1 Basics

1.1 Install chevreulPlot

R is an open-source statistical environment which can be easily modified to enhance its functionality via packages. chevreulPlot is a R package available via the Bioconductor repository for packages. R can be installed on any operating system from CRAN after which you can install chevreulPlot by using the following commands in your R session:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

BiocManager::install("chevreulPlot")

1.2 Required knowledge

The chevreulPlot package is designed for single-cell RNA sequencing data. The functions included within this package are derived from other packages that have implemented the infrastructure needed for RNA-seq data processing and analysis. Packages that have been instrumental in the development of chevreulPlot include, Biocpkg("SummarizedExperiment") and Biocpkg("scater").

1.3 Asking for help

R and Bioconductor have a steep learning curve so it is critical to learn where to ask for help. The Bioconductor support site is the main resource for getting help: remember to use the chevreulPlot tag and check the older posts.

2 Quick start to using chevreulPlot

The chevreulPlot package contains functions to preprocess, cluster, visualize, and perform other analyses on scRNA-seq data. It also contains a shiny app for easy visualization and analysis of scRNA data.

chvereul uses SingelCellExperiment (SCE) object type (from SingleCellExperiment) to store expression and other metadata from single-cell experiments.

This package features functions capable of:

  • Performing Clustering at a range of resolutions and Dimensional reduction of Raw Sequencing Data.
  • Visualizing scRNA data using different plotting functions.
  • Integration of multiple datasets for consistent analyses.
  • Cell cycle state regression and labeling.

library("chevreulPlot")

# Load the data
library(chevreuldata)
chevreul_sce <- human_gene_transcript_sce()
chevreul_sce
#> class: SingleCellExperiment 
#> dim: 9740 883 
#> metadata(2): markers experiment
#> assays(3): counts logcounts scaledata
#> rownames(9740): 5-8S-rRNA A2M-AS1 ... HHIP-AS1 AC117490.2
#> rowData names(0):
#> colnames(883): ds20181001-0001 ds20181001-0002 ... ds20181001-1039
#>   ds20181001-1040
#> colData names(49): orig.ident nCount_gene ... nFeature_transcript ident
#> reducedDimNames(2): PCA UMAP
#> mainExpName: gene
#> altExpNames(1): transcript
sessionInfo()
#> R Under development (unstable) (2024-10-21 r87258)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] chevreuldata_0.99.16        ExperimentHub_2.15.0       
#>  [3] AnnotationHub_3.15.0        BiocFileCache_2.15.0       
#>  [5] dbplyr_2.5.0                chevreulPlot_0.99.11       
#>  [7] chevreulProcess_0.99.19     scater_1.35.0              
#>  [9] ggplot2_3.5.1               scuttle_1.17.0             
#> [11] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0
#> [13] Biobase_2.67.0              GenomicRanges_1.59.1       
#> [15] GenomeInfoDb_1.43.1         IRanges_2.41.1             
#> [17] S4Vectors_0.45.2            BiocGenerics_0.53.3        
#> [19] generics_0.1.3              MatrixGenerics_1.19.0      
#> [21] matrixStats_1.4.1           BiocStyle_2.35.0           
#> 
#> loaded via a namespace (and not attached):
#>   [1] batchelor_1.23.0           BiocIO_1.17.0             
#>   [3] bitops_1.0-9               filelock_1.0.3            
#>   [5] tibble_3.2.1               EnsDb.Mmusculus.v79_2.99.0
#>   [7] XML_3.99-0.17              lifecycle_1.0.4           
#>   [9] edgeR_4.5.0                doParallel_1.0.17         
#>  [11] lattice_0.22-6             ensembldb_2.31.0          
#>  [13] magrittr_2.0.3             plotly_4.10.4             
#>  [15] limma_3.63.2               sass_0.4.9                
#>  [17] rmarkdown_2.29             jquerylib_0.1.4           
#>  [19] yaml_2.3.10                metapod_1.15.0            
#>  [21] DBI_1.2.3                  RColorBrewer_1.1-3        
#>  [23] ResidualMatrix_1.17.0      abind_1.4-8               
#>  [25] zlibbioc_1.53.0            purrr_1.0.2               
#>  [27] AnnotationFilter_1.31.0    RCurl_1.98-1.16           
#>  [29] rappdirs_0.3.3             circlize_0.4.16           
#>  [31] GenomeInfoDbData_1.2.13    ggrepel_0.9.6             
#>  [33] irlba_2.3.5.1              megadepth_1.17.0          
#>  [35] cmdfun_1.0.2               dqrng_0.4.1               
#>  [37] DelayedMatrixStats_1.29.0  codetools_0.2-20          
#>  [39] DelayedArray_0.33.2        tidyselect_1.2.1          
#>  [41] shape_1.4.6.1              UCSC.utils_1.3.0          
#>  [43] farver_2.1.2               wiggleplotr_1.31.0        
#>  [45] ScaledMatrix_1.15.0        viridis_0.6.5             
#>  [47] GenomicAlignments_1.43.0   jsonlite_1.8.9            
#>  [49] GetoptLong_1.0.5           BiocNeighbors_2.1.0       
#>  [51] iterators_1.0.14           foreach_1.5.2             
#>  [53] tools_4.5.0                Rcpp_1.0.13-1             
#>  [55] glue_1.8.0                 gridExtra_2.3             
#>  [57] SparseArray_1.7.2          xfun_0.49                 
#>  [59] dplyr_1.1.4                withr_3.0.2               
#>  [61] BiocManager_1.30.25        fastmap_1.2.0             
#>  [63] bluster_1.17.0             fansi_1.0.6               
#>  [65] digest_0.6.37              rsvd_1.0.5                
#>  [67] mime_0.12                  R6_2.5.1                  
#>  [69] colorspace_2.1-1           RSQLite_2.3.8             
#>  [71] utf8_1.2.4                 tidyr_1.3.1               
#>  [73] data.table_1.16.2          rtracklayer_1.67.0        
#>  [75] htmlwidgets_1.6.4          httr_1.4.7                
#>  [77] S4Arrays_1.7.1             pkgconfig_2.0.3           
#>  [79] gtable_0.3.6               blob_1.2.4                
#>  [81] ComplexHeatmap_2.23.0      XVector_0.47.0            
#>  [83] htmltools_0.5.8.1          bookdown_0.41             
#>  [85] ProtGenerics_1.39.0        clue_0.3-66               
#>  [87] scales_1.3.0               png_0.1-8                 
#>  [89] scran_1.35.0               knitr_1.49                
#>  [91] tzdb_0.4.0                 rjson_0.2.23              
#>  [93] curl_6.0.1                 cachem_1.1.0              
#>  [95] GlobalOptions_0.1.2        stringr_1.5.1             
#>  [97] BiocVersion_3.21.1         parallel_4.5.0            
#>  [99] vipor_0.4.7                AnnotationDbi_1.69.0      
#> [101] restfulr_0.0.15            pillar_1.9.0              
#> [103] grid_4.5.0                 vctrs_0.6.5               
#> [105] BiocSingular_1.23.0        EnsDb.Hsapiens.v86_2.99.0 
#> [107] beachmat_2.23.1            cluster_2.1.6             
#> [109] beeswarm_0.4.0             evaluate_1.0.1            
#> [111] readr_2.1.5                GenomicFeatures_1.59.1    
#> [113] cli_3.6.3                  locfit_1.5-9.10           
#> [115] compiler_4.5.0             Rsamtools_2.23.0          
#> [117] rlang_1.1.4                crayon_1.5.3              
#> [119] forcats_1.0.0              fs_1.6.5                  
#> [121] ggbeeswarm_0.7.2           stringi_1.8.4             
#> [123] viridisLite_0.4.2          BiocParallel_1.41.0       
#> [125] munsell_0.5.1              Biostrings_2.75.1         
#> [127] lazyeval_0.2.2             Matrix_1.7-1              
#> [129] hms_1.1.3                  patchwork_1.3.0           
#> [131] sparseMatrixStats_1.19.0   bit64_4.5.2               
#> [133] KEGGREST_1.47.0            statmod_1.5.0             
#> [135] igraph_2.1.1               memoise_2.0.1             
#> [137] bslib_0.8.0                bit_4.5.0