: return -EINVAL; } return 2; } /* If we are in bridging mode, we must apply * an Ethernet header */ if (op_mode == BRIDGE || op_mode == BRIDGE_NODE){ #if defined(LINUX_2_1) || defined(LINUX_2_4) /* Encapsulate the packet as a bridged Ethernet frame. */ #ifdef DEBUG printk(KERN_INFO "%s: encapsulating skb for frame relay\n", dev->name); #endif chan->fr_header[0] = 0x03; chan->fr_header[1] = 0x00; chan->fr_header[2] = 0x80; chan->fr_header[3] = 0x00; chan->fr_header[4] = 0x80; chan->fr_header[5] = 0xC2; chan->fr_header[6] = 0x00; chan->fr_header[7] = 0x07; /* Yuck. */ skb->protocol = ETH_P_802_3; return 8; #else /* BRIDGING is not supported in 2.0.X */ return -EINVAL; #endif } return 0; } static int check_dlci_config (sdla_t *card, fr_channel_t *chan) { fr_mbox_t* mbox = card->mbox; int err=0; fr_conf_t *conf=NULL; unsigned short dlci_num = chan->dlci; int dlci_offset=0; netdevice_t *dev=NULL; mbox->cmd.command = FR_READ_CONFIG; mbox->cmd.length = 0; mbox->cmd.dlci = dlci_num; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; if (err == CMD_OK){ return 0; } for (dev=card->wandev.dev; dev; dev=*((netdevice_t**)dev->priv)){ set_chan_state(dev,WAN_DISCONNECTED); } printk(KERN_INFO "DLCI %i Not configured, configuring\n",dlci_num); mbox->cmd.command = FR_COMM_DISABLE; mbox->cmd.length = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; if (err != CMD_OK){ fr_event(card, err, mbox); return 2; } printk(KERN_INFO "Disabled Communications \n"); mbox->cmd.command = FR_READ_CONFIG; mbox->cmd.length = 0; mbox->cmd.dlci = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; if (err != CMD_OK){ fr_event(card, err, mbox); return 2; } conf = (fr_conf_t *)mbox->data; dlci_offset=0; for (dev=card->wandev.dev; dev; dev=*((netdevice_t**)dev->priv)){ fr_channel_t *chan_tmp = dev->priv; conf->dlci[dlci_offset] = chan_tmp->dlci; dlci_offset++; } printk(KERN_INFO "Got Fr configuration Buffer Length is %x Dlci %i Dlci Off %i\n", mbox->cmd.length, mbox->cmd.length > 0x20 ? conf->dlci[0] : -1, dlci_offset ); mbox->cmd.length = 0x20 + dlci_offset*2; mbox->cmd.command = FR_SET_CONFIG; mbox->cmd.dlci = 0; err = sdla_exec(mbox) ? mbox->cmd.result : CMD_TIMEOUT; if (err != CMD_OK){ fr_event(card, err, mbox); return 2; } initialize_rx_tx_buffers (card); printk(KERN_INFO "Configuraiton Succeded for new DLCI %i\n",dlci_num); if (fr_comm_enable (card)){ return 2; } printk(KERN_INFO "Enabling Communications \n"); for (dev=card->wandev.dev; dev; dev=*((netdevice_t**)dev->priv)){ fr_channel_t *chan_tmp = dev->priv; fr_init_dlci(card,chan_tmp); fr_add_dlci(card, chan_tmp->dlci); fr_activate_dlci(card, chan_tmp->dlci); } printk(KERN_INFO "END OF CONFIGURAITON %i\n",dlci_num); return 1; } static void initialize_rx_tx_buffers (sdla_t *card) { fr_buf_info_t* buf_info; if (card->hw.type == SDLA_S514) { buf_info = (void*)(card->hw.dpmbase + FR_MB_VECTOR + FR508_RXBC_OFFS); card->rxmb = (void*)(buf_info->rse_next + card->hw.dpmbase); card->u.f.rxmb_base = (void*)(buf_info->rse_base + card->hw.dpmbase); card->u.f.rxmb_last = (void*)(buf_info->rse_base + (buf_info->rse_num - 1) * sizeof(fr_rx_buf_ctl_t) + card->hw.dpmbase); }else{ buf_info = (void*)(card->hw.dpmbase + FR508_RXBC_OFFS); card->rxmb = (void*)(buf_info->rse_next - FR_MB_VECTOR + card->hw.dpmbase); card->u.f.rxmb_base = (void*)(buf_info->rse_base - FR_MB_VECTOR + card->hw.dpmbase); card->u.f.rxmb_last = (void*)(buf_info->rse_base + (buf_info->rse_num - 1) * sizeof(fr_rx_buf_ctl_t) - FR_MB_VECTOR + card->hw.dpmbase); } card->u.f.rx_base = buf_info->buf_base; card->u.f.rx_top = buf_info->buf_top; card->u.f.tx_interrupts_pending = 0; return; } MODULE_LICENSE("GPL"); /****** End *****************************************************************/