## ----echo=TRUE, message=FALSE------------------------------------------------- library(philr); packageVersion("philr") library(ape); packageVersion("ape") library(ggplot2); packageVersion("ggplot2") ## ----echo=TRUE, message=FALSE------------------------------------------------- library(mia); packageVersion("mia") library(dplyr); packageVersion("dplyr") data(GlobalPatterns, package = "mia") ## ----message=FALSE, warning=FALSE--------------------------------------------- ## Select prevalent taxa tse <- GlobalPatterns %>% subsetByPrevalentTaxa( detection = 3, prevalence = 20/100, as_relative = FALSE) ## Pick taxa that have notable abundance variation across sammples variable.taxa <- apply(assays(tse)$counts, 1, function(x) sd(x)/mean(x) > 3.0) tse <- tse[variable.taxa,] # Collapse the tree! # Otherwise the original tree with all nodes is kept # (including those that were filtered out from rowData) tree <- ape::keep.tip(phy = rowTree(tse), tip = rowLinks(tse)$nodeNum) rowTree(tse) <- tree ## Add a new assay with a pseudocount assays(tse)$counts.shifted <- assays(tse)$counts + 1 ## ----echo=FALSE--------------------------------------------------------------- tse ## ----message=FALSE, warning=FALSE--------------------------------------------- library(ape); packageVersion("ape") is.rooted(tree) # Is the tree Rooted? is.binary(tree) # All multichotomies resolved? ## ----message=FALSE, warning=FALSE--------------------------------------------- tree <- makeNodeLabel(tree, method="number", prefix='n') # Add the modified tree back to the (`TreeSE`) data object rowTree(tse) <- tree ## ----------------------------------------------------------------------------- # Extract taxonomy table from the TreeSE object tax <- rowData(tse)[,taxonomyRanks(tse)] # Get name balances name.balance(tree, tax, 'n1') ## ----------------------------------------------------------------------------- otu.table <- t(as(assays(tse)$counts.shifted, "matrix")) tree <- rowTree(tse) metadata <- colData(tse) tax <- rowData(tse)[,taxonomyRanks(tse)] otu.table[1:2,1:2] # OTU Table tree # Phylogenetic Tree head(metadata,2) # Metadata head(tax,2) # taxonomy table ## ----------------------------------------------------------------------------- human.samples <- factor(colData(tse)$SampleType %in% c("Feces", "Mock", "Skin", "Tongue")) ## ----message=FALSE------------------------------------------------------------ gp.philr <- philr(otu.table, tree, part.weights='enorm.x.gm.counts', ilr.weights='blw.sqrt') gp.philr[1:5,1:5] ## ----message=FALSE------------------------------------------------------------ gp.philr <- philr(tse, abund_values = "counts.shifted", part.weights='enorm.x.gm.counts', ilr.weights='blw.sqrt') ## ----message=FALSE------------------------------------------------------------ pseq <- convertToPhyloseq(tse, assay.type="counts.shifted") gp.philr <- philr(pseq, part.weights='enorm.x.gm.counts', ilr.weights='blw.sqrt') ## ----------------------------------------------------------------------------- # Distances between samples based on philr transformed data gp.dist <- dist(gp.philr, method="euclidean") # Calculate MDS for the distance matrix d <- as.data.frame(cmdscale(gp.dist)) colnames(d) <- paste0("PC", 1:2) ## ----------------------------------------------------------------------------- # Add some metadata for the visualization d$SampleType <- factor(metadata$SampleType) # Create a plot ggplot(data = d, aes(x=PC1, y=PC2, color=SampleType)) + geom_point() + labs(title = "Euclidean distances with phILR") ## ----message=FALSE, warning=FALSE--------------------------------------------- library(glmnet); packageVersion('glmnet') glmmod <- glmnet(gp.philr, human.samples, alpha=1, family="binomial") ## ----------------------------------------------------------------------------- top.coords <- as.matrix(coefficients(glmmod, s=0.2526)) top.coords <- rownames(top.coords)[which(top.coords != 0)] (top.coords <- top.coords[2:length(top.coords)]) # remove the intercept as a coordinate ## ----------------------------------------------------------------------------- tc.names <- sapply(top.coords, function(x) name.balance(tree, tax, x)) tc.names ## ----------------------------------------------------------------------------- votes <- name.balance(tree, tax, 'n730', return.votes = c('up', 'down')) votes[[c('up.votes', 'Family')]] # Numerator at Family Level votes[[c('down.votes', 'Family')]] # Denominator at Family Level ## ----message=FALSE, warning=FALSE--------------------------------------------- library(ggtree); packageVersion("ggtree") library(dplyr); packageVersion('dplyr') ## ----message=FALSE, warning=FALSE--------------------------------------------- tc.nn <- name.to.nn(tree, top.coords) tc.colors <- c('#a6cee3', '#1f78b4', '#b2df8a', '#33a02c', '#fb9a99') p <- ggtree(tree, layout='fan') + geom_balance(node=tc.nn[1], fill=tc.colors[1], alpha=0.6) + geom_balance(node=tc.nn[2], fill=tc.colors[2], alpha=0.6) + geom_balance(node=tc.nn[3], fill=tc.colors[3], alpha=0.6) + geom_balance(node=tc.nn[4], fill=tc.colors[4], alpha=0.6) + geom_balance(node=tc.nn[5], fill=tc.colors[5], alpha=0.6) p <- annotate_balance(tree, 'n16', p=p, labels = c('n16+', 'n16-'), offset.text=0.15, bar=FALSE) annotate_balance(tree, 'n730', p=p, labels = c('n730+', 'n730-'), offset.text=0.15, bar=FALSE) ## ----------------------------------------------------------------------------- gp.philr.long <- convert_to_long(gp.philr, human.samples) %>% filter(coord %in% top.coords) ggplot(gp.philr.long, aes(x=labels, y=value)) + geom_boxplot(fill='lightgrey') + facet_grid(.~coord, scales='free_x') + labs(x = 'Human', y = 'Balance Value') + theme_bw() ## ----message=FALSE, warning=FALSE--------------------------------------------- library(tidyr); packageVersion('tidyr') gp.philr.long %>% dplyr::rename(Human=labels) %>% dplyr::filter(coord %in% c('n16', 'n730')) %>% tidyr::spread(coord, value) %>% ggplot(aes(x=n16, y=n730, color=Human)) + geom_point(size=4) + labs(x = tc.names['n16'], y = tc.names['n730']) + theme_bw() ## ----echo=TRUE, message=FALSE------------------------------------------------- sessionInfo()