## ----eval=FALSE--------------------------------------------------------------- # BiocManager::install("kmcut") ## ----------------------------------------------------------------------------- library(kmcut) ## ----------------------------------------------------------------------------- sdat <- system.file("extdata", "survival_data.txt", package = "kmcut") ## ----------------------------------------------------------------------------- fdat <- system.file("extdata", "example_genes.txt", package = "kmcut") ## ----------------------------------------------------------------------------- # Read names of the built-in gene expression data file and survival data file fdat = system.file("extdata", "example_genes.txt", package = "kmcut") sdat = system.file("extdata", "survival_data.txt", package = "kmcut") # Create a SummarizedExperiment object 'se' se = create_se_object(efile = fdat, sfile = sdat) ## ----out.width='70%'---------------------------------------------------------- # Read names of the built-in gene expression data file and survival data file fdat = system.file("extdata", "example_genes.txt", package = "kmcut") sdat = system.file("extdata", "survival_data.txt", package = "kmcut") # Create SummarizedExperiment object se = create_se_object(efile = fdat, sfile = sdat) # Run the permutation test for 10 iterations for each gene, use 1 processor km_opt_pcut(obj = se, bfname = "test", n_iter = 10, wlabels = TRUE, wpdf = FALSE, verbose = FALSE, nproc = 1) ## ----out.width='70%'---------------------------------------------------------- # Read names of the built-in gene expression data file and survival data file fdat = system.file("extdata", "example_genes.txt", package = "kmcut") sdat = system.file("extdata", "survival_data.txt", package = "kmcut") # Create SummarizedExperiment object se <- create_se_object(efile = fdat, sfile = sdat) # Search for optimal cutoffs km_opt_scut(obj = se, bfname = "test", wpdf = FALSE, verbose = FALSE) ## ----out.width='70%'---------------------------------------------------------- # Read names of the built-in gene expression data file and survival data file fdat = system.file("extdata", "example_genes.txt", package = "kmcut") sdat = system.file("extdata", "survival_data.txt", package="kmcut") # Create SummarizedExperiment object se <- create_se_object(efile = fdat, sfile = sdat) # Use the 50th quantile (the median) to stratify the samples km_qcut(obj = se, bfname = "test", quant = 50, wpdf = FALSE) ## ----out.width='70%'---------------------------------------------------------- # Read names of the built-in gene expression data file and survival data file fdat = system.file("extdata", "example_genes.txt", package = "kmcut") sdat = system.file("extdata", "survival_data.txt", package = "kmcut") # Create SummarizedExperiment object se <- create_se_object(efile = fdat, sfile = sdat) # Use the cutoff = 5 to stratify the samples and remove features that have # less than 90% unique values (this removes the MYH2 gene from the analysis) km_ucut(obj = se, bfname = "test", cutoff = 5, min_uval = 90, wpdf = FALSE) ## ----out.width='70%'---------------------------------------------------------- # Read names of training (fdat1) and validation (fdat2) gene expression data # files and survival data file (sdat). fdat1 <- system.file("extdata", "expression_data_1.txt", package = "kmcut") fdat2 <- system.file("extdata", "expression_data_2.txt", package = "kmcut") sdat <- system.file("extdata", "survival_data.txt", package = "kmcut") # Create SummarizedExperiment object with training data se1 <- create_se_object(efile = fdat1, sfile = sdat) # Step 1: Run 'km_qcut' on the training data in 'se1' km_qcut(obj = se1, bfname = "training_data", quant = 50, min_uval = 40) ## ----out.width='70%'---------------------------------------------------------- # Create SummarizedExperiment object with test data se2 <- create_se_object(efile = fdat2, sfile = sdat) # Step 2: Validate the thresholds from "training_data_KM_quant_50.txt" on # the test data in 'se2'. km_val_cut(infile = "training_data_KM_quant_50.txt", obj = se2, bfname = "test", wpdf = TRUE, min_uval = 40) ## ----------------------------------------------------------------------------- # Read names of the built-in gene expression data file (fdat) and # survival data file (sdat) fdat = system.file("extdata", "example_genes.txt", package = "kmcut") sdat = system.file("extdata", "survival_data.txt", package = "kmcut") # Create SummarizedExperiment object se <- create_se_object(efile = fdat, sfile = sdat) # Perform the regression on the data in 'se' ucox_batch(obj = se, bfname = "test") ## ----------------------------------------------------------------------------- # Read names of the built-in training (fdat1) and test (fdat2) # gene expression data files and survival data file (sdat) fdat1 = system.file("extdata", "expression_data_1.txt", package = "kmcut") fdat2 = system.file("extdata", "expression_data_2.txt", package = "kmcut") sdat = system.file("extdata", "survival_data.txt", package = "kmcut") # Create SummarizedExperiment object with training data se1 <- create_se_object(efile = fdat1, sfile = sdat) # Create SummarizedExperiment object with test data se2 <- create_se_object(efile = fdat2, sfile = sdat) # Fit Cox model on the training data in 'se1' and use it to calculate the risk # scores for the test data in 'se2'. ucox_pred(obj1 = se1, obj2 = se2, bfname = "demo", min_uval = 40) ## ----------------------------------------------------------------------------- # Read the name of the built-in gene expression data file with 2 genes (2 rows) fdat = system.file("extdata", "example_genes.txt", package = "kmcut") # Read the name of the built-in list file that contains one gene id (MYCN) idlist = system.file("extdata", "rowids.txt", package = "kmcut") # Run the function extract_rows(fnamein = fdat, fids = idlist, fnameout = "example_genes_subset.txt") ## ----------------------------------------------------------------------------- # Read the name of the built-in gene expression data file with 2 genes (2 rows) fdat = system.file("extdata", "example_genes.txt", package = "kmcut") # Read the name of the built-in list file that contains a sub-set of # column (sample) ids idlist = system.file("extdata", "columnids.txt", package = "kmcut") # Run the function extract_columns(fnamein = fdat, fids = idlist, fnameout = "example_samples_subset.txt") ## ----------------------------------------------------------------------------- # Read the name of the built-in gene expression data file. # In this file, genes are rows and samples are columns. fdat = system.file("extdata", "example_genes.txt", package = "kmcut") # Run the function transpose_table(fnamein = fdat, fnameout = "example_genes_transposed.txt") ## ----------------------------------------------------------------------------- sessionInfo()