%% -*-bibtex-*- @STRING{tugboat = {TUGboat} } @STRING{beiprogramm = {{\TeX}-Beiprogramm} } @STRING{bretter = {Bretter, die die Welt bedeuten} } @STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } @STRING{editorial = {Editorial} } @STRING{fremdebuehne = {Von fremden B{\"u}hnen} } @STRING{fundus = {Aus dem Fundus} } @STRING{hinterbuehne = {Hinter der B{\"u}hne} } @STRING{leserbrief = {Leserbrief(e)} } @STRING{magazin = {Magazin} } @STRING{rezension = {Rezensionen} } @STRING{schonimmer = {Was Sie schon immer {\"u}ber {\TeX} wissen wollten \dots} } @STRING{theaterkasse = {Von der Theaterkasse} } @STRING{theatertage = {{\TeX}-Theatertage} } @Book{PSTricks2, author = {Herbert Vo\ss}, title = {{\PST} {G}rafik f\"ur \TeX{} und \LaTeX}, edition = {7}, publisher = {DANTE and Lehmanns}, year = {2016}, address = {Heidelberg/Berlin} } @Book{PSTricks-E, author = {Herbert Vo\ss}, title = {{\PST} {G}raphics for \LaTeX}, edition = {1}, publisher = {UIT}, year = {2011}, address = {Cambridge} } @Book{companion04, author = {Frank Mittelbach and Michel Goosens et al}, title = {The {\LaTeX} {C}ompanion}, edition = {2}, publisher = {Addison-Wesley Publishing Company}, year = {2004}, address = {Boston} } @Book{unbound, author = {Alan Hoenig}, title = {\TeX{} {U}nbound: \LaTeX{} \& \TeX{} {S}trategies, {F}onts, {G}raphics, and {M}ore}, publisher = {Oxford University Press}, year = {1998}, address = {London} } @Book{tlgc2, author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Denis Roegel and Herbert Vo{\ss}}, title = {The {\LaTeX} {G}raphics {C}ompanion}, publisher = {{Addison-Wesley Publishing Company}}, edition = 2, year = {2007}, address = {Reading, Mass.} } @Article{girou:01:, author = {Denis Girou}, title = {Pr\'esentation de {PST}ricks}, journal = {Cahier {GUT}enberg}, year = 1994, volume = {16}, month = apr, pages = {21-70} } @Article{girou:02:, author = {{Timothy Van} Zandt and Denis Girou}, title = {Inside {PST}ricks}, journal = TUGboat, year = 1994, volume = {15}, month = sep, pages = {239-246} } @Book{PostScript, Author = {Kollock, Nikolai G.}, Title = {PostScript richtig eingesetzt: vom {K}onzept zum praktischen {E}insatz}, Publisher = {IWT}, Address = {Vaterstetten}, year = 1989, } @Manual{pstricks, Title = {PSTricks - {\PS} macros for generic {\TeX}}, Author = {{Timothy Van} Zandt}, Organization = {}, Address = {\url{http://www.tug.org/application/PSTricks}}, Note = {}, year = 1993 } @Manual{multido, Title = {\texttt{multido.tex} - a loop macro, that supports fixed-point addition}, Author = {{Timothy Van} Zandt}, Organization = {}, Address = {\url{CTAN:/graphics/pstricks/generic/multido.tex}}, Note = {}, year = 1997 } @online{ferreol, title = {Trochoïde Sphérique, Spherical trochoid, Kugeltrochoide}, author = {Robert Ferréol and Alain Eeculier}, year = 2009, url = {https://mathcurve.com/courbes3d/cycloidspheric/trochoidspheric.shtml}, urldate = {2025-12-21}, } @online{clement, title = {Spherical Trochoid}, url = {https://www.geogebra.org/m/RCyfhMqw}, author={Patrick Clément}, organization = {GeoGebra}, urldate = {2025-12-21}, year = 2025, } @online{wolfram, url = {https://demonstrations.wolfram.com/SphericalTrochoid/}, urldate = {2025-12-21}, organization = {WOLFRAM Demonstrations Project}, year = 2016, author = {Erik Mahieu}, note = {see also \url{https://www.youtube.com/watch?v=V3KLZCjFHZY}}, } @inproceedings{wien, author = {Walther Jank and Georg Glaeser and Boris Odehnal}, url = {http://sodwana.uni-ak.ac.at/geom/mitarbeiter/odehnal/talk/vinkovci_jgo.pdf}, title = {On the geometry of spherical trochoids}, instutution = {University of Applied Arts Vienna}, urldate = {2025-12-21}, maintitle = {23rd Scientific-Professional Colloquium on Geometry and Graphics }, location = {Vinkovci, Croatia}, date = {2023-09-03/2023-09-07}, } @article{pottmann, author = {Pottmann, Helmut}, title = {Zur Geometrie höherer Planetenumschwungbewegungen}, date = {1984-06-01}, journal = {Monatshefte für Mathematik}, issue = {2}, Volume= 97, pages = {141--156}, %AB - The product ofn rotations with constant velocities around parallel axes in the Euclidean 3-space is called a planetary motion of degreen. The paper discusses spatial motions (“P-motions”) defined as the result of a planetary motion and a special translation in the direction of the axes; this translation is the sum of a finite number of harmonic translations with different frequencies. issn = {1436-5081}, url = {https://doi.org/10.1007/BF01653244}, doi = {10.1007/BF01653244}, }